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Abstract

A common way of analyzing signals in a joint time-frequency domain is found in the spectrogram,

which can be interpreted as a multi-channel envelope representation of the signal. The envelope

cannot fully represent a signal because it only reflects slow changes in the amplitude of a signal and

lacks information regarding its fast variations, the temporal fine structure (TFS). However, the main

hypothesis explored in this thesis is that a spectrogram could be a faithful representation of a signal,

that is, TFS information could be recovered by across-channel comparison of envelopes. Based

on this consideration, an approach for spectrogram inversion was proposed: time-domain signals

were recovered from spectrograms computed using both inner hair-cell envelope (i.e., traditional

half-wave rectification followed by low-pass filtering) and Hilbert envelope definitions. The high

accuracy of the inversion scheme (as measured by root mean square error and spectral convergence)

implies that the main hypothesis holds true for the designs chosen. Two practical applications of

this result were then presented. (1) Spectrograms that are computed using the inner hair-cell (IHC)

envelope definition are a reasonable model of the signal processing performed by the human cochlea.

The robustness of the reconstruction from such spectrograms with regards to the properties of the

cochlear model showed that, for previously documented IHC models as well as for more restrictive

conditions, the TFS-related information is retained by the (modeled) cochlear processing even at

high audio frequencies. (2) Using the inversion framework, it is possible to manipulate signals in the

modulation domain, while preserving their long-term power spectra. Thus, this enabled the creation

of mixtures of speech and noise where the signal-to-noise ratio in the envelope domain (SNRenv)

was directly controlled. Behavioral measures of the intelligibility for such mixtures were compared

to predictions from a model of speech intelligibility. Conditions where noise was processed led

to modest intelligibility improvements for increased SNRenv, providing direct validation of the

intelligibility model. Processing speech proved to be challenging and did not result in improved

intelligibility, in contrast to the model predictions. The challenges encountered when processing

speech were further explored, but could not be completely circumvented, and accurate modulation

filtering of speech signals remains challenging.

v
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Resumé

Spektrogrammer anvendes ofte til at analysere signaler i et samlet tid-frekvens domæne. Et

spektrogram kan tolkes som en multi-kanal indhyldningskurve af et signal. Indhyldningskurven

repræsenterer langsomme ændringer i signalets amplitude, men indeholder ikke information om

signalets hurtige fluktuationer, den såkaldte temporale fin-struktur (TFS). Derfor er indhyldningskur-

ven ikke en fuldstændig repræsentation af et signal. Hovedhypotesen i denne afhandling er at

fordi et spektrogram består af flere kanaler kan et spektrogram potentielt set være en fuldstændig

repræsention af det oprindelige signal. Baseret på denne antagelse foreslås en fremgangsmåde

til at invertere et spektrogram: Et signal i tids-domænet genskabes ud fra et spektrogram hvor

indhyldningskurven er baseret på enten en model af indre hårceller (dvs. en ensretter efterfulgt

af et lavpas-filter), eller ud fra definitionen givet ved Hilbert indhyldningskurven. Nøjagtigheden

af rekonstruktionen indikerer at hovedhypotesen er sand for de konfigurationer der er anvendt i

dette studie. To praktiske anvendelser af metoden præsenteres efterfølgende: (1) Spektrogrammer,

beregnet ved hjælp af indhyldningskurver defineret ud fra en model af indre hårceller (IHC), er en

rimelig repræsentation af den menneskelige cochleas signal-behandling. Signaler, rekonstrueret

ud fra spektrogrammer dannet ved hjælp af tidligere foreslåede IHC modeller, såvel som mere

restriktive implementationer af modellerne, viser en høj grad af robusthed, hvilket indikerer

at TFS informationen bevares i den modellerede cochleare signal-behandling; selv ved høje

audio-frekvenser. (2) Rekonstruktion af modificerede spektrogrammer muliggør at temporale

modulationer (dvs. variationer i indhyldningskurven over tid) kan ændres. Dette gør at man kan

skabe signaler bestående af tale og støj hvor signal-støjforholdet i indhyldningskurve-domænet

(SNRenv) kan styres direkte. Målinger af taleforståeligheden af sådanne signaler blev sammenlignet

med beregninger fra en model for taleforståelighed. Forsøgsbetingelser hvor støjen var modificeret

gav beskedne forbedringer af taleforståeligheden ved en øget SNRenv, hvilket understøtter modellen

for taleforståelighed. Forsøgsbetingelser med modificeret tale viste sig at være en udfordring og

gav ikke en øget taleforståelighed, i modsætning til modellens beregninger. Udfordringerne der

opstod i forbindelse med at modificere tale blev yderligere undersøgt, men det lykkedes ikke at

overkomme dem fuldstændigt. En nøjagtig modulations-filtrering af tale er derfor stadig et åbent

problem.

vii
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Résumé

Le spectrogramme, qui est une méthode communément utilisée pour l’analyse de signaux dans un

domaine conjoint en temps-fréquence, peut être interprété comme une représentation multicanale de

l’enveloppe du signal. L’enveloppe, en tant que telle, reflète les lents changements d’amplitude d’un

signal et ne renseigne donc pas sur ses variations rapides, i.e., sur sa structure temporelle fine (STF).

Par conséquent, l’enveloppe seule ne peut représenter entièrement un signal. L’hypothèse principale

développée dans cette thèse est que le spectrogramme, cependant, parce qu’il implique plusieurs

canaux, pourrait être une représentation fidèle du signal. Partant de cette hypothèse, une méthode

d’inversion du spectrogramme est proposée permettant de reconstruire des signaux temporels à partir

de spectrogrammes basés soit sur un modèle d’enveloppe des cellules ciliés internes (CCI) consistant

en un redressement demi-onde suivi d’un filtre passe-bas, soit sur l’enveloppe de Hilbert. La fidélité

des signaux reconstruits suggère que notre hypothèse est vérifiée pour les deux cas étudiés. Deux

applications pratiques de ces résultats sont ensuite proposées. (1) Les spectrogrammes calculés à

partir de l’enveloppe des CCI sont un modèle raisonnable de la représentation obtenue en sortie de

la cochlée. La robustesse de la méthode de reconstruction face à la modifications des paramètres du

modèle cochléaire montre que, pour les modèles de CCI présentés dans la littérature ainsi que pour

des conditions plus sévères, l’information sur la STF est toujours présente dans la représentation

cochléaire, même en hautes fréquences. (2) La reconstruction de spectrogrammes modifiés rend

possible la manipulation des modulations temporelles (i.e., la variation de l’enveloppe au cours du

temps), permettant ainsi d’imposer un certain rapport signal-bruit dans le domaine de l’enveloppe

(SNRenv) pour des mélanges de parole et de bruit. L’intelligibilité de ces signaux est mesurée

et comparée aux prédictions d’un modèle. Lorsque le bruit est manipulé, il est démontré qu’un

SNRenv accru génère une amélioration modérée de l’intelligibilité. En revanche, l’intelligibilité est

dégradée lorsque le signal de parole est manipulé. Les limitations rencontrées dans ce cas précis

sont étudiées en détail, mais n’ont pu être entièrement contournées. Ainsi, le développement d’une

méthode suffisamment précise pour filtrer les modulations dans la parole reste encore un défi.

ix
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myself surrounded by very calm, very discreet, though fairly pleasant adepts of the Danish "hygge".

Not quite the same, even though I happened to be right for the bike-and-herring part.

What struck me the most was my first day in building 352. A couple hours were more than
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say. But it was indeed honest, and today I am very thankful that I could become a part of it, a bit

more than three years ago when this PhD project started.

Forty months is a long time for one project. And it is thanks to the support I got,

both professionally and personally, that this manuscript could "come to life". My deepest

acknowledgments therefore go to my supervisors. Torsten, with his enthusiasm in the project

and his overwhelming continuous flow of brilliant ideas, truly put a literal meaning to his function

of "vejleder". He was always there when needed, smoothing my motivational ups and downs; he

brought me down to earth when I got too excited over details and more importantly, cheered me up

when I was down. To this I am extremely thankful, and I challenge anyone to try and combine such

perfectly tailored supervision with that busy an agenda.

Peter, as a much needed technical adviser, really was the cornerstone of this project. He managed

to communicate his enthusiasm and his impressive knowledge of the topic to me, despite the few

thousand kilometers separating us in the last year. Thank you for being there, it would have been

impossible (with a probability of 1) to conduct this project without your non-measurable help.

I am very thankful to Ewen too. He has played a fundamental role in the last milestones of the

project. Although I pushed his native English skills (well, probably more his patience) to the limit

with all the reviewing I asked him to do, I rarely saw someone as receptive and cheerful.

Additionally, I would like to thank fellow researchers from CAHR. You are what makes this

group a lovely place to work. You gave me the support I needed from colleagues, as well as from

friends.
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Introduction

This chapter presents a conceptual introduction to the problems posed in this thesis.
It describes the intuitive approach to defining the envelope of a signal, as well as the
limitations this concept faces in real-life scenarios. A simple example then leads to
the formulation of the main hypothesis behind this work: that multi-channel envelope
representations (i.e., spectrograms) could, unlike single-channel envelopes, be a faithful
representation of a signal, i.e., a representation that retains all the information related to
the signal. An application of this concept to spectrogram inversion and later to modulation
filtering is suggested. An overview of the content of this thesis is then finally presented.

1.1 The envelope: a conceptual attribute of a signal

1.1.1 An intuitive concept...

The concept of an envelope is easily introduced by a common perceptual experiment. When a

musical instrument produces two notes that are close in frequency, though slightly different (e.g.,

if the instrument is not properly tuned), a beating phenomenon can be heard: the resulting signal

presents slow periodic changes in its "volume", as if it was "beating". It can, for example, be very

clearly heard when striking two tuning forks tuned at slightly different frequencies, as illustrated

in fig.1.1. Letting the two forks resonate simultaneously will result in a sound with two audible

attributes:

• The resulting sound’s pitch is "in between" the two pitches of individual forks.

• The resulting sound is pulsating at a fixed rate. Experimenting with different tuning forks

shows that this rate increases for increasing mistuning of the forks.

This experiment reveals an interesting phenomenon: although the resulting signal is composed of

two tones with very close fundamental frequencies, we perceive a pulsating tone where the pulse

rate and the pitch of the tone involve two frequencies far apart. This perceptual dichotomy (a given

pitch and a given pulsating rate) can be accounted for by introducing the decomposition of the

signal into the product of an envelope and a carrier wave. The envelope would account for the slow

variations of the signal, in this case the beating, while the carrier wave would "carry" this envelope

and provide a fundamental frequency, in this case giving the pitch information.

An intuitive definition of the envelope of a signal could be given with the two following points:

1
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2 1. Introduction

440 Hz

1/4 s 1/442 s

444 Hz

Figure 1.1: The tuning forks experiment: two tuning forks of slightly different tuning (e.g., 440 and 444 Hz) will produce
a resulting signal with a clearly audible 4 Hz modulation and a fundamental frequency at 442 Hz

(i) The envelope is tangent to the signal at, or in a close vicinity to each of its local maxima.

(ii) The envelope env surrounds the signal s, i.e., −env≤ s≤ env at every point in the signal.

These two points in the definition imply that the envelope is a non-negative signal. This is an

arbitrary choice, as point (i) above could be replaced with "tangent to local minima" and the

inequality in (ii) reversed, resulting also in a viable, though slightly less practical, non-positive

envelope definition. Under this consideration, a more specific definition can be formulated:

The envelope is tangent to the absolute value of the signal at, or in a close vicinity to its local

extrema.

1.1.2 ... that needs mathematical formalizing

The tuning fork example is convenient to expose a mathematical decomposition into envelope and

carrier wave, as the signal it generates is very close to a pure sine wave. When both forks are struck,

the resulting signal is a sum of two sine waves, with frequencies f1 and f2, with f1 ≈ f2. Without

loss of generality, it can be assumed that the two sinusoidal components have the same amplitude

and starting phase. The resulting signal is then given as follows:

s = sin(2π f1t)+ sin(2π f2t) (1.1)

where t denotes time. Using a standard trigonometric formula, we can reformulate this sum into a

product:

s = 2cos
(

2π
f1− f2

2
t
)

sin
(

2π
f1 + f2

2
t
)

(1.2)

Keeping in mind that f1 ≈ f2, one can relate the product form of (1.2) to the perceptual

decomposition evoked earlier, of a product of a slow varying envelope (as f1− f2 ≈ 0) with

a fast varying carrier wave ( as f1+ f2
2 ≈ f1 or f2). The envelope for this signal can therefore
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(a) The superposition of two pure tones with close
frequencies (here 45 and 55 Hz) results in a
pulsating tone. The envelope is easily defined using
trigonometric identities.
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(b) The concept of envelope applies to more complex
signals, but it is then less obvious to define
mathematically. An envelope detector needs to be
devised.
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(c) Envelope and carrier wave cannot be manipulated
independently. Here, the envelope of (a) was time
shifted and recombined with the original carrier. The
envelope of the new signal differs from the original
time-shifted envelope.

0 0.1 0.2 0.3

0

Time (s)

A
m

p
li

tu
d

e
?

(d) The concept of envelope holds for narrowband
signals. Here, two pure tones of 10 and 100 Hz are
superimposed. The intuitive definition of envelope
becomes ambiguous.

Figure 1.2: The envelope (orange lines) for various signals (black lines) illustrating basic envelope properties: (a) the
envelope of two superimposed pure tones with similar frequencies is easily defined, (b) the envelope exists also for
"complex" signals, (c) the envelope cannot be manipulated independently of the carrier wave, (d) the concept of envelope
becomes ambiguous for signals of wider bandwidth.

be defined as the absolute value of the low-frequency cosine component (as it is by definition

non-negative), together with the amplitude factor 2:

env(s) = 2
∣∣∣∣cos

(
2π

f1− f2

2
t
)∣∣∣∣ (1.3)

This decomposition is illustrated in fig.1.2(a), though with lower frequencies than in the tuning fork

experiment for better visibility.

The identification of an envelope is possible in the case of pure tones due to particular properties

of the sine waves. However, the intuitive concept of envelope holds as well for more complex

signals. For example, it is clear that the signal plotted in fig.1.2(b) has a distinct envelope (orange

line), but it cannot be defined mathematically as easily as in the previous case. For general cases,

a so-called envelope detector needs to be devised: a mathematical tool that extracts the envelope
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4 1. Introduction

from a given signal. Various mathematical definitions of envelope are suggested in the literature,

with each fitting our intuitive definition of envelope to different extents. Some of these definitions

and their resulting properties will be presented later in chapter 2. Two common envelope definitions

are then used throughout the thesis: the Hilbert envelope (in chapters 3, 5 and 6) and inner hair-cell

envelope models (in chapters 3 and 4).

1.1.3 Interaction between envelope and carrier wave in a narrowband signal

Both the envelope and its associated carrier wave are needed to entirely describe a signal. Simple

examples can be found in sine waves. The envelope of a pure sine wave is usually considered to

be a flat line, at a value corresponding to the amplitude of the sine wave. The associated carrier

is then the corresponding sine wave, with a normalized amplitude. Hence, given a flat envelope,

it is impossible to figure out the original signal associated to it, as it could be a sine wave of any

frequency. Conversely, given a sine wave carrier, no information regarding the amplitude of the

original signal is given and it is impossible to deduce, from the carrier wave only, what exactly the

original signal was.

For single sine waves, envelope and carrier are actually independent, i.e., the envelope (flat line)

contains no "information" regarding the carrier wave, and vice-versa. They can be manipulated

individually to change the amplitude or frequency of the sine. However this is not the case in

general, and a manipulated envelope might not be "compatible" with its previously associated

carrier wave. A simple example, illustrated in fig.1.2(c), is obtained by slightly time shifting the

envelope obtained in fig.1.2(a), and recombining it (i.e., multiplying it) with the original carrier

wave from fig.1.2(a). The resulting signal does not present the expected time-shifted envelope,

but its new envelope is significantly different, suggesting that in that case there was an interaction

between both envelope and carrier wave, and they cannot be considered either to be independent or

manipulated independently.

1.1.4 The spectrogram as an envelope representation of broadband signals

So far, the notion of envelope was introduced for narrow-band signals (sine wave, beating tone

and the "complex" signal in fig.1.2(b)). Real-life acoustic signals such as speech, music, or noise,

are generally broadband. The concept of envelope as introduced in 1.1.1 becomes ambiguous for

such broadband signals. Figure 1.2(d) illustrates this ambiguity, once again with the waveform

of the sum of two sine waves, but this time with frequencies further apart (here 10 and 100 Hz).

Defining an envelope that complies to the two points given in 1.1.1 becomes challenging. One

envelope candidate, plotted as a dotted line, follows point (i), being tangent to the local maxima of

the signal. However it goes against (ii), as the signal would not be included in between plus/minus

the envelope. Another candidate, plotted as a dashed line, fits better to the final definition given

in 1.1.1, but it goes against intuition and point (i), as it is not tangent to local maxima in a wide



i
i

“phd_thesis_A4” — 2013/11/5 — 13:20 — page 5 — #27 i
i

i
i

i
i

1.1 The envelope: a conceptual attribute of a signal 5

0 0.1 0.2

0

Time (s)

A
m

pl
itu

de

Time (s)

Fr
eq

ue
nc

y 
(H

z)

0 0.2 0.4 0.6 0.8
0

50

100

150

200

250

0

5

10

Fi
lte

rb
an

k 
+

 E
nv

el
op

e 
de

te
ct

io
n dB

dB

dB

Figure 1.3: The envelope of broadband signals can be obtained by decomposing them into narrowband channels by use
of a filterbank. The envelopes for every channels forms the spectrogram, expressed in dB. With this representation, the
10 Hz and 100 Hz components from the signal in 1.2(d) are separated and the ambiguity of the envelope definition is
removed.

portion of the signal. Because of this ambiguity, there is no definition of envelope that is applicable

to all broadband signals.

The common way to avoid this problem is to decompose broadband signals into narrowband

components, by means of a bank of bandpass filters. For each of these components, or channels, the

ambiguity is removed and an envelope can be identified. This decomposition process is illustrated

in fig.1.3 for the signal in fig.1.2(d). This representation, with two horizontal lines for the channels

centered at 10 and 100 Hz, reveals that the signal is composed of two sine components at these

frequencies.

In this thesis, the multichannel envelope representation (i.e., the collection of all the channels’

envelopes) will be referred to as a spectrogram of the signal. Note that the spectrogram is not

unique, as it depends on the choice of a filterbank and how the envelope is defined. Although the

term “spectrogram” does not have a strict definition, it is often used in the literature for a particular

case of the multichannel envelope representation, that obtained from the squared magnitude of

the short-time Fourier transform (STFT) coefficients. To avoid any confusion, this particular

representation will be referred to as “traditional spectrogram” in sections where it is introduced

(i.e., mainly in chapter 3).

1.1.5 Redundancies in the spectrogram playing a role in its representation of the
signal

Individual filters from the filterbank involved in the spectrogram derivation usually present a finite

slope in their frequency responses. Hence, there is some degree of overlap between filters in the

frequency domain. This implies that even if a signal is very narrowband, its spectrogram will not

be concentrated in one channel. For example, the spectrogram of a 100 Hz sine wave presented in

fig.1.4(a) is clearly centered around the 100 Hz channel, but its six closest neighbor channels also

present a significant activity. Hence the spectrogram is usually a redundant envelope representation,

as a given channel contains some amount of information related to the content of its neighbors.
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(b) f = 100.5Hz

Figure 1.4: Spectrograms (detail) of a sine wave (a) of frequency 100 Hz and (b) of frequency 100.5 Hz

These redundancies may result in the spectrogram being a faithful representation of the signal. In

section 1.1.3, an example was provided to illustrate the fact that for a narrowband signal, neither the

envelope nor the carrier wave could, in general, truly represent the signal. In other words, taking

the envelope of a signal results in a loss of information. However in the case of a spectrogram, each

channel in the vicinity of the frequency region of this narrowband signal will contain a redundant

but different representation of this signal. When the envelopes of the channels are taken to form the

spectrogram, many "versions" of the envelope will be described. Hence the spectrogram contains

more information regarding the signal than only a single envelope. Extrapolating this idea leads to

the hypothesis around which all the work conducted in this thesis revolves:

"Given a sufficiently redundant filterbank (i.e., sufficiently many channels and overlap between

channels), the spectrogram alone is a faithful representation of the signal, i.e., it contains the

same information as the original signal."

An illustration of this is given in fig.1.4 which presents the spectrogram of two sine waves

with very close frequencies (100 Hz for (a) and 100.5 Hz for (b)). As mentioned earlier, the

envelope of these two sine waves are the same constant signals, so their envelope only would not

allow to differentiate between them. However their spectrograms differ. The proximity of the two

frequencies causes the same channels to be activated in the two spectrograms. Although the center

channel (at 100 Hz) present the same amplitude for both spectrograms, the neighboring channels

present different amplitude such that it is possible, from their spectrograms, to differentiate the two

signals. Moreover, with knowledge of the filterbank that was used, and particularly the amount of

overlap between channels, the distribution in amplitude of the neighboring channels could allow

one to derive very precisely the original frequencies of the two tones, i.e. 100 and 100.5 Hz.

In this thesis, a method will be presented that recovers a time-domain signal corresponding to

a given spectrogram, i.e., a method for spectrogram inversion, or spectrogram reconstruction. It

will not imply a direct comparison between channels, as could be done for the sine wave examples

that were just illustrated. However, it will rely on the redundancy that the spectrogram offers as a

representation of the signal. It will be seen that time-domain signals can be recreated with a large
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degree of accuracy in terms of spectral convergence and for some cases root mean square error (two

metrics that will be introduced in chapter 3), suggesting that the main hypothesis proposed above

holds true for common designs of filterbanks.

1.2 Temporal modulation processing and spectrogram reconstruc-
tion

In this thesis, the main motivation in designing a mathematical tool to retrieve time-domain signals

associated to a given spectrogram has to do with temporal modulation processing. "Temporal

modulation" is a term used to refer to the variations of the envelope representation of a signal over

time. For general broadband signals, that is the fluctuation of the channels in the spectrogram

across time. There is a close relationship between temporal modulations and speech intelligibility

that has been found in previous studies, and an overview of this will be presented in the following

chapter. Hence for some applications there is a need for control or manipulation of the (temporal)

modulation content of signals, either the speech or the noise present in the listening environment.

Some manipulations could potentially lead to a speech intelligibility improvement, or provide a

temporal modulation manipulation framework that would allow for further investigations of the

interaction that exists between temporal modulation and speech intelligibility.

However, the computation of the spectrogram involves envelope detection in several channels, and

as it will be shown while introducing common mathematical definitions of the envelope, envelope

extraction is always a non-linear operation. Manipulating the envelope in the temporal domain of

any signal is therefore non-trivial. A good alternative is to manipulate it in the spectrogram domain.

Any type of processing can be applied to the spectrogram of a signal, resulting in a processed

spectrogram. As was illustrated in fig.1.2(c), the processed spectrogram cannot be recombined with

the original carrier waves obtained for each channel. That is where a spectrogram reconstruction

is needed, allowing for the recovery of a time-domain signal whose spectrogram is similar to the

processed spectrogram obtained earlier. If these steps are followed successfully, then effective

modulation filtering of the signal can be carried out.

1.3 Outline of the thesis

This first chapter aimed at presenting, through simple examples and illustrations, a conceptual

background for the main content that will follow. The concept of envelope was introduced, as well

as some of its basic properties. In general, for broadband signals, the concept of envelope is only

clearly defined through spectrograms: a collection of the envelopes taken for each output channel

of a redundant filterbank. Although the envelope in one channel is not sufficient to characterize this

channel, the collection of envelopes in a spectrogram might provide sufficient information to fully

recover the original signal.
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8 1. Introduction

Chapter 2 follows up on the conceptual introduction of this first chapter, and presents previous

elements of literature related to the concepts involved in this thesis. Historical overviews of the

concepts relating to envelope, spectrogram, and their relationship with psycho-acoustical findings

are developed.

In Chapter 3, an optimization approach to spectrogram reconstruction is investigated. If a

spectrogram is sufficiently redundant, then it should be possible to recover the time-domain signal

associated to a given, target spectrogram. In this chapter, the time-domain signal is considered a

variable in an optimization procedure, where the distance between the signal’s spectrogram and

the target is minimized iteratively. If convergence is reached, the time-domain signal created will

have a spectrogram as close as possible (i.e., shortest distance in the envelope domain) to the target

spectrogram. This framework is applied to spectrograms obtained with a Gammatone filterbank,

which models human peripheral auditory filters, and for two different envelope definitions: an

auditory motivated inner hair-cell (IHC) envelope model. The “traditional” spectrogram, obtained

from the magnitude of the short-time Fourier transform coefficients, is also investigated.

In Chapter 4, the robustness of the reconstruction from an IHC envelope based spectrogram with

respect to the parameters used in the IHC model is investigated. The spectrogram reconstruction

framework of chapter 3 is applied to an auditory-based spectrogram of a stimulus used in a previous

psycho-acoustic experiment regarding pitch. This stimulus contains only frequencies above 5 kHz

and the repetition rate of its envelope and of its temporal fine structure (TFS) differ. Results of

a previous behavioral study with this stimulus suggested that humans can make use of its TFS

information, even though this information is assumed to be lost at such high frequencies due

to cochlear processing. If reconstruction of the waveform of the signal from its multi-channel

IHC envelope is successful using the suggested framework, this would indicate that this auditory

representation preserves the TFS information even at high frequencies.

Chapter 5 develops the concept of modulation filtering using spectrogram reconstruction. The

study from Jørgensen and Dau (2011) provides a model that estimates speech intelligibility solely

based on the concept of signal-to-noise ratio in the envelope domain (SNRenv). This model predicts

better intelligibility for increased SNRenv. In this chapter, modulation filtering is performed either on

the speech or the noise component of a mixture in order to manipulate its SNRenv. Intelligibility is

measured behaviorally and compared to predictions from the model. The results provide additional

validation of the model from Jørgensen and Dau (2011), and explore the possibility of speech

intelligibility enhancement through modulation filtering.

Chapter 6 addresses some limitations of the approach used in chapter 5 when attempting to

enhance speech. The first step in the modulation filtering scheme suggested here involves filtering

the channels of a spectrogram. Issues that are not usually encountered when processing signals

arise when processing envelopes. On the one hand the frequency range of interest is much lower

than traditional audio frequencies, which can be a limitation in some scenarios. On the other hand

an envelope is a non-negative signal, which is shown to be a problematic constraint when trying to



i
i

“phd_thesis_A4” — 2013/11/5 — 13:20 — page 9 — #31 i
i

i
i

i
i
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manipulate it. These issues are investigated and potential methods to solve them are presented and

evaluated.

Finally, Chapter 7 proposes an overview of the results obtained in this study, with a discussion on

the future and viability of spectrogram reconstruction as a method to perform modulation filtering.
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2
On the relationship between envelope and

temporal fine structure

This chapter presents former work in fields related to the present thesis. It provides
a description of the evolution of envelope detection, historically needed for practical
applications in physics, and later formalized mathematically for its use in modern signal
processing. Former studies on the concept of multi-channel envelope, or spectrogram,
and its relationship to the signal it represents are then described. It will be shown how it
was proven that in particular scenarios the spectrogram faithfully represents the signal.
Finally, previous mentions of the role of envelope in psycho-acoustical studies are listed.
In particular, studies that involved manipulations of the envelope of speech and their
limitations will be reviewed.

2.1 Formalization of the concept of envelope

2.1.1 Historical approach to envelope detection

The first occurrence of envelope detection in history is probably connected to the early development

of radio communication and the conception of the first radio receivers in the very early 20th century.

Amplitude modulation (AM) radio broadcasting relies on conveying sound information using

electromagnetic waves, as the latter can travel over far longer distances while still being detectable.

It uses a high-frequency electromagnetic carrier wave (ranging from a few hundred to several

thousand kilo-Hertz in modern AM broadcasting) that is modulated in amplitude by the audio

signal, which is lower in frequency. The signal of interest, therefore, formed the envelope of the

broadcasted signal, as described in section 1.1. Hence some form of physical envelope detection

was needed to extract the audio signal back from the high-frequency electrical signal picked up by

an antenna.

Early simple AM radio receivers, crystal radios, were composed of an antenna, a crystal detector,

and earphones. The central and main component, the crystal detector, was an early version of a

semiconductor (i.e., a diode). It let the current flow in one direction while blocking it in the opposite

direction. In signal processing, this operation is referred to as half-wave rectification: the negative-

valued segments of the signal are set to zero but positive-valued segments are left unchanged. The

half-wave rectified signal at the output of the crystal still contains mostly very high frequencies

and does not reflect the acoustic signal. However, due to their electromechanical properties, the

11
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Vin Vout

crystal earphones
Vout

Vin

Vhw

Time

Figure 2.1: Electrical circuit of a basic envelope detector (left) with corresponding input Vin and output Vout voltages
(right). The intermediate half-wave rectified voltage Vhw would be measured at the output if the capacitor was removed.
This circuit also models the behavior of the crystal and the earphones in early AM radio receivers

earphones could not respond to such high frequencies and produced instead a low-pass filtered

version of the signal. This mechanical low-pass filtering, later implemented electrically for better

rendition, allowed the recovery of the audio signal, i.e., of the envelope of the transmitted signal.

Though implemented with modern and more accurate electronics and involving an amplification of

the electrical signal before delivering it to a loudspeaker, today’s versions of AM radios are still

based on a similar concept for envelope detection:

• half-wave rectification using a diode, assembled in series with a

• low-pass filter electric circuit, i.e., a resistor and a capacitor assembled in parallel.

This basic envelope detector is illustrated in fig.2.1, with an example of input and corresponding

output voltages (respectively, Vin and Vout). The voltage obtained with the half-wave rectification

step alone could be measured on a load resistor at the output of the diode (e.g., at the resistor if

the capacitor was removed). It is pictured here as Vhw and it is clear that the diode itself is not

sufficient and that an additional low-pass filter is needed to recover the envelope. For this AM

radio example, the low-pass filter characteristics, given by the resistance and capacitance values

of the elements in the circuit, are designed so that the frequencies of the acoustic signal fall into

the bandpass section of the filter and the carrier wave frequencies are strongly attenuated. This

kind of envelope detector is also commonly used in electronics, where for each specific application,

properties of the low-pass filter are adjusted depending on where in frequency the envelope lies.

2.1.2 Inner hair-cell envelope detection models

The previous example showed how envelope detectors were introduced historically in the conversion

from an electric to acoustic signal. Conversely, envelope detection is also involved in what is maybe

the most common acoustic to electric transducer: the (mammalian) ear. It is a long succession

of physiological operations from acoustical pressure waves at our ears to us perceiving sounds.



i
i

“phd_thesis_A4” — 2013/11/5 — 13:20 — page 13 — #35 i
i

i
i

i
i

2.1 Formalization of the concept of envelope 13

But in that chain, one element is specifically responsible for the transduction from mechanical

vibrations to electrical signals. The inner hair-cells (IHC), situated in the organ of Corti, respond to

the vibration of the basilar membrane by sending electrical pulses to the auditory nerve. It is the

collection of pulses from all of the IHCs traveling up the auditory pathway that will then stimulate

our perception of the sound.

A simplified description of the mechanisms responsible for this transduction can be given as

follows. Vibrations of the basilar membrane will cause deflections of the stereocilia, hair-like

projections situated at one extremity of the IHC. Deflection in one way (but not the other way) will

cause the IHC to depolarize, and send an electric pulse to the afferent nerve connections, at the

opposite extremity of the IHC. This unidirectional response results in half-wave rectification of

the input basilar membrane vibration. The cell however needs to repolarize before firing a new

electrical pulse; there is an upper limit at which it can respond to oscillating vibrations. As a result,

it presents low-pass characteristics. The output for one cell is a series of electrical pulses, with

a probability of firing a pulse that is related to the rate at which the basilar membrane vibrates,

though limited by repolarization time. However, a given input will cause many IHCs to respond. In

a bundle of IHCs, the responses of individual cells will add up. Due to their probabilistic behavior,

the sum of many individual responses will no longer be a series of pulses, but will resemble the

input signal (the displacement of the basilar membrane with time). The half-wave rectification

property as well as the low-pass characteristics of individual cells remain, and the afferent electrical

signal at the output of a bundle of IHC can be modeled as the envelope of the input mechanical

vibration.

This description is elementary, and an accurate model of all the underlying mechanisms would

be much more complex. However, basic models of IHC behavior as a traditional envelope detector

have been accepted in the literature. These models differ in the characteristics of the low-pass

filter involved. As described earlier, the low-pass filter is designed to remove the carrier wave

information and keep the envelope. Its design is easy and unambiguous when the frequency ranges

of envelope and carrier wave are very distant, as is the case for AM radio. However in this case

there is no clear definition of the envelope, hence the low-pass filter properties for the different IHC

envelope models were chosen empirically by their authors. In chapter 3 and 4 of this thesis, three

IHC envelope models will be used, with the following properties:

• Second order low-pass filter with cutoff frequency at 1000 Hz (Dau et al., 1996a)

• First order low-pass filter with cutoff frequency at 800 Hz (Lindemann, 1986)

• Fifth order low-pass filter with cutoff frequency at 770 Hz (Breebaart et al., 2001)
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2.1.3 Mathematical and signal processing approaches

The Hilbert envelope

Envelope detection can be performed by half-wave rectification followed by low-pass filtering, but

this definition is not unique as it involves a particular design for the low-pass filter. When there is a

clear separation between envelope and carrier, as is the case for AM radio broadcasting, there is no

ambiguity nor technical limitations faced when implementing envelope detection. However, this is

not the case for audio signals where typical envelope frequency range (or modulation frequency

range) and carrier wave frequency range are not clearly separated, and might even be overlapping

(e.g., the IHC models presented above will extract envelopes with frequency contents that are far

above the lowest audible frequencies). In that case, an ambiguity remains as to where to place the

low-pass filter’s cutoff frequency.

Gabor (1946) introduced the use of the Hilbert transform to extract the envelope of a signal.

Unlike the half-wave rectification followed by low-pass filtering definition, the Hilbert envelope is a

non-parametric definition, and therefore holds independently of the signal or the application. Hence,

it was widely accepted as the canonical way of defining the envelope of a signal in mathematics

and signal processing applications.

The Hilbert transform H of a given real-valued signal s provides the signal ŝ in quadrature with

s: the negative-frequency components of s are rotated around the complex plane by π/2 and the

positive-frequency components of s by −π/2. Introducing the Fourier transform F , the frequency

f , the sign function sgn and the imaginary unit i, this formalizes as:

F {H(s)}( f ) = F {ŝ}( f ) =−i · sgn( f ) ·F {s}( f ) (2.1)

This specific Fourier domain approach to the definition was employed in (Gabor, 1946), but the

Hilbert transform is also commonly defined in the time domain by1:

ŝ(t) = s(t)∗ 1
πt

=
∫ +∞

−∞

s(τ)
π (t− τ)

dτ (2.2)

where ∗ denotes convolution. Gabor (1946) suggested to use the analytic signal defined as the

complex-valued signal having s as real part and ŝ as imaginary part:

sa = s+ iŝ (2.3)

Because of the quadrature relationship between real and imaginary part, the analytic signal

"transforms an oscillating into a rotating vector" (Gabor, 1946). Using (2.1), the analytic signal is

1 Note that the function 1
πt is not integrable. An accurate formulation involves taking the Cauchy principal value of the

integral in (2.2).
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2.1 Formalization of the concept of envelope 15

easily defined in the Fourier domain:

F {sa}( f ) =


2F {s} if f > 0

F {s} if f = 0

0 if f < 0

(2.4)

The Hilbert envelope is then taken as the magnitude of this "rotating vector":

env(s) = |sa|= |s+ iŝ| (2.5)

The Hilbert envelope was later extensively studied in (Dugundji, 1958). Although in many

scenarios, it fits to the conceptual approach of the envelope given in 1.1.1 (as examples, the

envelopes in fig.1.2(a-c) were not "hand-drawn" but were actually Hilbert envelopes), it exhibits

some counter-intuitive limitations:

• The Hilbert envelope of a bounded signal may be unbounded. Consider for example the

simple step function s, s(t) = 0 if t < 0 and s(t) = 1 if t ≥ 0. According to (2.2) and the

definition of convolution, the Hilbert transform at t = 0 is given by the integral

ŝ(t = 0) =
∫

∞

0
− 1

πτ
dτ =−∞

Hence the envelope of s(t) is infinite at t = 0. In general, continuous-time signals that

presents a discontinuity will have an infinite Hilbert envelope at the discontinuity point.

In practice, signals are discrete-time so the concept of discontinuity does not exist. Their

envelope will not be unbounded, but will present an unexpected large peak if there is a large

amplitude difference between two consecutive samples. Note also that a discontinuity in

the signal implies a broad-band signal, and the issue presented here could be related to the

envelope not being adequately defined for broad-band signals (see section 1.1.4).

• The Hilbert envelope of a bandlimited signal may not be bandlimited. This was

mentioned in (Dugundji, 1958), along with the proof that the squared envelope of a

bandlimited signal is, however, bandlimited. An example is given in fig.1.2(a) where the

signal is bandlimited (two sine wave of 45 and 55 Hz) but the envelope, as the absolute

value of a cosine (see (1.3)), presents discontinuities in its derivative at every period. Such

discontinuities implies that it is not bandlimited. The squared envelope however is a squared

cosine which is bandlimited.

Although they presented an ambiguity in their definitions, envelopes based on IHC models do

not present such limitations, due to the low-pass filter they involve. There is a compromise in the

choice of one of these two methods, as the Hilbert envelope has an unambiguous definition but

IHC-based envelopes behave more naturally.
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16 2. Relationship between envelope and temporal fine structure

Further developments on envelope definition

Further studies have been conducted since the work from (Gabor, 1946) and (Dugundji, 1958)

aiming at developing new definitions of the envelope that would not exhibit the limitations of the

Hilbert envelope.

In a study on a generalized concept of the analytic signal, Vakman (1996) investigated the

class of complex-valued signals whose real part is the input signal and imaginary part is given by

any arbitrary operator H applied to the signal. Vakman (1996) stated three "reasonable physical

conditions" that the envelope (i.e., the magnitude of such complex-valued signals) should satisfy:

1. A small perturbation in the input signal should cause only a small perturbation of the envelope

(H must be continuous).

2. Scaling the signal by a positive value should not alter the carrier (H must be homogeneous).

3. A sinusoid should have a constant envelope.

He then proved that these three conditions were fulfilled if and only if H was the Hilbert transform,

i.e., for the Hilbert envelope. Hence, alternative envelope definitions based on such a complex-

valued signal will violate one of the three conditions above.

Loughlin and Tacer (1996) followed the approach taken in Vakman (1996) and defined four

reasonable assumptions to be satisfied by the envelope. The two last conditions are the same as

Vakman’s conditions 2 and 3, but he replaced condition 1 by the following two:

• Boundedness of the magnitude: If the signal is bounded in magnitude then the envelope

should also be bounded (but not necessarily by the same bound).

• Bandlimitedness: If the signal is bandlimited then the carrier signal should be bandlimited

within the same band as the signal.

As was pointed out earlier and further explained in (Loughlin and Tacer, 1996), the Hilbert envelope

violates these two conditions. They proposed a new method based on estimating the instantaneous

frequency of the carrier wave in a signal as the first moment of its time-frequency distributions

along the frequency axis. The envelope is then obtained by deconvolution of the signal by the

carrier wave, and was shown to fulfill the four conditions the authors suggested.

In (Cohen et al., 1999), the authors acknowledged the three conditions given by Vakman (1996)

but noted that given the analytic signal, it was the non-negativity constraint of the envelope that was

responsible for the limitations stated in (Loughlin and Tacer, 1996). They proposed to still use the

Hilbert transform but to allow the envelope of a signal to become negative; adding to condition 1 in

(Vakman, 1996) that not only the envelope be continuous, but also the phase of the carrier wave.

For example, for the combination of two tones given in (1.1), the envelope would be defined as the

cosine component and not the cosine’s absolute value as in (1.3). Li and Atlas (2004) proposed
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2.1 Formalization of the concept of envelope 17

an implementation of envelope detection based on these considerations, yielding an envelope that

could take negative values. They showed how such a method allowed smoother and more realistic

estimations of the instantaneous frequency of a signal (the derivative of the phase of the carrier

wave) in over-modulated signals (i.e., signals where the envelope crosses the zero-line, as the

two-tones combination in (1.1)).

In a following study, Atlas et al. (2004) described how a real-valued envelope, even when allowed

to be negative, was "too restrictive" and introduced the need of a complex-valued envelope. In

later work (Li and Atlas, 2005; Schimmel and Atlas, 2005) this concept was further developed

in the scope of modulation filtering, presenting how such a complex-valued envelope could be

manipulated before being recombined with the original carrier wave. As introduced in (Ghitza,

2001), combining a manipulated envelope with the original carrier wave is prone to yield signals that

do not present the expected manipulations in their envelope. This is due to unwanted interactions

between the manipulated envelope and the carrier wave in the recombination. To assess this effect,

Ghitza (2001) proposed the projection test: a given manipulation framework would have a “valid”

design if the envelope re-extracted from the recombined signal (i.e., the output signal) would equal

the manipulated envelope (i.e., prior to recombination). Inspired by this approach, Clark and Atlas

(2009) proposed two conditions for modulation filtering to be successful: the processed signal

should have the same bandwidth as the original signal, and the carrier must be redetectable, i.e.,

the carrier extracted from the processed signal should be the same as the original signal’s carrier

(which amounts to the projection test from (Ghitza, 2001)). They present a framework to perform

modulation filtering for both stationary and non-stationary signal, showing that it approximately

follows their first condition, but fails for the second. This second condition is then circumvented by

retaining information from the original carrier wave.

A more recent study by Sell and Slaney (2010) proposed an optimization framework to perform

demodulation, i.e., to estimate from a time-domain signal s a suitable decomposition into the

product of a modulator m and a carrier c. They propose two approaches, each with their own

advantages and limitations. One approach is in the logarithmic domain, where the product m · c is

conveniently translated to a sum of logarithms. They suggest to minimize the sum of individual

cost functions of the logarithms of m2 and c2, where the squaring is intended to avoid logarithms of

negative numbers. The product of m and c resulting in the signal to be demodulated, s, is expressed

as a constraint in the minimization process. One advantage of this logarithmic domain approach

is that this constraint is convex. They then define cost functions for both the modulator and the

carrier that are convex, and that respectively (i) penalizes abrupt changes in the derivative of the

modulator (i.e., minimizes inflexion points, or the second-order derivative) and (ii) encourages

sparsity of the carrier in the frequency domain (that is following their assumption that the carrier is

harmonic). Similarly, they propose another approach, in the linear domain, where formulating a

convex optimization problem is more challenging, but where cost functions can be devised more

easily, and can be based directly on the spectrum of the modulator (e.g, by penalizing high frequency

content in the modulator). Among other interesting results, Sell and Slaney (2010) show how their

logarithmic domain approach is very good at estimating modulators that contain zero-crossings
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18 2. Relationship between envelope and temporal fine structure

(i.e., phase inverting modulators), for which the linear domain approach does not perform as well

since it only accounts for non-negative modulators. Conversely, their linear domain approach is

very robust and accurate in conditions where the carrier is stochastic (uniformly distributed noise),

as well as for speech at the output of a filterbank. Importantly, Sell and Slaney (2010) acknowledge

that complex-valued modulators, such as proposed by Atlas et al. (2004), might be mathematically

appropriate for solving the demodulation problem, but question their perceptual relevance, as they

do not track the real amplitude of the signal. This is a point that we will get return to in section 7.2.

2.2 The spectrogram as a faithful signal representation

As was mentioned in chapter 1, a given envelope does not contain a sufficient amount of information

to recover the original signal it is associated with. In other terms, the envelope extraction is not

an injective operation. However, it was introduced how it is reasonable to consider whether the

spectrogram (i.e., a multi-channel envelope representation) could be an injective representation

of the signal, and hence that a signal could be recovered from its spectrogram only. This section

presents previous results that are in favor of such an hypothesis. They will not be presented in a

chronological order, but rather organized in subsections of increasing complexity in the definition

of the spectrogram, as they assess problems that are different in nature.

2.2.1 Single channel envelope

Although simple examples were sufficient to prove that in general an envelope does not represent

a unique signal, some interesting results were achieved in the past. In an early study, Licklider

and Pollack (1948) constructed a test signal from an input signal by infinite peak clipping, i.e., the

signal is infinitely amplified, and clipped at a value of ±1. The amplitude of the test signal jumps

from -1 to 1 at the zero crossings of the input signal. Although such signals would seem to contain

no information in the envelope but only in the TFS, they remain intelligible. It is known today that

this method does not in fact remove envelope information, as a regular band-pass filtering like the

one performed by the auditory system will reconstruct almost all of the original envelope (e.g.,

Zeng et al., 2004).

In connection with the field of optics, Gerchberg and Saxton (1972) constructed the first iterative

algorithm to reconstruct a complex-valued signal from its magnitude and the magnitude of its

Fourier coefficients. The algorithm works by alternating projections back and forth between time

and frequency domain to estimate the missing phase signals in both the time and frequency domains.

At each iteration, the phase is kept but the magnitude is reset to its known value. The authors also

provided in a proof of concept how the reconstruction error had to be monotonically decreasing

with increasing number of iteration. The algorithm has been widely used to reconstruct images

from diffraction patterns.
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2.2 The spectrogram as a faithful signal representation 19

2.2.2 Short-time Fourier transform with Gaussian windows

The short-time Fourier transform (STFT) of a continuous time signal s(t) is defined mathematically

as:

Vgs(τ,ω) =
∫

∞

−∞

s(t)g(t− τ)e−iωtdt, τ,ω ∈ R, (2.6)

where g is the window function that determines the resolution in time and in frequency.

Magnitude and phase interdependency for Gaussian windows

In this section we shall only study STFTs computed using the Gaussian window ϕ (t) = e−πt2
. The

STFT with a Gaussian window has very special properties. It has been known since Bargmann

(1961) that the STFT with the Gaussian window ϕ multiplied by a fixed function is an entire

function2 no matter what the input signal is. As an entire function, the Cauchy-Riemann equations

for the complex logarithm hold, and provide an explicit relationship between magnitude and phase

of the STFT, shown in Chassande-Mottin et al. (1997):

− ∂

∂τ
∠Vϕs(τ,ω) =

∂

∂ω
log
∣∣Vϕs(τ,ω)

∣∣ , (2.7)

∂

∂ω
∠Vϕs(τ,ω)−2πτ =

∂

∂τ
log
∣∣Vϕs(τ,ω)

∣∣ . (2.8)

The terms on the left hand side are the derivatives of the phase of the STFT of the signal. The first

term is commonly known as the instantaneous frequency. The second term is sometimes known as

the local group delay. In Flanagan and Golden (1966) it was shown that the instantaneous frequency

provides a suitable representation for manipulating the signal in various ways with a minimum of

distortion.

The equation (2.7) shows that for a Gaussian window, there are two possible ways of calculating

the instantaneous frequency: by computing the time derivative of the phase of the STFT (as done

for the original phase vocoder by Flanagan and Golden (1966)) or by computing the frequency

derivative of the logarithm of the absolute value of the STFT (as proposed in Chassande-Mottin et

al. (1997)). Since we have two different methods for computing the instantaneous frequency, the

following procedure should allow the recovery of the phase from the magnitude of the STFT:

1. Compute the (real valued) log of the magnitude of the STFT.

2. Compute the partial derivative with respect to frequency of the result.

3. Integrate the result with respect to time.

As the boundary conditions in the integration (step 3) are unknown, the phase can be restored up

to a global phase shift. This is no surprise, as the absolute value of the STFT of a signal will not

change if the signal is multiplied by a complex number with magnitude of 1.

2 An entire function is a function that is complex differentiable over the whole complex plane.
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20 2. Relationship between envelope and temporal fine structure

These considerations hold for continuous-time signals, but approximations of the derivatives

involved in (2.7) and (2.8) by finite differences between samples or between channels can be done

for discrete-time signals, given that the sampling rate and the number of channels are sufficiently

large. These results provide evidence that the phase of the STFT computed with Gaussian windows

can be recovered from the magnitude and vice-versa, hence that the original signal can be recovered

from any of them, up to a global phase shift factor.

Magnitude of the STFT and Hilbert envelope

Although we are concerned with the relationship between multi-channel envelope and its associated

time-domain signal, the previous result that relates the magnitude of the STFT to the signal is of high

relevance. There is indeed a close relationship between the Hilbert envelope and the magnitude of

the STFT. The definition of the STFT in (2.6) takes a form very similar to a convolution. Assuming

that the window g is symmetric (if it is not, then it can be replaced with its time-reversed version in

the following), it can be rewritten as follows:

Vgs(τ,ω) = e−iωτ · (s∗ g̃ω)(τ) (2.9)

where g̃ω (τ) = g(τ)eiωτ corresponds to the original window modulated by a complex exponential

and ∗ denotes convolution. The magnitude of the STFT therefore yields

|Vgs(τ,ω)|= |(s∗ g̃ω)(τ)| (2.10)

Assuming that the signal s is not band-limited, the bandwidth of (s∗ g̃ω)(τ) is given by the

bandwidth of the modulated window. As multiplication by a complex exponential in the time

domain translates to a frequency shift in the Fourier domain, the support3 of the modulated window

in the Fourier domain is the interval [ω−Ω,ω +Ω], given that the support of the original window

g is [−Ω,Ω]. Hence, for channels with sufficiently high center frequency ω (i.e., for ω ≥ Ω),

(s∗ g̃ω)(τ) will have no negative frequency content, and according to (2.4) will be an analytic

signal.

If the window used for the computation of the STFT is band-limited by Ω, then the magnitude of

the STFT in channels with center frequency larger than Ω will correspond to the Hilbert envelope of

the corresponding channels prior to their demodulation (i.e., env
(
e−iωτ ·Vgs(τ,ω)

)
). It is common

that filterbank implementations of the STFT provide such non-demodulated outputs. In that case,

there is an equivalence between Hilbert envelope and magnitude in higher frequency channels.

The Gaussian window used in the previous example is not, strictly speaking, band-limited. But

its energy is very concentrated around the origin and for STFTs computed with a Gaussian window,

it is reasonable to state that the results given in Chassande-Mottin et al. (1997) mean that, for

3 The support of a function or signal is the domain on which it is non-zero. In the Fourier domain, concepts of support
and bandwidth are similar.
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2.2 The spectrogram as a faithful signal representation 21

practical purposes, the signal can be recovered from the collection of the Hilbert envelopes of the

channels of the STFT.

2.2.3 General redundant linear system with Hilbert envelope

Similarly to the reformulation of the STFT in section 2.2.2, a general filterbank operation can be

seen for each channel as a convolution of the original signal with the impulse response of the filter

in this channel. For discrete-time signals, it is formulated as follows:

(Vgs)m,n =
L

∑
k=1

s [k]gm [n− k] (2.11)

If the filters gm are modulated gaussian windows then this representation is the STFT "without

demodulation" described earlier. This formulation is therefore a generalization to any type of

window. In the general case, the equivalence between the magnitude of such coefficients and the

Hilbert envelope of each channel holds as well for channels with high enough center frequency.

Moreover, if the impulse responses gm are designed to be analytic signals (which will be the case

for the filterbank implementations in the following chapters), then this equivalence will always

hold, and the multi-channel Hilbert envelope of the signal s will be the magnitude of the coefficients

(Vgs)m,n. The magnitude of the coefficients (Vgs)m,n is what we refer to as spectrogram of s in the

following.

Evidence of an injective representation

A very general result for finite, discrete systems has been shown in (Balan et al., 2006). Consider a

linear system given by a complex matrix A ∈ CM×N :

c [ j] = ∑
k

A j,ks [k] , (2.12)

where s ∈ RN is the input signal and c ∈ CM are the output coefficients. The filterbank given by

(2.11) is such a system. Balan et al. (2006) showed that if M ≥ 4N−2 (i.e., if the system produces

4 times or more as many output coefficients as it takes input coefficients) then the mapping s 7−→ |c|
was injective for a generic4 system A, up to a global phase factor. This means that given a matrix A
there exists a non-linear reconstruction method reconstructA such that

sr = reconstructA (|c|) , (2.13)

and

sr = eiφ s, (2.14)

4 Here, generic means that it holds almost everywhere, i.e., the mapping will be injective with a probability of 1 for an
arbitrary A, though some systems can be constructed for which the mapping is not injective.
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22 2. Relationship between envelope and temporal fine structure

for some constant φ ∈ [0;2π]. Applied to filterbanks this result proves that if the filterbank has

more than 4 times as many filters than its decimation rate, then the spectrogram representation is

injective, i.e., that a given spectrogram is associated to a unique signal (and globally phase-shifted

versions of it). Conversely, it should be possible to find a unique signal that is associated to a given

spectrogram.

Spectrogram reconstruction methods

The conclusions from (Balan et al., 2006) proved the existence of a solution to the problem of

spectrogram inversion but did not provide a reconstruction method. Although this result is relatively

recent, the interest in reconstructing a signal from its spectrogram originated much earlier.

Griffin and Lim (1984) adapted the single channel algorithm from (Gerchberg and Saxton, 1972)

to a multiple channel representation, providing the first method to reconstruct a signal from its

spectrogram (i.e., the magnitude of its STFT). Like the algorithm from (Gerchberg and Saxton,

1972), the method iteratively projects the signal back and forth between time and time-frequency

domains. The STFT of a first estimate of the signal is computed, yielding a magnitude and a phase.

The magnitude is discarded, but the phase estimate is combined with the provided magnitude (i.e.,

the given spectrogram) and inverted back to the time domain by inverse STFT, yielding a new

signal estimate. By iterating this procedure, Griffin and Lim (1984) showed that the reconstruction

error, measured as the distance between the STFT magnitude at a given step and the spectrogram to

reconstruct, was monotonically decreasing.

Many following studies revolved around the algorithm proposed in (Griffin and Lim, 1984),

increasing its accuracy in some ways while still being based on the same approach of repeated

projections between domains. Sturmel and Daudet (2011) provided a review of such methods

and expanded on their common limitations. Some spectrogram reconstruction methods however

based on new approaches have also been suggested. Achan et al. (2004) proposed reconstruction

of time-domain speech signals from their spectrograms using a probabilistic model of speech

and searching for the signal maximizing the likelihood of the spectrogram. Bouvrie and Ezzat

(2006) suggested a root-finding algorithm for reconstructing the signal at each position of the STFT

window in time, using smoothness between neighboring segments as an additional constraint.

Recent methods complemented the existence result from (Balan et al., 2006): the PhaseLift

(Candes et al., 2011) and PhaseCut (Waldspurger et al., 2012) algorithms allowed for perfect

recovery of a signal from the magnitude of its projections through a finite, linear system, up to

a global phase factor. Sun and Smith (2012) applied the PhaseLift approach to the recovery of a

time-domain signal from its spectrogram. Their method relies on estimating a matrix S obtained

by the outer product of the sought signal s with itself: S = ssT, sT being the transpose of s. This

reformulation, although drastically increasing its dimensionality, results in a convex problem,

mathematically simpler to solve. This method allow for very accurate recovery, but does not scale

well to real world signals, as it attempts to estimate a matrix of size L×L, where L is the length of

the signal, making it impractical for signals with more than 100 samples.
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2.2.4 Simple auditory models

The peripheral auditory system performs an operation that is to some extent similar to a spectrogram

extraction. The mechanical properties of the basilar membrane vary along its length such that only

localized sections will respond to a narrow-band excitation. In effects, it acts as a bank of bandpass

filters. As introduced in 2.1.2, the transduction of the mechanical vibrations of local sections of the

basilar membrane to electrical signals is performed by the inner hair-cells (IHCs), whose behavior

can be modeled as an envelope extraction. A holistic, simplified model of the transduction from

mechanical signal to electrical signal in the cochlea can be found in spectrogram extraction.

The STFT however is not a good model of the peripheral bandpass filtering of the cochlea, as it

produces channels with equally spaced center frequencies. Moreover, the filters in the STFT are all

derived from a base window which is modulated by the center frequency of the channel and therefore

all channels present the same bandwidth. In contrast, Glasberg and Moore (1990) suggested that

the spacing in frequency between auditory filters increases exponentially for increasing center

frequency and that the filters bandwidth increases proportionally to this center frequency: at low

frequency they are narrow and close to each other but broader and spaced further apart at higher

frequencies. A well accepted model of the human auditory filterbank is given by Gammatone

filterbanks (Patterson et al., 1988). Such filterbanks can be implemented as a linear system described

in (2.11).

As mentioned in 2.1.2, the IHCs extract the envelope of the mechanical signal, but not the

Hilbert envelope. Discrepancies between IHC and Hilbert envelopes are significant enough that

the previous results in section 2.2.3 do not to apply. Further, applying the Hilbert envelope at the

output of a filterbank is not a good auditory model. However, some results of reconstruction from

spectrogram obtained from IHC envelope at the output of a filterbank have been obtained.

Slaney et al. (1994) proposed an algorithm to recover a time-domain signal from a cochleogram,

i.e., a time-frequency representation of the sound that mimics the analysis done in the cochlea. His

cochleogram is the equivalent of the half-wave rectified output from a filterbank. He showed how

the half-wave rectification, when carried out in a multiple channels representation, was invertible

by alternating projections, in the fashion of (Griffin and Lim, 1984). As half-wave rectification

amounts mostly to adding harmonics in the frequency domain, he also suggested band-pass filtering

as a method to invert it. Along with half-wave rectification, common models of IHC envelope

extraction usually involve low-pass filtering, which is not considered in (Slaney et al., 1994).

2.3 The role of envelope in psychoacoustics

As introduced in the tuning forks example from fig.1.1, the decomposition of a signal into the

product of an envelope and a carrier was mainly motivated by human perception. Hence it is quite

logical that the concept of the envelope played an important role in the history of psycho-acoustics.

Many studies have attempted to relate perceptual properties to attributes of either the envelope or
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the fine structure (i.e., the carrier). A thorough listing of the contributions to the field of psycho-

acoustics that involved the concept of envelope or fine structure would be extensive, and well

beyond the scope of this thesis. Instead, some of the main studies that involved manipulation of the

envelope of speech, and how such manipulations were limited by attributes of the cochlea will be

presented.

Recreating speech signals from envelope-based information originated with the work of Dudley

(1939). He devised a system that could "code" the voice using a few low-frequency control signals

and recreate artificial speech from it. He named the apparatus a vocoder, a voice coder. Although

not mentioned under these terms, the main operation of Dudley’s vocoder was to extract the

envelope by rectification and low-pass filtering in ten narrow-band channels. These envelopes, or

"control" signals, could then be used to modulate narrowband noise generators, recreating artificial

though intelligible speech. Two types of noise generators, a harmonic "buzz" and an inharmonic

"hiss", were used and switched on the fly to respectively recreate voiced or unvoiced speech. Dudley

(1939) noted that using his apparatus, "not only can the speech be remade to simulate the original

but it can be changed from the original in a variety of ways" suggesting that it allowed for basic

envelope-based sound processing.

Developments on the vocoder technique were later brought by Flanagan et al. (1965) who

proposed the use of the instantaneous frequency to derive sub-band modulators. The instantaneous

frequency is given by the derivative of the phase with respect to time in a given sub-band, giving

its name, phase vocoder, to the method. For each sub-band, the envelope and the changes in

instantaneous frequency along time are computed, and both are low-pass filtered. Signals are then

generated from the sum of the synthesized sub-bands, where each sub-band is obtained from a

sinusoid at the band’s center frequency which is amplitude modulated and frequency modulated

respectively by the low-passed envelope and smoothed instantaneous frequency. Flanagan showed

that speech could be conveyed this way, with cutoff frequencies for the low-pass filters as low as

20 cycles per second, suggesting a significant reduction in terms of data bandwidth. Additionally,

simple applications of the phase vocoder are found in time-stretching the signal without influencing

its frequency content, or conversely pitch-shifting without affecting its temporal structure. The

concept of instantaneous frequency was also used in studies involving refinement on the definition

of Hilbert envelope presented in the previous section 2.1.3.

Drullman et al. (1994) investigated the effect of temporal modulation smearing (i.e., low-pass

filtering of the envelope) on speech intelligibility. The Hilbert envelopes, extracted at the output

of a filterbank, were low-pass filtered and recombined with their corresponding original carrier.

Using their processed stimuli, the authors determined that the intelligibility was improving when

increasing cutoff frequency of the low-pass filter, but only up to 16 Hz. Conditions with higher cutoff

frequency did not show further improvement. For very low cutoff frequencies (2 Hz and below),

poor intelligibility in quiet prohibited a standard speech-in-noise intelligibility test. However,

intelligibility scores in quiet showed an improvement with increasing cutoff frequency that was

significant only from 2 Hz. Overall, Drullman et al. (1994) concluded that the modulation frequency

range of influence for speech intelligibility is in the interval between 2 and 16 Hz.
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In a critique of the work of Drullman, Ghitza (2001) noted that the auditory system was partially

recovering the original envelope of manipulated signals. This phenomenon is generally referred to

as envelope recovery: such signals, when re-analyzed through a basic auditory model composed of

a Gammatone filterbank and IHC envelope detectors, would yield envelopes which do not exhibit

the low-pass behavior expected, but rather an unexpectedly close similarity with the envelopes of

the original signal, suggesting that the modulation filtering approach has a very limited efficiency.

Ghitza (2001) relates the envelope recovery in this context to two theorems stating respectively that

(i) in a band-limited signal, the envelope and phase will be related and that (ii) if the cosine of a

band-limited phase signal is used as input of a bandpass filter (hence, a flat, or constant-envelope

input), the output will have a non-constant envelope that will be related to the phase signal. As

a corollary, Ghitza (2001) points out to the band-widening properties of the Hilbert transform.

As mentioned in section 2.1.3, the Hilbert envelope of a bandlimited signal is not necessarily

bandlimited. In the processed signal, recombined channels will overlap in frequency and interact,

such that re-analyzed envelopes will not be band-limited as would be expected from the low-pass

modulation filtering. Ghitza (2001) presents an alternative processing scheme to circumvent this

issue using dichotic presentation, where every second channel is presented to one ear, and the

remaining channels to the other ear. This doubles the distance in frequency between neighboring

channels, hence limiting the negative impact of band-widening properties of the Hilbert envelope.

Higher processing stages in the auditory pathway then integrates information over the two ears but

without yielding unwanted interaction between neighbor channels.

Smith et al. (2002) constructed audiological chimaeras, test signals obtained by combining the

envelope of a given class of signals (either speech, music, or noise) with the TFS of another class.

The signal processing is done by splitting the input signal into various numbers of frequency bands

(1 to 64) ranging from 80 Hz to 8820 Hz. The frequency bands are equally wide on the cochlear

frequency map with a constant overlap (in terms of Hz) determined by the smallest filter. The

Hilbert transform is then used to extract the envelope. They came to the main conclusion that "the

perceptual importance of the envelope increases with the number of frequency bands" in tasks

such as speech reception or melody recognition. It is worthwhile to note that the mere concept of

"audiological chimaeras" conflicts with the results from (Balan et al., 2006): for sufficiently many

channels (i.e., more than 4), it should not be possible to impose both an arbitrary envelope and an

arbitrary TFS to a signal.

Zeng et al. (2004) later noted that the work in (Smith et al., 2002) was influenced by the envelope

recovery phenomenon introduced in (Ghitza, 2001). In (Zeng et al., 2004), the authors used the

recovered envelope to modulate noise in the same way as (Shannon et al., 1995). They demonstrated

that the high intelligibility measured in (Smith et al., 2002) for stimuli built from noise envelope

and speech TFS for few channels (1 and 2) was largely influenced by envelope recovery. This study,

together with (Ghitza, 2001), popularized the concept of envelope recovery: follow-up studies on

the role of TFS/envelope in speech intelligibility which involved similar manipulations (e.g.,Gilbert

and Lorenzi (2006); Lorenzi et al. (2006); Sheft et al. (2008)) took precautions to limit envelope

recovery and quantify its influence. For example, Gilbert and Lorenzi (2006) extended the study
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of (Zeng et al., 2004) and concluded that envelope recovery played a major role in consonant

identification only when the bandwidth of analysis filters in the processing framework was wider

than 4 times the bandwidth of an auditory filter (i.e., if there were less than 8 channels in the 80 Hz

to 8820 Hz frequency band).

Envelope recovery provides, for processing schemes involving only a low number of channels, a

direct illustration that imposing a given envelope and TFS to a signal is problematic. In this thesis, it

will be shown indirectly how this problem also extends to representations involving more channels:

if a signal can be recovered to a high degree of accuracy from its spectrogram only (in terms of

the envelope domain or time domain metrics that will be introduced in the following chapter),

then any combination of the spectrogram of signal A with the TFS of signal B cannot result in a

signal presenting exactly the sought spectrogram (nor TFS). The resulting signal will still contain

information related to the discarded TFS of A and the envelopes of B, but a simple re-analysis (as

is the case for envelope recovery) will not be sufficient to exhibit this interdependency.
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3
Inversion of auditory spectrograms, traditional

spectrograms, and other envelope
representations†

Envelope representations such as auditory or traditional spectrogram can be defined by the
set of envelopes from the outputs of a filterbank. Common envelope extraction methods
discard information regarding the fast fluctuations, or phase, of the signal. Thus, it is difficult
to invert, or reconstruct a time-domain signal from, an arbitrary envelope representation.
Here, a general approach to this problem is proposed, which iteratively minimizes the
distance between a target envelope representation and that of a reconstructed time-domain
signal. Two implementations of this framework are presented for auditory spectrograms,
where the filterbank is based on the behavior of the basilar membrane and envelope
extraction is modeled on the response of inner hair cells. One implementation is direct
while the other is a two-stage approach that is computationally simpler. While both can
accurately invert an auditory spectrogram, the two-stage approach performs better on
time-domain metrics. The same framework is applied to traditional spectrograms based
on the magnitude of the short-time Fourier transform. Inspired by human perception of
loudness, a modification to the framework is proposed, which leads to more accurate
inversion of traditional spectrograms.

3.1 Introduction

Constructing a time-domain signal from an arbitrary time-frequency representation is an interesting

problem in mathematics and signal processing and has received significant attention (e.g., Balan et

al., 2006; Slaney et al., 1994; Hayes et al., 1980). A particular case in this class of problems is

the inversion of a spectrogram (i.e., the squared short-time Fourier transform, STFT, magnitude).

While this classic problem is well known, it remains a current topic of research (e.g., Sun and

Smith, 2012; Sturmel and Daudet, 2011; Le Roux et al., 2010; Balan, 2010; Beauregard et al., 2005;

Bouvrie and Ezzat, 2006). Most of these approaches invert time-frequency representations where

the frequency axis is linearly sampled (e.g., STFT). However, auditory models based on human

perception involve time-frequency representation where the frequency axis is logarithmically scaled.

† This chapter extends the study presented in (Decorsière et al., 2011) and was submitted for publication to the IEEE
transactions on Audio, Speech and Language processing.

29
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30 3. Inversion of spectrograms and other envelope representations

Thus, for the generation of acoustic signals intended for human perception (e.g., test stimuli in

auditory research) a more flexible framework to invert time-frequency representations is needed. In

this study, we present an approach to this problem that is both informed and inspired by human

auditory processing.

In humans, the transduction from mechanical vibrations to electrical impulses in neurons occurs

in the cochlea. Mechanical vibrations are transmitted into the cochlea via the middle ear and cause

the basilar membrane to vibrate. The mechanical properties of the basilar membrane vary along

the length of the cochlea. At the base, the basilar membrane is narrow and stiff, resulting in a high

resonant frequency. At the opposite end, the apex, the basilar membrane is wide and less stiff,

resulting in a low resonant frequency. For a given input, the vibration along the basilar membrane

will vary based on the tuning at each position. Conceptually, we can model this using a bank of

bandpass filters with center frequencies and bandwidths that increase logarithmically. Situated atop

the basilar membrane is the organ of Corti which contains inner hair cells (IHCs). These cells have

stereocilia, small hair-like projections, which deflect in response to displacement of the basilar

membrane. When the stereocilia are deflected in one (but not the other) direction, the IHCs become

depolarized, leading to action potentials in afferent neurons. Conceptually, we can model this as a

half-wave rectifier. After depolarizing, the IHC and afferent neurons must re-polarize. This imposes

an upper limit to the frequency at which action potentials can be generated. This upper limit can be

modeled as a low-pass filter, and, when applied after half-wave rectification, performs envelope

extraction. Thus, as a first approximation, we can model the transduction in the cochlea as envelope

extraction of the outputs from a filterbank.

In this study, we focus on a particular class of time-frequency representation, which we term the

envelope representation of a signal and define as the set of envelopes of individual narrow-band

channels at the output of a filterbank. For example, the classical spectrogram (i.e., STFT magnitude)

can be considered as an envelope representation. An auditory spectrogram (e.g., Dau et al., 1996a),

where the filterbank and the envelope extraction is inspired by human auditory processing, is

another such example. Previous work has demonstrated that the envelope representation of a signal

plays an important role in human perception. For example, the envelope information from only a

handful of bands can be sufficient for speech intelligibility (e.g., Shannon et al., 1995; Smith et

al., 2002), and some models for predicting speech intelligibility rely on information derived from

the envelope representations of the speech and noise signals (e.g., Steeneken and Houtgast, 1980;

Jørgensen and Dau, 2011). Furthermore, faithful representation of the envelope has been shown to

be crucial for the perception of complex sounds (e.g., Chi et al., 2005).

This chapter, which expands the findings of (Decorsière et al., 2011), describes a tool for

reconstructing the signal from its envelope representation. The development of such a tool is

important for two reasons. First, it allows researchers to directly modify the envelope representations

of stimuli used in perceptual experiments. Second, with such a tool, it may be possible to develop

novel speech-enhancement or noise-suppression algorithms based on envelope processing to

improve speech intelligibility. In the following sections, a general framework for constructing a

signal from a target envelope representation is presented. This general framework is developed
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with no specific assumptions as to which filterbank or envelope extraction methods are used.

Using this general framework, two cases are developed based on two different envelope extraction

methods. The first case is motivated by the human auditory system, with an envelope extraction

model based on IHC activity. Two implementation approaches for this method are presented, a

straightforward application of the devised framework, as well as a two-step process where the

low-pass filter of the IHC envelope extraction is inverted and a signal is reconstructed from the

half-wave rectified filterbank output, as suggested by Slaney (1995). The second case is based on

the STFT magnitude representations, the term-by-term square root of the “traditional” spectrogram.

While this representation does not model auditory perception, our approach is still applicable, and

can be used to reduce the perceptual consequences of reconstruction error. Results from these cases

are evaluated and compared.

3.2 General framework

This section formalizes and suggests a general solution to the problem of reconstructing a time-

domain signal from a given envelope representation. Here, the term envelope representation is

used to denote the set of envelopes of narrow-band channels obtained at the output of a filterbank.

This representation is therefore dependent on the choice of a given filterbank and a given envelope

extraction method. An approach to formalizing the role of a filterbank is to define a filterbank

operator V which is used jointly with a set of analysis windows {gm}1≤m≤M , forming the analysis

operator Vg. It operates on an input signal s with a finite duration of L samples as follows:

(Vgs)m,n =
L

∑
k=1

s [k]gm [an− k] (3.1)

Here, s [k] denotes the kth sample of signal s. In practice, with this definition, the output (Vgs) is a

matrix. Each row, later denoted by (Vgs)m, corresponds to a different frequency channel output

(i.e., a subchannel) and is indexed by m, with 1≤ m≤M. The columns of this matrix span time

and are indexed by n, with 1≤ n≤ N. The decimation rate of the filterbank is controlled by the

parameter a, which represents the hop-size, in terms of samples of the original signal s, between

two consecutive points in any given subchannel. Given that a suitable set of synthesis (or dual)

windows
{

g(d)m

}
1≤m≤M

exists, this representation admits an inverse, the synthesis operator U:

s [k] = Ug(d) (Vgs) [k] = ∑
m,n

(Vgs)m,n g(d)m,an−k (3.2)

Note that in the following, two different filterbanks will be used, and will have their own notation

for the windows {gm}1≤m≤M to avoid confusion.

Now, consider an envelope extractor function E(·) that operates on band-limited signals, the

envelope representation is the set of envelopes of each subchannel
{

E
(
(Vgs)m

)}
1≤m≤M . As for the

filterbank output, it is then convenient to adopt a matrix notation for the envelope representation,
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where each line represents a different channel, and the columns are for different samples in time:

Es =


E
(
(Vgs)1

)
...

E
(
(Vgs)M

)
 (3.3)

The matrix Es is the envelope representation of the signal s, and is an M×N matrix of non-negative

real coefficients. As common analysis filterbanks usually provide band-limited outputs centered at

different frequencies, each line in this matrix representation provides information related to the

frequency content of the input signal. Hence, this matrix provides a time-frequency representation

of the signal s. For example, in the case of the filterbank being the short-time Fourier transform

(STFT), and the envelope extraction being the squared magnitude function, this matrix would

correspond to the “traditional” spectrogram of the signal s.

Given a target envelope representation of a signal T, an M×N matrix of non-negative real

coefficients, the reconstruction problem is then stated as follows: Find a signal s such that Es = T,

or alternatively, such that Es−T = 0. Note that, in the following, this problem will not be solved

exactly, i.e., we will find a signal s such as Es−T≈ 0. Hence the term “reconstruction” is strictly

speaking slightly inaccurate as perfect reconstruction is not achieved, and the approach taken is

closer to the “synthesis” of a suitable time-domain signal. However the term “reconstruct” will be

used as we felt it reflects well the step-by-step, iterative build up of a solution that is described in

the following.

To better account for Es−T≈ 0, it is convenient to define the real-valued function G that applies

on any signal s with a length of L samples as follows:

G (s) = ‖Es−T‖2
f ro =

M

∑
i=1

N

∑
j=1

(
(Es)i, j− (T)i, j

)2
(3.4)

The Frobenius norm ‖·‖ f ro is a matrix norm; hence G is the square of a norm-induced distance

measure between the envelope of signal s and the target envelope T. Therefore, the function G

is positive-valued and equal to zero if, and only if, the matrices Es and T are equal (i.e., G is

positive definite). Hence, G reaches a global minimum when the signal s has the required envelope

T. This suggests an optimization approach where the problem is restated as follows: find s that

minimizes G (s). In this approach, the function G is now referred to as the objective function. Using

an iterative optimization algorithm, a minimum of this function can be found. A block diagram

of the general procedure is illustrated in Fig. 3.1. Note that solving for Es−T = 0 amounts to

solving for the criterion proposed by Ghitza (2001) which states that the reconstruction is valid if

the “recovered” envelope (i.e., the envelope extracted from the final signal, in our case Es) is the

same as the envelope prior to reconstruction (or target envelope, T).

The optimization process begins with a random initial signal estimate. Each iteration i starts by

calculating the envelope representation of the current signal estimate, Esi . This is compared to the

target T using the objective function G . The value of G and its gradient ∇G are used to update
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Initialization Envelope 
extraction

Comparison

Update signal
estimate

Signal
estimate

Final signal

Figure 3.1: Block diagram of the processing scheme. At a given iteration i, the envelope representation of the signal
estimate is extracted. Its distance to the target envelope T and the gradient of this distance provide information to update
the signal to a new estimate. This process is then repeated for n iterations.

the signal estimate, resulting in a new estimate si+1. Thus, with each iteration, the optimization

procedure generates an updated signal estimate that is “closer” (with relation to the distance G ) to

the target envelope. The iteration process is terminated after n iterations.

From a practical perspective, it is important to note that numerical optimization methods often

require knowledge of the first and sometimes second order derivatives of the minimized function

(particularly when many dimensions are involved and “brute-force” search of the minimum becomes

impractical). Although some algorithms can numerically estimate these derivatives, it is preferable

to have an analytical expression to increase accuracy and reduce computational load. In the

context of the present problem, the analytical expression of G will depend on how the filterbank

is constructed and how envelope extraction is defined. The applicability of the method relies on

being able to efficiently compute the gradient ∇G of the function G . In the following sections, we

will present how this gradient can be efficiently computed for two particular cases: an auditory-

motivated envelope representation (i.e., auditory filterbank and inner hair-cell envelope), and the

traditional spectrogram (i.e., STFT squared magnitude). As an analytic expression for the derivative

is needed, there may be some filterbank/envelope combinations that are not be compatible with our

approach. For example, it might not be possible to analytically derive a gradient expression for

envelope definitions that are based on the estimation of the instantaneous frequency of an associated

carrier wave, as is done in some vocoder studies (e.g., in Flanagan et al., 1965).

To speed up convergence and improve accuracy, information regarding the second-order derivative

is also necessary. However, for a signal with a length of L samples, the matrix of the second-

order derivative of G , the Hessian matrix, contains L2 elements. Thus, for typical speech signals,

computing and storing all the elements of this matrix is often impractical, if not impossible.

However, this can be overcome using a specific class of optimization algorithms, a limited memory

Broyden-Fletcher-Goldfarb-Shanno (l-BFGS) algorithm (Liu and Nocedal, 1989). This algorithm

only manipulates a sparse representation of the Hessian matrix consisting of a few vectors of size L

instead of the full L2 matrix.

By taking these practical considerations into account, implementing this optimization approach

to reconstructing signals from their envelope representation becomes reasonable even on a standard

computer, as will be described in section 3.5.
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3.3 Reconstruction from IHC inspired envelope extraction

At the simplest functional level, two elements are required to generate envelope representations of a

signal: an analysis filterbank to generate a time-frequency representation and an envelope extraction

operator. For the analysis filterbank, many studies have employed the short-time Fourier transform

(STFT; e.g., Griffin and Lim, 1984; Le Roux et al., 2008; Sturmel and Daudet, 2011) because it

produces a linear time-frequency representation of a signal. However, in our approach, we have

opted to use a Gammatone filterbank, which provides a simplified model of the time-frequency

analysis conducted by the human cochlea (Patterson et al., 1988). Similarly, we use an envelope

extraction operator that is based on IHC processing.

3.3.1 Gammatone filterbank

The Gammatone filterbank provides a simplified, linear model of basilar membrane motion. Unlike

the linear spacing of frequency bins in the STFT, the center frequencies of the Gammatone filterbank

are equally spaced on an Equivalent Rectangular Bandwidth (ERB) scale (see Glasberg and Moore,

1990, for further details). An individual Gammatone filter with center frequency fc, bandwidth β ,

amplitude α and order n f is given by its impulse response as follows:

γ (t) = αtn f−1e−2πβ t cos(2π fct) (3.5)

Given a vector of ERB-spaced center frequencies, {( fc)m}1≤m≤M, we obtain a set of filters
{γm}1≤m≤M that forms a Gammatone filterbank and applies to a signal according to (3.1).

3.3.2 IHC inspired envelope extraction

As described in the introduction, we have based our envelope extractor on a simplified IHC model

that consists of a half-wave rectifier followed by a low-pass filter. While similar envelope extractors

are used in electronic circuits, the filter parameters that we have used are based on psychoacoustic

data (e.g., Dau et al., 1996a). Thus, to generate an envelope representation of a signal, the half-wave

rectification and low-pass filtering are applied to the output from the Gammatone filterbank. Given

the mth channel at the output of the Gammatone filterbank
(
Vγs
)

m, the first step of the envelope

extraction is half-wave rectification, which will be denoted by
(
Vγs
)+

m . This consists of setting all

negative valued samples to zero while leaving positive-valued samples unchanged:

(
Vγs
)+

m,n =

{ (
Vγs
)

m,n if
(
Vγs
)

m,n ≥ 0

0 else
(3.6)

Alternatively, we can introduce the Heaviside function H {·}. Given an input vector, this function

returns a vector of the same size with values of 1 for indices where the input was positive and
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values of 0 for indices where the input was non-positive:

(
Vγs
)+

m = H
{(

Vγs
)

m

}
·
(
Vγs
)

m (3.7)

In (3.7) and further equations, · denotes term-by-term multiplication of two vectors or matrices

with the same number of elements. The second step of the envelope extraction is low-pass filtering.

Assuming a low-pass filter with an impulse response h, the envelope of the mth channel is given by:

(Es)m =
(
Vγs
)+

m ∗h (3.8)

Here, ∗ denotes convolution. Given a target envelope representation T computed according to (3.8),

the reconstruction problem is to recreate the signal having T as envelope representation.

3.3.3 Direct reconstruction

Using the definition of the envelope from (3.8), the objective function is given by the following

equation:

G (s) = ‖Es−T‖2
f ro (3.9)

It can be seen from (3.1) that the derivative of the Gammatone analysis operator with relation to the

kth coefficient of the input can be expressed as follows:

∂

∂ s [k]

(
Vγs
)

m,n = γm [n− k] (3.10)

Combining (3.10) with (3.7), (3.8) and (3.9), and assuming the low-pass filter has a finite impulse

response (i.e., an FIR filter), it is possible to express the gradient of G analytically. While typical

IHC models do not use FIR filters, truncating the otherwise infinite impulse response is a reasonable

approximation. If h[k] = 0 for k > K, then the gradient of the objective function can be expressed

as follows:

∇G = 2
K

∑
k=0

h [k]UT k{γ}
{
(Es−T)T k {H}

}
(3.11)

Here, T denotes the time-shift (translation) operator,

(T {s}) [k] = s [k−1] (3.12)

or similarly,

(T p {s}) [k] = s [k− p] , for any integer p (3.13)

The matrix H represents the Heaviside function applied to all the channels at the output of the

filterbank:

Hm,n = H
{(

Vγs
)

m,n

}
(3.14)
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The gradient in (3.11) is expressed as a finite sum (of K + 1 elements) under the assumption of

the low-pass filter being an FIR filter. Each element of the sum is expressed using the filterbank

synthesis operator U defined in (3.2) applied with a time-shifted version of the original filterbank

analysis window. Importantly, note that direct knowledge of the synthesis windows
{

γ
(d)
m

}
1≤m≤M

introduced in section 3.2 is not needed. This will also be the case for the gradient expressions in

later sections where different envelope extraction schemes are used. As can be seen from (3.2),

the operator U can be implemented using the fast Fourier transform (FFT), hence the gradient in

(3.11) can be efficiently computed. Using (3.9) and (3.11), G (s) can be minimized with an iterative

optimization procedure (l-BFGS algorithm).

3.3.4 Two-step reconstruction

The direct approach detailed above attempts to reconstruct a signal directly from a target envelope

representation. However, it is also possible to process the envelope representation before applying

the iterative optimization algorithm. Here, we propose a two-step reconstruction method inspired

by (Slaney, 1995). Conceptually, the approach is straightforward. Recall that the IHC envelope

extraction is modeled as half-wave rectification followed by low-pass filtering. Thus, if the inverse

of the low-pass filter is applied to the target envelope representation, the result is the half-wave

rectified output of the filterbank. The signal can then be reconstructed from this representation

using the iterative optimization approach. Under the assumption that each channel has a narrow

bandwidth, Slaney (1995) suggested that a bandpass filter should be used to remove harmonics

introduced by the half-wave rectification. However, we propose a more global approach based on

the general framework suggested in section 3.2 that takes the interactions between channels into

account. This has the advantage of using the information from neighboring channels to recover the

information lost in a given channel by the half-wave rectification.

Low-pass filter inversion and regularization

The low-pass filter impulse response h in (3.8) results in the filter response H in the frequency

domain. The low-pass filtering is inverted by multiplying each channel in the frequency domain

with the inverse filter response 1/H. However, by definition, the response of a low-pass filter at

higher frequencies is very small. Thus, a direct application of the inverse filter response would result

in a very large unbounded gain being applied at high frequencies. This would introduce instability

in the reconstruction, as any errors at high frequencies (e.g., rounding error) would be unreasonably

amplified. Hence, it is necessary to regularize the inverse filter response by introducing an upper

bound Gmax, on the maximum gain allowed on the inverse filtering procedure. Given the mth

channel of the target (T)m and the classic Fourier transform operator F {·}, the regularized inverse

low-pass filtering generates the new target for this channel (T+)m as follows:

(
T+
)

m = F−1
{

F {(T)m} ·max
(

1
|H| ,Gmax

)
e−i∠H

}
(3.15)
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Here, the function max(·) operates on individual coefficients of the vector 1/H. The phase of the

inverse response is maintained by multiplying with e−i∠H . The outcome of this step is the new target

T+, where the superscript (·)+ suggests that this target corresponds to a half-wave rectified output

of the filterbank. The regularization introduces inaccuracies in the representation, and in practice

there is a tradeoff in the choice of the maximal gain Gmax. Low gain results in good stability of the

procedure but large inaccuracies. Alternatively, a high-gain limits the loss of information from the

regularization, but at the cost of reduced stability. We have observed that, when increasing Gmax,

transients of large amplitude appear at the beginning and end (i.e., first and last few milliseconds)

of the reconstructed signals. Increasing it further will eventually lead to global instability of the

reconstruction scheme. This phenomenon can be used in an actual blind scenario, i.e., when the

original signal is unknown, to adjust Gmax, by increasing its value while monitoring these onset and

offset transients. We have found that Gmax = 50 dB is a suitable compromise for speech signals.

However, Gmax could be increased further for more stationary signals.

Half-wave rectification inversion

For the two-step approach, the reconstruction problem is to estimate a signal whose half-wave

rectified output from the filterbank equals the target T+. This can be solved using the optimization

approach proposed above, by defining the objective function as follows:

G (s) =
∥∥∥(Vγs

)+−T+
∥∥∥2

f ro
(3.16)

With this formulation, the gradient is expressed as follows:

∇G = 2Uγ

[((
Vγs
)+−T+

)
·
(
Vγs
)+] (3.17)

In comparison to (3.11), the gradient here has a simpler form and requires approximately K

times fewer calculations. Thus, there is a clear advantage of this two-step approach in terms of

implementation.

3.4 Reconstruction from STFT magnitude

Most of previous work concerning similar signal reconstruction has been conducted on the

“traditional” spectrogram, i.e. an envelope representation given by the squared magnitude of

the STFT coefficients. Because it provides a time-frequency representation with linearly spaced

frequency channels, the STFT is not considered a good model for the auditory peripheral filterbank.

However, our method is applicable and this case is considered here. We also propose a modification

to reduce the perceptual consequences of reconstruction error.

The STFT with a window w and a hop-size a can be implemented as a filterbank, where individual

filters have as impulse response the original window w modulated by a complex-valued exponential
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at a given channel frequency:

g̃m [k] = w [k]e2πi fmk (3.18)

The channel frequencies { fm}1≤m≤M are chosen such that they span the Nyquist domain and are

linearly spaced. The number of channels, M, corresponds to the length in samples of the window w.

Given these filters, the STFT is applied to an input signal using (3.1).

The envelope extraction in this case is the magnitude function:

Es = |Vg̃s| (3.19)

This definition could be used in (3.4) to form the objective function for the reconstruction of a

signal from its STFT magnitude. However, to be consistent with the traditional definition of the

spectrogram, we define the objective function from the squared magnitude as follows:

G (s) =
∥∥∥|Vg̃s|2−T2

∥∥∥2

f ro
(3.20)

With this definition, individual coefficients of the envelope contribute to the objective function with

regard to their energy (i.e., squared magnitude). A convenient property of this definition is that the

derivative of the squared magnitude function can be expressed as follows:(
|u|2
)′

= 2ℜ
(
uu′
)

(3.21)

Here, (·)′ is the derivative, (·) the complex conjugate, and ℜ(·) the real part. Hence, by combining

(3.21), (3.10) and later (3.2), the gradient of the objective function can be expressed using the

Gammatone synthesis operator, but once again applied using the original analysis window:

∇G = 4ℜ

(
Ug̃

[(
|Vg̃s|2−T2

)
·Vg̃s

])
(3.22)

Optimizing the objective function G (s) as written in (3.20) will reduce the average error in the

envelope representation of the reconstructed signal. However, for applications involving human

listening, it is important to reduce the perceptual consequences of the error. A small error in a

time-frequency region with otherwise little energy may be audible while an error with the same

magnitude but in a region with high energy may not. To account for this compressive behavior, a

modified objective function GL (s) is proposed:

GL (s) = ‖|Vg̃s|p−Tp‖2
f ro (3.23)

If p < 1 in (3.23), the dynamic range of individual contributions to the objective function is reduced,

which in effect increases the relative contribution of regions with lower energy. Because of this

compressive behavior, we refer to GL as the compressed objective function. In the following, a

compression ratio of p = 2/3 was chosen, based on Stevens’ power law for loudness (Stevens,

1957). Using this value, the contribution to the objective function of individual time-frequency
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bins is approximately proportional to their loudness (e.g., as modeled in Zwicker and Scharf, 1965;

Moore and Glasberg, 1996). For an arbitrary p though, the gradient corresponding to this function

is given as follows:

∇GL (s) = 2pℜ

(
Ug̃

[
(|Vg̃s|p−Tp) · |Vg̃s|

p
2−1 ·Vg̃s

])
(3.24)

which simplifies to (3.22) if p = 2.

3.5 Evaluation and comparison of techniques

3.5.1 Implementation, testing material and evaluation of convergence

To evaluate the proposed techniques, the general framework was implemented in Matlab. The

Matlab implementation of the l-BFGS optimization algorithm was found in (Schmidt, 2005) and

used with all default settings, except for one. The termination tolerance was reduced to avoid the

algorithm from stopping prematurely. The reconstruction framework was tested using a speech

corpus containing individual recordings of 70 English words, spoken by a female native speaker.

The corpus is formed from the segmented keywords from the NU-6 WIN test (D. of Veterans

Affairs, 2006). Results depend on the random initialization of the algorithm. Hence, when different

methods are compared in the following, they will be initialized with the same random signal. A

useful measure to compare algorithms introduced in (Sturmel and Daudet, 2011) is the spectral

convergence C (a related measure was earlier proposed by Le Roux et al. (2010)). The spectral

convergence measures the distance between target and reconstructed signals, in the time-frequency

(STFT-magnitude) domain. It is the normalized Euclidean distance between the target envelope and

the envelope of the reconstructed signal:

C =
‖|Vg̃s|−T‖ f ro

‖T‖ f ro
(3.25)

Thus, for reconstructions with little error (i.e., the spectrogram of the reconstructed signal is

very similar to the target), C is small. Here, C is defined based on the STFT magnitude, even

for evaluating reconstruction from other types of envelope. This allows for the comparison of

results across different methods, and with results from other studies of reconstruction from STFT

magnitude. Note that, in the case where p = 1 in (3.23), minimizing the objective function G is

equivalent to minimizing C .

3.5.2 Results from IHC inspired envelope representations

Although there are various models of the IHC envelope extraction documented in the literature, most

use a similar structure and differ only with regards to the low-pass filter order and cutoff frequency

(e.g., Dau et al., 1996a; Lindemann, 1986; Breebaart et al., 2001). Here, the IHC envelope extraction
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Table 3.1: Results for IHC envelope representations.
Method C (dB) Time (s) Iterations RMSn (dB)

Direct -27.7 581 62 -6.5
Two-steps -24.1 10.1 28 -23.4

25 100 500 2000 8000
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Figure 3.2: Partial spectral convergence Cp (in dB) plotted against center frequency of the channel for the direct and
two-step approaches averaged over 70 speech signals.

model from (Dau et al., 1996a) was selected. This model uses half-wave rectification followed

by a second order butterworth low-pass filter with cutoff frequency at 1000 Hz. Time-domain

signals were reconstructed from such envelope representations, using both the direct and two-step

approaches to reconstruction described in section 3.3, and for the corpus of 70 words. Results,

averaged over the whole corpus, are presented in table 3.1.

For both methods, the maximum number of iterations was set to 80, but the algorithm often

stopped prematurely without being able to find a better solution. Hence, the average number of

iterations and elapsed time are presented in table 3.1, along the averaged spectral convergence C

expressed in dB. In terms of spectral convergence, the two approaches provide results of similar

accuracy, with a small benefit for the direct approach. However, from a practical point of view, the

two-steps approach has a clear advantage with much lower computation time and faster convergence

(lower number of iterations).

In addition to the spectral convergence, and since we have knowledge of the original signal,

it is possible to measure the root mean square (RMS) error. The normalized RMS error of the

reconstructed signal sr with relation to the original signal s, is expressed with the Euclidean norm
‖·‖ as follows:

RMSn =
‖s− sr‖
‖s‖ (3.26)

This assumes that the signals have the same number of samples, which is the case here. The RMS

measures reconstruction errors in the signal domain, whereas the spectral convergence measures an

error in the time-frequency domain. The RMSn, averaged over the whole corpus, is presented in

table 3.1. In terms of normalized RMS error, the two-steps approach performs far better than the

direct approach.

To account for the discrepancies in the results between the two metrics used, we introduce a
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“partial” spectral convergence, Cp, which is obtained in a similar way as (3.25) but by summing only

across time, and not both time and frequency as the Frobenius norm does in (3.25). Cp therefore

measures a normalized error for each frequency channel. Fig. 3.2 shows Cp as a function of channel

center frequency, for the two approaches involved. Under this metric, it appears that the two-steps

approach has a clear advantage over the direct approach up to 2 kHz. Its poorer performance above

3 kHz explains why this advantage is not reflected in the “total” spectral convergence C . These

results are further discussed in section 3.6.1.

3.5.3 Results for STFT magnitude

As with many studies presenting new or improved methods for spectrogram inversion (e.g., Le

Roux et al., 2010; Sturmel and Daudet, 2011; Beauregard et al., 2005; Bouvrie and Ezzat, 2006;

Le Roux et al., 2008; Sun and Smith, 2012), we use the Griffin and Lim (1984) algorithm as a

baseline to evaluate our method. In their algorithm, Griffin and Lim use an iterative approach that

allows the reconstruction of a time-domain signal from only the magnitude of a Short-Time Fourier

Transform (STFT). Therefore, this approach attempts to find the missing phase associated with this

target magnitude. To do so, an initial estimate of the phase (e.g., a random phase) is combined with

the target magnitude and the inverse STFT of the combination is computed. This provides an initial

estimate of the desired time-domain signal. The STFT of this signal is then computed, providing a

new STFT magnitude and phase. The magnitude is discarded and the new estimate of the phase is

combined with the original target magnitude. The inverse STFT is computed again, leading to an

updated estimate of the time-domain signal. This process is then iterated until some stop criterion

is met. Griffin and Lim (1984) proved that the mean squared error of the STFT magnitude of the

generated time-domain signal monotonically decreases with each iteration. In this way, for the

particular case of using the STFT and Hilbert envelope, a signal whose envelope representation

matches the target envelope can be generated.

As introduced earlier, the spectrogram is determined by a given window w, which determines the

number of frequency points, and a hop-size a (sometimes given as a percentage of overlap between

neighboring windows). As a thorough investigation of the reconstruction from STFT magnitude

is beyond the scope of this paper, only one combination of these parameters was investigated: a

1024-sample Hann window, with a = 64 (i.e., about 94% overlap). The choice of a large amount of

overlap was deliberate, to have a highly redundant representation such as the one obtained in 3.5.2

where the filterbank had no decimation (i.e., a hop-size of one).

Figure 3.3 presents the spectral convergence C measured in dB as a function of iteration number

(left panel) and computation time (right panel) for the suggested method, with energy-based (p = 2)

and loudness-based (p = 2/3) objective function, as well as for the Griffin and Lim (G&L) method

for comparison. Spectral convergence and computation time were averaged over the 70 available

speech signals. Note that computation times are to be compared in a relative way, as they are

strongly influenced by the implementation and hardware used.

The proposed method with an objective function based on the spectrogram (p = 2) shows the
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Figure 3.3: Spectral convergence C as a function of the number of iterations (left panel) and computation time (right
panel), measured for the Griffin and Lim algorithm and the proposed algorithm (labeled l-BFGS) when p = 2 and
p = 2/3. These results are averages obtained over 70 individual word tokens, with the same random initialization for the
three methods. Individual crosses on the left panel represent results obtained for the l-BFGS approach (p = 2/3) when
the algorithm failed to reach the requested number of iterations.

applicability of the method to the case of STFT magnitude: the algorithm converges to a solution

similar (in terms of spectral convergence C ) to the G&L algorithm. However, the G&L approach

shows a clear benefit in the first 100 iterations that is emphasized when plotted against computation

time. Introducing the loudness-based objective function (i.e., when p = 2/3) substantially changes

the results. The proposed method quickly outperforms G&L and maintains a reduction in spectral

convergence of around 10 dB from 50 iterations on. Note that, despite the care taken to force the

l-BFGS algorithm to stop at a requested number of iterations, the algorithm sometimes failed to find

a better solution and stopped prematurely. In this case, the results are plotted as individual crosses.

This occurred for 17 conditions out of 70. These points were not considered for the average in the

right panel of Fig. 3.3 as they would bias the average computation time towards lower values.

In practice, these results were obtained using the dgtreal and isgramreal scripts from

the linear time-frequency analysis toolbox (LTFAT) for Matlab (Søndergaard et al., 2012) which

implements both the G&L and the l-BFGS methods (for p = 2). The script was slightly modified

to account for p = 2/3 and to allow for a user-provided initial phase, in order to provide the three

methods with the same initial estimate.

3.6 Discussion

In this study, a general framework for reconstructing time-domain signals from an arbitrary multi-

channel envelope representation was presented. The framework is based on minimizing the distance

between the envelope of a signal and a target envelope, by means of a numerical optimization

algorithm. Methods were developed for two common envelope definitions: envelope extraction

based on an IHC model (i.e., half-wave rectification followed by a low-pass filter) and for the more

common STFT magnitude. For both envelope definitions, it was possible to reconstruct a signal

from a multi-channel envelope representation. The framework is general and can also be applied to

other filterbank or envelope definitions, assuming that the filterbank output is computed according

to (3.1), and that the gradient of the objective function defined in (3.4) can be efficiently computed.

For envelope representations based on an IHC model of envelope extraction, two reconstruction
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approaches were considered. The first approach was a direct application of the general framework.

It is possible to implement this under the reasonable assumption that the low-pass filters from

the inner hair-cell model have a finite impulse response. The second approach used two-steps,

where a regularized inverse filter was applied to the envelope representation and the filtered output

was processed using a slightly modified version of the general framework. While it is possible to

successfully reconstruct a signal using both approaches, the reconstruction error of the two-step

approach was smaller.

3.6.1 Direct vs. two-step approach in reconstruction from IHC envelope

For both the direct and two-step approaches, the distribution of the reconstruction error across

frequency (Fig. 3.2) was not uniform. The bandwidth of each channel of the Gammatone filterbank

used in this method increases with center frequency. Since the half-wave rectification applied to

each channel can be roughly seen as introducing harmonics in the signals, the higher the center

frequency of a channel, the more the rectified subband will be attenuated by the low-pass filter

from the IHC envelope extraction. Thus, it is more difficult to recover information from channels

with high center frequency and reconstruction errors are expected to increase for higher frequency

channels.

For the direct approach, errors presumably consist of estimation errors in both magnitude and

phase, due to inaccuracies or round-off errors in the estimation of the gradient. For the two-step

approach, however, the regularized low-pass filter inversion introduced some magnitude errors at

very high frequencies but preserved the phase. As the RMS error is more sensitive to errors in phase

than in magnitude, this could explain why the RMS error in the two-step approach was much lower

than in the direct approach. The lower RMSn value, along with a much reduced computational

load, favors the two-step approach over the direct approach. However, the direct approach has the

advantage that it does not require any tuning of parameters, such as Gmax in (3.15). This may be

advantageous when the original signal is unknown and highly non-stationary, such that the stability

of the reconstruction cannot be easily assessed.

3.6.2 Loudness-based objective function for reconstruction from STFT magnitude

A reconstruction method was also developed and successfully implemented for the more common

case of STFT magnitude envelope representations (i.e., square-root spectrogram). A human

listener’s perception of reconstruction errors is not a linear function of the absolute error magnitude.

Typically, an error of a given magnitude in a “loud” segment of the signal might be inaudible (i.e.,

masked), whereas the same amount of error in a “quiet” segment might be perceptually significant.

Thus, we proposed a compressed objective function where individual time-frequency bins of

the envelope contribute with regard to their approximate loudness (i.e., raised to the power 2/3,

according to Stevens’ power law for loudness, (Stevens, 1957)) instead of their energy (i.e., squared

coefficients). Perceptually the benefit of using the compressed objective function is apparent when
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Figure 3.4: Illustration of the stagnation phenomenon: detail of waveforms of original and reconstructed signals from
IHC envelope (IHC) as well as STFT magnitude for the Griffin and Lim algorithm (G&L) and the optimization algorithm
with compressed objective function (Comp.).

considering the particular case when the target is obtained from a quiet yet audible signal that is

embedded between two loud signals. When the compressed objective function is used, the quiet

signal is reconstructed properly and audible. If the original objective function is used, this quiet

signal disappears.

3.6.3 Reducing intrinsic limitations of reconstruction from STFT magnitude

As well as a perceptual benefit (reconstruction of quiet yet audible regions of the spectrogram),

there appears to be a significant quality benefit when using a loudness-based objective function.

The main limitation in reconstruction from STFT magnitude lies in what was originally referred to

as stagnation by Fienup and Wackerman (1986): because the magnitude suppresses all information

about the absolute phase, there can be a phase mismatch between local regions of the STFT of the

original and reconstructed signals. Although this phenomenon may not alter perception significantly,

it is visible on the waveforms of reconstructed signals: signals reconstructed from STFT magnitude

can present a phase shift that does not remain constant over time.

To illustrate stagnation, Fig. 3.4 presents segments of the waveforms of original and reconstructed

signals from various methods introduced in this paper. The signal reconstructed from IHC envelope

(using the two-step approach in this case) is superimposed with the original signal. However, the

two signals reconstructed from STFT magnitude (G&L and Comp.) show significant phase drift

from the original, with the one obtained from G&L showing a larger deviation. To further illustrate

the phenomenon, Fig. 3.5 presents the phase difference (modulo 2π) between the STFT of original

and reconstructed signals for the two methods. In the left plot, the signal was obtained using G&L

with 1000 iterations, which is sufficiently many to assume no significant further progression of the

algorithm. For this specific case, a spectral convergence of -27 dB was measured. For the right

plot, the proposed method, with loudness-based objective function was used. It stopped after 467

iterations, leading to a spectral convergence of -34 dB. The phase difference in the rightmost plot is

smoother than in the center plot, suggesting that the use of the loudness-based function leads to
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Figure 3.5: Illustration of the stagnation phenomenon: phase difference between STFTs of original and reconstructed
signal for G&L and when using a compressed objective function.

signal estimates that are less prone to stagnation. This could explain the significant improvement in

spectral convergence that can be observed on Fig. 3.3.

A way to account for these results is to consider the compressive behavior of the loudness-based

function: the low-energy regions of the spectrogram contribute to the objective function to a larger

extent than for the uncompressed function, or the G&L algorithm. It is reasonable to assume that

to avoid stagnation, one needs to have a good estimate of the phase of the STFT not only in high

energy regions, but over the whole time-frequency plane. By increasing the contribution of lower

energy regions, the proposed method provides better reconstruction of these regions. While this is

perceptually relevant as discussed earlier, it is also mathematically relevant as it provides a more

consistent estimate of the phase over the whole time-frequency plane, hence limiting stagnation.

The choice of p = 2/3 in this study was chosen based on human loudness perception, and might

not be optimal. Further investigations regarding this approach might lead to better results, and

determine if these results generalize to other configurations of the STFT (in terms of window

duration and hop-size).

Unlike the magnitude function that removes the absolute phase of a signal, the half-wave

rectification step in the IHC envelope extraction sets negative portions of channel outputs to zero,

and therefore still maintains basic information regarding the absolute phase of the signal. This

means there is no sign indeterminacy, no stagnation phenomenon, and a closer match between the

waveforms of original and reconstructed signals can be reached (e.g., superimposed waveforms

in Fig. 3.4). Although the reconstruction from IHC envelope provides signals with spectral

convergence that is comparable to the one obtained when reconstructing from STFT magnitude,

the absence of phase stagnation allows for very low RMS errors in the reconstruction, i.e., very

similar waveforms. Hence the IHC envelope is probably better suited for reconstruction problems

where accurate reconstruction of the temporal fine structure of the signal (i.e., fine details in the

waveform) is critical.
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3.6.4 Implications for current IHC models

The method based on IHC envelope representation was capable of reconstructing a time domain

signal to a relatively high accuracy. This has implications with regard to modeling human

auditory processing. While the details vary across current models of auditory processing,

they all involve envelope extraction applied to the output of a filterbank. This suggests that

for high-frequency channels, information regarding the temporal fine structure (i.e., the high

frequency carrier fluctuations that are amplitude modulated by the envelope) is lost. However,

the reconstruction method presented here suggests that this information could be recovered by

processing envelopes across frequency channels. This interpretation is consistent with results

from Heinz and Swaminathan (2009). In (Heinz and Swaminathan, 2009), the authors provided

a theoretical framework for evaluating the neural basis for the perceptual salience of acoustic

temporal fine structure and envelope cues. In their framework, temporal fine structure (carrier)

information could be retrieved from (across-frequency) envelope information.

3.7 Conclusion

A general approach to reconstruct signals from an arbitrary multi-channel envelope representation

was suggested. This approach was applied to both auditory and traditional spectrograms. For

envelope representations computed as IHC envelope at the output of a Gammatone filterbank,

signals were accurately reconstructed. This suggests that the collection of IHC envelopes provides

an accurate representation of the signal, as information that is lost by the envelope extraction in

individual channels can be recovered to a large extent through across-channel comparison. For

STFT magnitude envelope representations, the proposed method outperformed the algorithm of

Griffin and Lim (1984) for the specific STFT parameters chosen in this study (many channels and

high window overlap). An analysis of the results suggested that this approach reduced the intrinsic

limitations usually encountered when performing traditional spectrogram inversion.
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Retrieval of temporal fine structure from inner
hair-cell envelopes of unresolved complex tones

4.1 Introduction

In order to make use of the information available from the temporal fine structure (TFS) of a

signal, a listener must be able to extract the TFS. Traditionally, it is believed that TFS information

is extracted from the phase-locked response of inner hair cells (IHCs). As this phase-locking

response breaks down at high frequencies, this, presumably, imposes an upper frequency limit

on a listener’s ability to extract TFS information. However, in the present study, we demonstrate

that it is possible to reconstruct the TFS of a signal from the envelopes of a filterbank output,

which we refer to as an envelope representation. This result suggests that a listener could make

use of across-channel envelope processing to extract TFS information and may explain previous

behavioral results. In a recent study, Santurette and Dau (2011) examined the pitch perception of

a class of high-frequency complex tones. These complex tones had a periodic envelope, but the

timing between the most prominent peaks in the TFS did not match the envelope period. Their

study showed that some of these complex tones yielded a perceived pitch that was consistent with

the timing of the peaks in the TFS rather than the envelope period. However, as the sinusoidal

components in these complex tones were all sufficiently high in frequency, it is assumed that the

auditory system could only extract information from the envelope of the auditory filter outputs.

Based on the behavioral results, the authors suggested that TFS information might persist at higher

frequencies than commonly assumed. The purpose of the current study was to investigate if, and to

what extent, TFS information can be numerically recovered from the envelope representation of

such tones. In Chapter 3, a general framework to recover a time-domain signal from an envelope

representation was presented along with a specific implementation motivated by the human auditory

system, where the envelope is computed from a common model of inner hair-cell (IHC) envelope,

involving half-wave rectification followed by low-pass filtering. Several IHC models of this form

are documented in the literature, but vary with regards to the low-pass filter parameters that are

used. In this study, reconstruction from such IHC-inspired envelope representations is evaluated

based on the RMS error and location of maxima in the TFS of reconstructed signals, for various

IHC low-pass filter parameters.

47
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Figure 4.1: Waveform (left panel) and corresponding set of IHC envelopes (spectrogram, right panel) computed using
the model of (Dau et al., 1996a), for the complex tone used in this study. The alternating time intervals between the most
prominent peaks of the TFS, 1/ ftfs1 and 1/ ftfs1, are illustrated above the waveform. Both differ from the period of the
envelope, 1/ fenv (dashed line in left panel plot).

4.2 Method

4.2.1 Stimulus

The complex tones from (Santurette and Dau, 2011) were generated from five sinusoidal components

equally spaced in frequency, with the center component being at a frequency fc, and the four other

components at frequencies of fc+k fenv, with k =−2,−1,1,2. The resulting signal was inharmonic,

in the sense that the ratio fc/ fenv was not an integer. The corresponding waveform, an example

of which can be observed in fig.4.1, presents a periodic envelope of period 1/ fenv. However, the

time intervals between the most prominent peaks in the TFS differ from the envelope period, with

two alternating time intervals of 1/ ftfs1 and 1/ ftfs2, such that ftfs1 < fenv < ftfs2. In (Santurette and

Dau, 2011), perceived pitch was measured for such signals with fc = 3,4,5,6 and 7 kHz and a ratio

fc/ fenv ≈ 11.5 and 14.5. If TFS information was not available to the listener, the perceived pitch

should correspond to fenv. However, if the listener makes use of TFS information, then the pitch

would be ambiguous and related to either ftfs1 or ftfs2.

The complex tone with fc = 7 kHz and fc/ fenv = 11.5 was chosen as the focus of the present

study as it evoked a pitch that was significantly related to the TFS information rather than the period

of the envelope. A version of this complex tone with duration of two seconds was generated using

a sampling rate of 44.1 kHz. A smooth onset and offset was ensured by 30-ms half-raised cosine

ramps. A sample of the waveform is presented in the left panel of fig.4.1, which also illustrates that

the two alternating intervals between the most prominent peaks in the TFS differ from the period of

the envelope.

4.2.2 Envelope extraction

The generation of the envelope representation was based on simple models of human peripheral

auditory processing. The stimulus was first passed through a Gammatone filterbank composed of
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bandpass filters, each with a bandwidth of one equivalent rectangular bandwidth (Glasberg and

Moore, 1990, ERB) and spaced one ERB apart. The envelope was extracted in each channel by half-

wave rectification followed by low-pass filtering. To examine the robustness of TFS reconstruction a

variety of low-pass filter parameters were tested. Thus, the envelope in each channel was computed

using butterworth low-pass filters of orders 2, 4, and 6, and with cutoff frequencies decreasing

from 1000 Hz to 16 Hz, in octave steps. This envelope extraction scheme corresponds to several

standard IHC envelope models presented in the literature, e.g., (Lindemann, 1986; Dau et al.,

1996a; Breebaart et al., 2001). Lindemann (1986) suggested a first order low-pass filter with a

800 Hz cutoff frequency, while Dau et al. (1996a) suggested a second order filter with 1 kHz cutoff

frequency, and Breebaart et al. (2001) introduced a fifth order filter with a 770 Hz cutoff frequency.

The parameters from these three models were also tested.

An example of the envelope representation (spectrogram) of the stimulus used in this study,

computed using the model from (Dau et al., 1996a) is illustrated in the right panel of fig.4.1. As

visible in the figure, the five components of the complex tone are not individually resolved in the

representation. Instead, only one component (horizontal line) spread across several channels is

seen.

4.2.3 Reconstruction from the envelope

The framework introduced in Chapter 3 allows the reconstruction of time-domain signals from

such auditory-inspired spectrograms following a "two-step" approach. First, a regularized inverse

low-pass filter is applied in each channel. The resulting representation corresponds to a half-wave

rectified output of the Gammatone filterbank and forms the target representation for the second

step. There, a time-domain signal is iteratively constructed by minimizing the distance between the

half-wave rectified output of the Gammatone filterbank and the target representation. This distance

is based on the Frobenius norm of the difference between the two representations in their matrix

forms. More details regarding this approach can be found in Chapter 3. For this study, the maximal

gain allowed in the regularized inverse low-pass filter was set to 90 dB as it was found to be one

of the highest possible value that does not affect the stability of the reconstruction method in the

stationary sections of the stimulus. The iteration procedure was stopped after 100 iterations or

when the measured distance changed by less than 10−9 between two iterations (which is, for the

many scenarios considered in the following, between 8 and 10 orders of magnitude below the final

distance value), in which case convergence was assumed.

4.2.4 Evaluating the retrieved TFS

To quantify the accuracy of the reconstructed signal, the root-mean-square (RMS) error was

measured between original and reconstructed complex tones. However, an RMS metric is sensitive

to errors in both timing and level. In the context of pitch perception based on TFS information, such

as Santurette and Dau (2011), errors in the level (e.g., an attenuation or constant scaling of the fine
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Figure 4.2: Waveforms (top three panels) of the original stimulus (black line) and signals reconstructed from the stimulus
IHC envelope (orange line) for three different low-pass filtering conditions in the IHC model, fourth-order butterworth
filters with cutoff frequencies of 1000 Hz (left panels), 500 Hz (central panels) and 250 Hz (right panels). The bottom
three panels present the histogram of the distances between neighbor prominent peaks in the TFS for the original (black)
and reconstructed (orange) signals. Note that for the bottom left and middle panels, the histograms for the original and
reconstructed signals completely overlap.

structure) are less important than errors in the relative timing of peaks. In particular, the distance

between the most prominent peaks in the signal for neighbor repetitions of the envelope was

assumed to be the key element that needed to be accurately reconstructed in this context. Therefore

a second metric was derived. In the reconstructed signal, the position of the local maximum in the

TFS was noted for each period of the envelope. If reconstructed accurately, the distance between the

neighbor maxima should correspond to the intervals 1/ ftfs1 or 1/ ftfs2 illustrated in Fig.4.1. Thus,

the distribution of the distance between neighbor maxima was plotted as a histogram, and compared

to the distribution of the original signal. A metric was derived by calculating the intersection of

the two histograms normalized by the total number of local maxima identified. This resulted in a

number between 0 and 1, with a value of 1 if both histograms were identical, i.e. fully intersecting,

and 0 if they had no value in common. This metric directly relates to the proportion of correctly

aligned local maxima in the TFS of the reconstructed complex tone. To avoid any bias due to

instabilities of the reconstruction in the onset and offset of the signal, the first and last 30 ms of the

signals were discarded in both the RMS error computation and the histogram counts.

4.3 Results

For brevity, only the results from three typical examples are illustrated in fig.4.2, here the original

(black) and reconstructed (orange) waveforms (top three plots) and corresponding histograms of the

distance between neighbor prominent peaks in the TFS (bottom three plots). These examples are

from envelope extraction using a fourth order butterworth filter, with cutoff frequencies of 1000 Hz

(left plots), 500 Hz (middle plots) and 250 Hz (right plots). For the original signal, the histogram

contains two peaks distributed over four bins, with each peak having the same total count. This

corresponds to the two alternating distances between neighbor prominent peaks in the fine structure

of the complex tone. The leakage of each peak into two bins in the histogram is a consequence

of the signal being digital, as neither of the measured distances in the corresponding continuous



i
i

“phd_thesis_A4” — 2013/11/5 — 13:20 — page 51 — #73 i
i

i
i

i
i

4.4 Discussion 51

2 4 6

Filter order: IHC model:

Breebaart LindemannDau

0

A
lig

ne
d 

m
ax

im
a 

(%
)

Cutoff frequency (Hz)

R
M

Sn
 (

dB
)

Cutoff frequency (Hz)
1000 500 250 125 64 32 16 1000 500 250 125 64 32 16

0

20

40

60

80

100

-20

-40

-60

-80

Figure 4.3: Percentage of correctly aligned prominent peaks in the TFS of reconstructed signals (left) and resulting
normalized RMS error (RMSn, right) for signals reconstructed from envelope representations based on different IHC
low-pass filter parameters (order and cutoff frequency). Additionally, results for signals reconstructed from envelope
representations based on three previously published IHC models are plotted as symbols, and labeled by the last name of
the first author of the corresponding study.

analog signal is a multiple of the sampling period. The three histogram plots indicate that TFS

cues could be accurately retrieved for cutoff frequencies of 1000 Hz and 500 Hz of the IHC model

low-pass filter (left and middle panels where the histograms almost completely overlap) but not in

the case of 250 Hz (where the histogram distributions are quite different).

The error results for reconstructions from envelope representations based on the different low-

pass filter parameters tested are plotted in fig.4.3. The left panel presents the results based on the

normalized histogram intersection, i.e., the proportion of local prominent peaks in the TFS of the

reconstructed signal that are perfectly aligned with those of the original signal. The right panel

presents the normalized RMS error (RMSn) of the reconstructed signal in comparison with the

original signal. Results from the (Dau et al., 1996a; Lindemann, 1986; Breebaart et al., 2001) filter

parameters are plotted as symbols. In general, both error metrics increase as filter order is increased

or filter cutoff frequency.

4.4 Discussion

The results observed in this study typically fall into one of three categories, each of which

is illustrated in fig.4.2. For a given choice of low-pass filter order and cutoff frequency, the

reconstructed signal could be categorized as follows: (i) A very low RMS error, thus implying

perfect recovery of the TFS cues, as illustrated by the superimposed waveforms and histograms in

the two left panels of fig.4.2. (ii) A significant RMS error (greater than -10 dB), yet with almost

perfect recovery of the temporal position of prominent peaks (97% and above). This is illustrated

by the attenuated waveform and superimposed histograms in the two center panels of fig.4.2. (iii)

A large RMS error (greater than -3 dB) and a complete loss of TFS-related information, illustrated
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by the significant mismatch in both the waveforms and histograms distributions in the two right

panels of fig.4.2.

By comparing the two plots of fig.4.3, it is possible to associate different conditions to one of

these three categories. Signals are close to perfectly reconstructed from envelope representations

calculated using envelope low-pass filters of lower order and/or higher cutoff frequency. On

the other hand, the method fails to faithfully reconstruct signals from envelope representations

computed with more restrictive low-pass filters, i.e. with lower cutoff frequency or higher order.

This overall trend in the results is not surprising. However, complete retrieval of the TFS cues

was achieved from envelope representations calculated using three models from the literature.

Reconstruction from representations based on IHC models from Dau et al. (1996a) and Lindemann

(1986) achieved respective normalized RMS errors of -75.7 dB and -91.7 dB. These errors are

not far from the expected quantization error (-96.3 dB minimally for 16 bits), suggesting not only

were some TFS cues recovered, but that near-perfect reconstruction was achieved, i.e., that no

information is lost when using such models for IHC envelope extraction. These results also appear

robust with regard to changes in the cutoff frequency, with the RMS error remaining below -25 dB,

even when lowering this parameter by as much as four octaves. Assuming that these models

are good approximations of IHC behavior, the results here implies that, based on across channel

processing of the envelopes, TFS cues could be available to higher stages of auditory processing

even at high audio frequencies.

The complex tone chosen reconstructed in this study exhibits several interesting properties.

First and foremost, it consists of several components that appear unresolved in the envelope

representation (i.e., unresolved based on place coding). Further, this signal has no energy in low

frequency regions. Thus, there are no channels in the envelope representation where the TFS has

not been attenuated. It could be speculated that accurate reconstruction of a signal requires at least

one channel where the TFS was not heavily attenuated (i.e., easy to recover); the recovered TFS

could then be used to recover the TFS in an adjacent channel and continued iteratively to higher

and higher frequency channels. However, the ability to accurately reconstruct the signal used in

this study refutes this claim. Thus, the accuracy of reconstructed signals in this case suggests that

the missing TFS information in the spectrogram lies in the interaction between channels and in the

overall consistency of the spectrogram representation.
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Effects of manipulating the envelope

signal-to-noise ratio on speech intelligibility‡

Jørgensen and Dau (2011) suggested a new metric for speech intelligibility prediction
based on the envelope power signal-to-noise ratio (SNRenv), calculated at the output of a
modulation-frequency selective process. In the framework of the speech-based envelope
power spectrum model (sEPSM), the SNRenv was demonstrated to account for normal-
hearing intelligibility data in various conditions with stationary and fluctuating interferers as
well as for conditions with linearly and nonlinearly processed noisy speech (Jørgensen
et al., 2013) . Here, the effect of manipulating the SNRenv on speech intelligibility was
investigated by systematically varying the modulation power of either the speech or
the noise before mixing the two components. A good correspondence between data
and corresponding sEPSM predictions was obtained when the noise was manipulated
and mixed with unprocessed speech, consistent with the hypothesis that the SNRenv is
indicative of speech intelligibility. However, discrepancies between data and predictions
occurred for conditions where the speech was manipulated and the noise left untouched.
In these conditions distortions introduced by the applied modulation processing were
detrimental for speech intelligibility but not reflected in the SNRenv metric, thus representing
a limitation of the modeling framework.

5.1 Introduction

Speech intelligibility prediction has been a major research field since the first telecommunication

technologies were introduced in the late nineteenth century. One of the first broadly applied methods

for predicting speech intelligibility was introduced by French and Steinberg (1947) who presented

the concept of the articulation index (AI). Fundamentally, the AI predicts speech intelligibility

by calculating the signal-to-noise energy ratio (SNR) of the speech long-term spectrum and the

background noise long-term spectrum in various frequency bands. The AI was later extended to

include corrections for hearing sensitivity loss, speech level as well as upward and downward spread

of masking. This has led to a revised prediction model denoted the speech intelligibility index

(SII; ANSI S3.5, 1997). While this model was demonstrated to work well for predicting speech

‡ This chapter was written in collaboration with Søren Jørgensen as a preparation to a submission to the Journal of the
Acoustical Society of America.
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54 5. Effects of manipulating speech modulations

intelligibility in conditions with stationary background noise and low- and high-pass filtering, it has

limitations, for example, in reverberant conditions.

Houtgast and Steeneken (1973) demonstrated that reverberation leads to temporal smearing of

the speech signal, which is not detected by the conventional SNR-metric used in the SII. Steeneken

and Houtgast (1980) defined the speech transmission index (STI) as a measure of the integrity

of the temporal modulations of the speech, and demonstrated that such a metric could account

for the detrimental effect of stationary noise and reverberation on speech intelligibility. However,

the STI-concept is also limited and fails in conditions where the noisy speech mixture has been

processed by noise reduction, such as spectral subtraction (Ludvigsen et al., 1993), possibly because

the noise reduction affects the noise modulations as well as the speech modulations (Dubbelboer

and Houtgast, 2007; Jørgensen and Dau, 2011). Several extensions to the original STI have been

proposed (e.g., Payton and Braida, 2001; Goldsworthy and Greenberg, 2004) all of which, however,

were based on a comparison between the clean speech and the noisy transmitted speech. Thus,

none of the approaches considered the effect of the noise reduction processing on the amount of

“intrinsic” modulations of the noise itself. This was done in an alternative approach by Jørgensen

and Dau (2011), where it was suggested to consider the signal-to-noise ratio in the envelope domain

(SNRenv) as a measure of the amount of useful speech modulation content available to the listener.

Jørgensen and Dau (2011) quantified the modulation content of a stimulus using the power spectrum

of the envelope of a stimulus relative to the DC component of the envelope’s power spectrum, and

demonstrated that the SNRenv-based metric and the STI lead to similar predictions in conditions

with reverberation and stationary noise, but only the SNRenv can also account for the detrimental

effect of spectral subtraction on speech intelligibility. However, the relation between SNRenv and

speech intelligibility has not yet been evaluated in terms of explicit manipulations of the amount of

SNRenv, while keeping the conventional energy SNR fixed. Stimuli with different SNRenv but the

same energy SNR can either be obtained by a modification of the modulation content of the speech

signal, the noise interferer, or both. Since the SNRenv is calculated from the stimuli’s modulation

content, this metric is sensitive to differences in the modulation content of stimuli having the same

overall power, in contrast to the conventional SNR-metric used in the SII.

In the present study, the SNRenv was computed using the multi-resolution version of the speech-

based envelope power spectrum model (sEPSM) as presented in (Jørgensen et al., 2013). The

model is conceptually related to the envelope power spectrum model (EPSM Ewert and Dau, 2000)

originally developed to account for psychoacoustic modulation detection and masking data. In

the multi-resolution version of the sEPSM, the SNRenv is estimated in short temporal segments,

with segment durations inversely proportional to the center frequencies of the modulation filters

considered in the processing. This model was shown to successfully predict the speech reception

threshold (SRT) in a broad range of conditions with speech mixed with various stationary and

fluctuating interferers as well as in conditions with noisy speech processed by spectral subtraction

and reverberation (Jørgensen et al., 2013). The analysis of the modulation content of a signal

may be straightforward, whereas it is challenging to synthesize or process signals such that they

possess prescribed modulation properties (e.g., Ghitza, 2001). Temporal modulations of a stimulus
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are represented by the fluctuations of its envelope (relative to the time-averaged level) after the

processing through a bandpass filter. Multi-channel envelopes, obtained by passing the stimulus

through a bandpass filterbank, are collectively referred to as a spectrogram. The development of

spectrogram reconstruction tools (e.g. Griffin and Lim, 1984; Zhu X., 2006; Sun and Smith, 2012, or

the one developed in chapter 3) makes it possible to manipulate the long-term modulation spectrum

of noise or speech by reconstructing the temporal signal corresponding to a target spectrogram.

Using such an approach, Elliott and Theunissen (2009) analyzed the contribution of independent

temporal and spectral modulation frequency bands to the intelligibility of speech. They found

that speech intelligibility remained high at about 75% words correct when restricting the temporal

modulations to frequencies below 7 Hz and the spectral modulations to rates below 3.75 cycles/kHz.

Restricting this "core" spectro-temporal modulation frequency range further had a large detrimental

effect on intelligibility.

In the present study, the spectrogram reconstruction tool described in chapter 3 was used to

generate noise backgrounds and speech stimuli with amplified or attenuated modulation content.

The hypothesis was that noise with attenuated modulation content mixed with unprocessed speech

as well as speech with amplified modulation content mixed with unprocessed noise should provide

better intelligibility than unprocessed speech in noise. The modulation-processed stimuli were

then used to evaluate the relationship between the SNRenv and speech intelligibility obtained in

corresponding psychoacoustic tests. Thus, the processing strategy taken here directly manipulated

either the clean speech signal or the noise alone before mixing the two components, in an attempt

to make the speech more intelligible in a given noisy condition. This approach differs from other

modulation-domain speech enhancement strategies (Paliwal et al., 2010; So and Paliwal, 2011;

Wójcicki and Loizou, 2012) that focused on ways to attenuate the noise component of a noisy

speech mixture. Here, the focus was to enhance the modulation content of the speech relative to the

noise, before mixing the two components. Such an approach could be useful in a situation where

there is access to the speech signal before it is transmitted and mixed with environmental noise,

such as at a train station.

5.2 Method

5.2.1 Speech material, apparatus, and procedure

Speech reception thresholds (SRT) were measured using the material provided in the Danish

Conversational Language Understanding Evaluation (CLUE; Nielsen and Dau, 2009), which is

similar to the hearing in noise test (HINT; Nilsson et al., 1994). The speech material in the CLUE

test consists of 18 lists of ten unique sentences, recorded in anechoic conditions. Each sentence

represents a meaningful everyday sentence containing five words, spoken in a natural manner, by a

male speaker. The background noise in the CLUE test is a stationary speech-shaped noise (SSN)

constructed by concatenating and superimposing the sentence material so as to obtain a stimulus

with the same long-term spectrum as the average long-term spectrum of the sentences. Five male
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normal-hearing native Danish speakers, aged between 24 and 38 years, participated in the study.

The subjects were sitting in a double-walled insulated booth together with the experimenter who

was controlling the procedure through the dedicated MATLAB application for speech intelligibility

measurement using the CLUE material. The digital signals, sampled at 44.1 kHz, were converted

to analog by a high-end RME DIGI96/8 soundcard. They were presented to the subjects diotically

via Sennheiser HD580 headphones. The average sound pressure level (SPL) of the stimuli in the

test was 65 dB. After each presentation, the subjects were instructed to repeat the words he/she

understood, with the possibility of guessing or passing on misunderstood words. The experimenter

recorded the correctly understood words individually.

The SNR was controlled throughout the test by changing the level of the SSN after the listener’s

response, using an adaptive procedure. If all the words of a sentence were repeated correctly the

SNR was lowered by 2 dB, otherwise it was increased by 2 dB. The SRT was determined as the

average of the SNRs calculated after the response to the last eight sentences of a list. Further details

can be found in Nielsen and Dau (2009).

5.2.2 Stimulus conditions

Two stimulus conditions were considered: (i) unprocessed speech mixed with SSN that was

processed in the modulation domain as described further below (section 5.2.3) and (ii) speech

that was processed in the modulation domain and mixed with unprocessed SSN. The modulation

processing either attenuated or amplified the modulation power in a target modulation frequency

range between 4 and 16 Hz, while providing zero gain outside the target range. Six conditions of

the target modulation gain were considered when only the noise was processed: 20, 10, 0 , -5, -10

and -20 dB relative to the unprocessed noise, and seven conditions were considered when only the

speech was processed: 20, 10, 5, 0, -6, -10 and -20 dB, whereby 0 dB represented the unprocessed

reference condition. Smooth transitions between the amplified/attenuated modulation-frequency

band and the zero-gain frequency region were obtained using raised cosine ramps in the transition

bands from 1 to 4 Hz and from 16 to 22 Hz. The efficiency of the modulation processing was

analyzed by computing the modulation transfer function (MTF) of the processed signals relative to

the unprocessed signal as suggested by Schimmel and Atlas (2005). The MTF of a single channel,

m, was defined here as

MT Fm =
|F{|(pm)a |}|
|F{|(um)a |}|

(5.1)

where p denotes the processed signal, u denotes the unprocessed signal, F denotes the Fourier

transform, (·)a denotes the analytical signal, and |·| denotes the modulus. The MTF of an entire

spectrogram was taken as the average of the subchannel MTFs, where the MTFm of the individual

channels were weighted according to their energy

MT F =
1

∑
M
m=1 ‖um‖2

M

∑
m=1
‖um‖2 ·MT Fm (5.2)
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where ‖·‖2 is the Euclidean norm. Figure 5.1 (upper left panel) shows the MTF for the processed

noises for each of the five target modulation gains. The dashed curves represent the target MTF

and the solid curves show the obtained "actual" MTF at the output of the modulation processing

stage that is described in more detail further below. In a perfect modulation processing system,

the dashed and solid lines would coincide. In the processing framework presented here, the actual

gain/attenuation is smaller than the target gain/attenuation, particularly for the largest target values

of +/-20 dB. The top right panel of Fig. 5.1 shows the corresponding long-term excitation patterns

(Glasberg and Moore, 1990) of the processed noises, representing the total energy of the signal

at the output of a bank of gammatone filters with one equivalent rectangular bandwidth spacing,

plotted as a function of the center frequencies of the filters. The patterns for the three negative gains

(-5, -10 and - 20 dB) coincide with the one obtained for the unprocessed signal. The pattern for

20 dB gain (light gray) lies above the unprocessed pattern (black) by more than +5dB at very low

frequencies (< 50 Hz) and below the unprocessed pattern by more than -5 dB at frequencies above

1200 Hz.

The lower left panel of fig.5.1 shows the target MTFs (dashed lines) and the actual MTFs

(solid lines) for the six conditions where the speech was processed. Each MTF represents the

average across the individual MTFs obtained for 180 sentences without noise. The obtained actual

gains/attenuations are below the respective target gains/attenuations, particularly for the target gains

of +/- 20 dB. Furthermore, the effective frequency region of the MTF relative to the target range

(4 to 16 Hz) is shifted towards higher modulation frequencies in the conditions with modulation

enhancements, which is different from the results obtained with the processed noise. The lower

right panel of fig.5.1 shows the corresponding excitation patterns for the processed speech and the

unprocessed speech. The maximal deviation of the patterns for processed speech from the one for

unprocessed speech amounts to 5 dB at frequencies above 5 kHz.

5.2.3 Modulation processing framework

The modulation processing consisted of two parts as indicated in fig.5.2. In part A, the original

unprocessed signal was first passed through a Gammatone filterbank, and the Hilbert envelope was

extracted at the output of each filter. The resulting set of envelopes constituted the unprocessed

spectrogram. Each envelope of the spectrogram representation was filtered by a zero-phase bandpass

filter with a given target MTF. To avoid transients in the filter magnitude response, transitions

between the pass-band and the filtered band were smoothed using half raised cosine windows. The

filtered envelopes were then individually normalized such that they had the same root mean square

(RMS) value as their unfiltered counterpart. This ensured that the total power of the envelopes

in each frequency channel was only marginally affected by the envelope filtering such that the

processed signal had a similar long-term audio-domain excitation pattern as the original signal

(right panels of fig.5.1).

To be consistent with the definition of a spectrogram, each processed envelope had to be non-

negative. However, filtered envelopes could exhibit significant negative sections, particularly when
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Figure 5.1: Top left: Target modulation transfer functions (MTF; dashed lines) and actual MTFs (solid lines) for the
five conditions with processed noise. The grayscale corresponds to different target modulation gains (-20, -10 -5, 10,
20 dB). Each noise signal was 22 seconds long, sampled at 22.05 kHz, and the corresponding MTF was obtained as
the average over 50 segments of 2 s each. Top right: Long-term excitation patterns of the five processed noises and
the unmodified noise (UNP). Bottom left: Target (dashed lines) and actual (solid lines) MTFs of the processed speech
for the six target modulation gains. MTFs were averaged over the 180 sentences of the CLUE material. Bottom right:
Long-term excitation patterns of the speech for the six target modulation gains and the unmodified speech (UNP).

Original signal
Envelope 
extraction

Filtering each 
channelA

Initialization

B

Envelope 
extraction

Comparison

Update signal
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Estimated
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Figure 5.2: Schematic view of the two steps in the modulation processing framework. Single-lined arrows relate to
time-domain signals and double-lined arrows to multi-channel envelopes (spectrograms). Step A, upper part, generates a
target spectrogram T by separately filtering each channel of the original signalÂt’s spectrogram. In step B, a signal is
constructed iteratively by comparing the spectrogram Si of the current signal estimate si to the target T. The distance
between the two spectrograms G and its gradient ∇G are used to update the current signal estimate until the maximum
number of iterations n is reached.
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large positive modulation gains were provided to signals that initially contained large envelope

fluctuations, such as speech. To overcome this, the dynamic range of the envelope was limited

by raising the envelope of each channel to the power of 1/3 before filtering. After filtering, the

original dynamic range was restored by raising the filtered envelope to the power of 3. The resulting

filtered spectrogram provided the "target" input, T, to the signal reconstruction stage (Part B) of the

modulation processing. In the signal reconstruction, indicated as Part B in fig.5.2, a time-domain

signal, s, was reconstructed iteratively, such that the difference between the spectrogram of the

reconstructed signal and the target spectrogram was minimal. The procedure was initiated by a

random noise signal s0 that, for each iteration i, was updated in the direction that reduced the

distance between its spectrogram Si and the target spectrogram T. The distance, G , between the

spectrograms was given as the square of the Frobenius matrix norm of the difference between the

two spectrograms:

G = ‖T−Si‖2
f ro (5.3)

The iterative procedure was terminated after 100 iterations. Details about the signal reconstruction

can be found in chapter 3.

5.2.4 Speech intelligibility prediction

The processing structure of the sEPSM is illustrated in fig.5.3. The details of the processing can

be found in (Jørgensen and Dau, 2011) and (Jørgensen et al., 2013). Some of the main stages are

described in the following. The first stage is a bandpass filterbank consisting of 22 gammatone

filters (Glasberg and Moore, 1990) with a third-octave spacing between their center frequencies,

covering the range from 63 Hz to 8 kHz. The temporal envelope of each output is extracted via the

Hilbert-transform and then low-pass filtered with a cut-off frequency of 150Hz using a first-order

Butterworth filter. The resulting envelope is analyzed by a modulation bandpass filterbank, which

consists of eight second- order bandpass filters with octave spacing, covering the range from 2 -

256 Hz, in parallel with a third-order lowpass filter with a cut-off frequency of 1 Hz.

The running temporal output of each modulation filter is divided into short segments using

rectangular windows with no overlap (Jørgensen et al., 2013) . The duration of the window is

specific for each modulation filter, and is equal to the inverse of the center-frequency of a given

modulation filter (or the cut-off frequency in the case of the 1-Hz low-pass filter). For example,

the window duration in the 4-Hz modulation filter is 250 ms. For each window, the AC-coupled

envelope power (variance) of the noisy speech and the noise alone are calculated separately and

normalized with the corresponding long-term DC- power. The SNRenv of a window is estimated

from the envelope power as:

SNRenv =
Penv,S+N−Penv,N

Penv,N
(5.4)

where Penv,S+N and Penv,N denote the envelope power of the noisy speech and the noise alone
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Modulation filterbank

Gammatone filterbank

Hilbert envelope

Multi resolution SNRenv

Ideal observer

Temporal outputs

Probability of correct response

Figure 5.3: Block diagram of the processing structure of the sEPSM (Jørgensen et al., 2013) . Noisy speech and noise
alone are processed separately through a gammatone bandpass filterbank followed by envelope extraction via the Hilbert
transform. Each sub-band envelope is further passed through a modulation bandpass filterbank. The modulation- filtered
temporal outputs are segmented with a segment duration inversely related to the modulation-filter center frequency. The
envelope power (variance) is computed in each segment for the noisy speech (Penv,S+N ) and the noise alone (Penv,N ), from
which the corresponding SNRenv is derived. The segmental SNRenv is then averaged across segments and combined
across modulation filters and audio-domain (peripheral) filters. Finally, the overall SNRenv is converted to the probability
of correct response assuming an ideal observer as in Jørgensen and Dau (2011) .

after the normalization. For each modulation filter, the running SNRenv-values are averaged across

time, assuming that all parts of a sentence contribute equally to intelligibility. The time-averaged

SNRenv-values from the different modulation-filters are then combined across modulation filters

and across Gammatone filters, using the “integration model” from Green and Swets (1988). The

combined SNRenv is converted to the probability of correctly recognizing the speech item using the

concept of a statistically “ideal observer” (Jørgensen and Dau, 2011) .

For the simulations, 150 sentences from the CLUE material were used. Each sentence was mixed

with a noise token (randomly selected from the full-length noise files) over a discrete range of

SNRs. For a given SNR-value, the final percent correct prediction was computed as the average

predicted score across all sentences of a given speech material. The prediction at each SNR was

then connected by straight lines, resulting in a continuous psychometric function, from which the

SRT was estimated as the SNR corresponding to 50% correct. The values of the parameters in the

model were kept fixed in all conditions and corresponded to those given in Table II in Jørgensen

et al. (2013).

5.3 Results

Figure 5.4 shows the results for the conditions where the noise interferer was processed and the

speech left untouched. The open symbols show measured speech intelligibility data, represented

as the change in SRT (∆SRT) relative to the unprocessed condition. ∆SRT is shown as a function

of the target modulation gain, and a positive ∆SRT reflects worse intelligibility compared to the
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Figure 5.4: Change of the speech reception threshold, ∆SRT, relative to the unprocessed condition (0 dB target gain), as
a function of the target modulation gain applied to the noise interferer (but not the speech signal). Open circles represent
the measured data, with error bars indicating standard errors. Asterisks indicate a statistically significant difference to the
reference condition, with p < 0.1 represented as (∗) and p < 0.01 represented as (∗∗). The filled circles show predictions
obtained with the sEPSM, and filled diamonds show predictions using the ESII.

unprocessed condition. An analysis of variance was conducted to assess the statistical significance

of the measured data. The statistical results are presented as asterisks above the data points, with

p < 0.1 for (∗) and p < 0.01 for (∗∗) indicating significant differences from the unprocessed

condition. A non-monotonic relationship between the obtained SRT and the target modulation gain

was observed. In the range of conditions with negative gain, i.e. with attenuated noise modulations,

the SRT decreased slightly (up to about 2 dB) with decreasing gain. In the conditions with positive

gains, i.e. amplified modulations, a large decrease of the SRT of about 9dB was observed for

the target gain of 20 dB. The filled circles represent the predictions obtained with the sEPSM.

The predictions were in good agreement with the data, although the model slightly overestimated

the effect at large positive gains, i.e. slightly overestimated the benefit of enhancing the noise

modulation on intelligibility. For direct comparison, predictions obtained with the extended SII

(ESII1 Rhebergen et al., 2006), using a stationary noise as the speech signal, are also shown in

fig.5.4 and indicated by the filled diamonds. The ESII predicted the trend in the data for positive

modulation gains, but predicted a positive ∆SRT, i.e. a slight decrease of speech intelligibility, for

negative gains, in contrast to the measured data.

Figure 5.5 shows the results obtained for the conditions with processed speech (in the presence

of unprocessed noise). The open symbols show the measured data. The SRT increased by 1.5 dB

for a target modulation gain of 10 dB and by 5.5 dB for a gain of 20 dB, i.e. representing a decrease

of intelligibility. Similarly, in the conditions with negative gains, the SRT increased by 2.7 dB for a

target gain of -10 dB and by 7.3 dB for a target gain of -20 dB. Thus, the intelligibility decreased in

all conditions where the speech (alone) was processed.

The predictions obtained with the sEPSM are shown by the filled circles. The results are

essentially independent of the amount of negative gain, in clear contrast to the data. Moreover,

1 The ESII used here corresponds to the method described in Rhebergen et al. (2006). SSN was used as probe for the
speech material.
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Figure 5.5: ∆SRT relative to the unprocessed condition (0 dB target gain) as a function of the target modulation gain
applied to the speech (mixed with unprocessed noise). The open symbols represent the measured data, the filled circles
show the sEPSM predictions, and the filled diamonds show predictions using the ESII. The error bars represent standard
errors. Asterisks indicate a statistically significant difference to the reference condition, with p < 0.1 for (∗) and p < 0.01
for (∗∗).

the model predicted a decrease in SRT for the conditions with positive gains. This reflects the

underlying assumption of the model linking enlarged modulation power of the speech signal

(cf. bottom left panel of fig.5.1) to increased speech intelligibility. However, this relation is

not supported by the data for the conditions with modulation enhanced speech. For comparison,

predictions obtained with the ESII are also shown in the figure and indicated by the filled diamonds.

Since the ESII procedure applies a stationary noise as a probe for the speech signal, the simulations

for the processed speech conditions essentially represent a mirrored pattern of the simulations for

the processed noise conditions (around the 0-dB ∆SRT axis). The ESII appeared to account at least

partly for the reduced intelligibility for positive gains. However, it is unclear if the trend predicted

by the ESII reflects the underlying cause for the reduced intelligibility observed in the data or if it

is a consequence of the special noise-probe signal used in the ESII calculation procedure.

5.4 Discussion

5.4.1 Modulation processing of the noise interferer

The predictions obtained with the sEPSM were in good agreement with the measured data in

the conditions where the noise was processed and the speech was left unchanged. This suggests

that the improvement in intelligibility observed in the data can be accounted for by a greater

SNRenv after the modulation processing. For negative gains, the modulation power of the noise

was effectively reduced in the range from 4-16 Hz, leading to a temporally more “steady” noise.

Thus, in the framework of the model, the lower SRTs obtained in these conditions are caused by a

release from modulation masking. In the case of positive modulation gains, the amplification of the

noise modulations led to strong amplitude variations of the noise, similar to amplitude modulated

noise (e.g., Festen and Plomp, 1990). The lower SRT in these conditions can also be explained in

terms of a release from modulation masking, but at different modulation frequencies than in the
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case of the negative gains. Jørgensen et al. (2013) demonstrated in their model analysis that the

greater intelligibility obtained in conditions with a fluctuating noise compared to a stationary noise

may be based on the availability of high-frequency (>30 Hz) speech envelope fluctuations. The

ESII was able to account for the results obtained with positive modulation gain, consistent with

earlier studies that demonstrated its usefulness for predicting speech intelligibility in the presence

of a fluctuating interferer. However, the ESII failed to account for the conditions with negative

modulation gains, which could be accounted for by the sEPSM. This may be explained by the

different intelligibility metrics underlying the predictions obtained with the ESII and the sEPSM. In

the case of the ESII, the intelligibility metric is based on the conventional (short-term) energy of the

stimuli, which is similar across the conditions with attenuated noise and, thus, does not capture the

reduced modulation energy of the noise. The results obtained in the conditions with reduced noise

modulations can therefore not be accounted for by the concept of “glimpsing” (e.g., Cooke, 2006).

5.4.2 Modulation processing of clean speech

Ideally, according to the concept of the SNRenv, amplifying the modulations of the speech signal

by a given amount (before mixing it with the unprocessed noise) should lead to a similar effect

on intelligibility as attenuating the modulations in the noise by the same amount (before mixing

the noise with the unprocessed speech). The predictions with the sEPSM, indeed, showed the

same SRT when applying the target modulation gain of 20 dB to the speech as when applying

a gain of -20 dB to the noise. However, the measured data obtained in the conditions where the

modulations of the clean speech were amplified differed strongly from the conditions where the

modulations of the noise alone were attenuated. This difference may be explained by distortions

of the speech signal resulting from the modulation processing. The degree of speech distortion

after modulation processing was assessed here using the Perceptual Evaluation of Speech Quality

(PESQ; ITU-T P.862, 2001) method. Figure 5.6 shows the speech signal distortion, defined here

as the inverse of the PESQ-rating, scaled to a range between 0 and 1, for the different conditions

of modulation-processed speech. The distortion is zero for the zero-gain reference condition and

increases with increasing or decreasing target modulation gain. This trend corresponds well to

the trend observed in the intelligibility data shown in fig.5.5. The presence of distortion and the

attribute of unnaturalness in the conditions with modulation-processed speech were also reported

qualitatively by the listeners, even at high SNRs.

5.4.3 Limitations of modulation enhancement in speech processing

There were at least two sources of distortions observed when amplifying the modulation of natural

speech. First, the step in the modulation filtering process that generated the target spectrogram

represented a “blind” process, i.e., the filtering process had no a priori information about the initial

spectro-temporal structure of the speech signal.

Hence, the amplified modulation was not constrained to follow the natural temporal structure



i
i

“phd_thesis_A4” — 2013/11/5 — 13:20 — page 64 — #86 i
i

i
i

i
i

64 5. Effects of manipulating speech modulations

−20 −10 0 10 20

0

0.2

0.4

0.6

0.8

1

D
s
to

rt
io

n
 (

1
/P

E
S

Q
)

Target modulation gain (dB)

 

 

Distortion

Figure 5.6: Objectively measured distortion of the speech signal for the different conditions of modulation processing.
The distortion is defined here as the inverse of the PESQ measure scaled to the range between 0 and 1, and each point
represent the average across 50 sentences. A metric such as the SNRenv assumes that all audible speech modulations
contribute to speech intelligibility. The metric cannot account for distortions that are not resulting from the processing
applied to the mixture of speech and noise (such as spectral subtraction).

of the speech, but could represent a strong modulation component not related to speech at all.

Moreover, the larger the modulation gain/attenuation was, the further the filtered spectrogram

deviated from a faithful representation of speech, i.e., the target spectrogram could represent

distorted speech rather than enhanced speech. A second source of distortion was related to the

iterative reconstruction process. Since the spectrogram representation considered here was of higher

dimensionality than a real time-domain signal, many theoretical spectrograms could result from the

modulation-filtering process, for which no corresponding real time-domain signal would exist (Le

Roux et al., 2010). Thus, the target spectrogram obtained in fig.5.2 (Part A) did not necessarily

correspond to an actual time-domain signal. This implied that the objective function in (5.3) might

never reach zero, even if the reconstruction was successful in the sense that it reached the minimum

of the objective function. The remaining distance between the target and the obtained spectrograms

would translate into an error in the reconstructed signal, in the form of uncontrolled distortions.

5.4.4 Usefulness of modulation processing for speech intelligibility enhancement

While the success of the present modulation processing to enhance speech intelligibility was limited

to the conditions with processed noise alone, the modeling results suggested that there could be a

potential improvement of intelligibility by enhancing the modulation of the speech material used

in the present study. It would be interesting to investigate if the model would account for speech

intelligibility data obtained with speech containing naturally enhanced modulations, such as clearly

articulated speech, which is free from distortions. Such stimuli have been considered in the study

of Payton et al. (1994) and Payton and Braida (1999), showing improvements in the word score

of 20-30 % for clearly spoken speech compared to conversational speech. This corresponds to an

improvement of SRT of roughly 9 dB based on the difference between two psychometric functions

(as described by Wagener et al., 2003) fitted to the data from Payton et al. (1994) (not shown
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here explicitly). Such an improvement may well represent the upper limit of the potential benefit

provided by an artificial speech modulation enhancement approach. The benefit of processing either

the noise or the speech alone before mixing appeared to be modest compared to other approaches of

speech intelligibility improvement, where the mixture of speech and noise is modified. For example,

Wójcicki and Loizou (2012) demonstrated that discarding noise-dominated modulation-domain

spectral components based on an SNRenv-like metric led to improvements of SRT up to 13 dB.

Their approach was fundamentally different from the one considered in the present study, since they

targeted noise-removal rather than modifying the unmixed signals to optimize intelligibility. The

benefit of the present approach is that the enhancement could, in principle, be obtained by a filter-

like operation, without having to estimate the noise component. In practice, the enhancement could

be performed as a kind of pre-processing of the speech signal that could optimize intelligibility,

before it is mixed with noise. Moreover, noise-removal could, in principle, also be achieved with

the present modulation processing framework, by modifying the setup of the target spectrogram

(Part A of fig.5.2) such that it produces a target that is a noise-reduced version of the noisy speech

mixture.

5.5 Summary and conclusions

The effect of manipulating the SNRenv on speech intelligibility was investigated by systematically

varying the modulation power of either the speech or the noise before mixing the two components.

Improvements of the SRT for normal-hearing listeners were obtained in conditions where the

modulation power of the noise was modified, leaving the speech untouched. Predictions from

the sEPSM accounted well for this effect, supporting the hypothesis that the SNRenv is indicative

of speech intelligibility. However, a large detriment of the SRT was obtained when the speech

modulation power was modified and the noise left untouched, which could not be accounted for

by the sEPSM. This discrepancy might be explained by distortions introduced by the modulation

processing, which were not reflected in the SNRenv metric, thus, representing a limitation of the

modeling framework.
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6
Insights in spectrogram filtering: directions for

improvements

The previous chapter presented an application of spectrogram reconstruction methods
to perform modulation filtering. A time-domain signal reconstructed from a filtered
spectrogram representation presents new modulation patterns that correspond, to some
extent, to the filter applied to each channel of the original spectrogram. However, this
approach has some limitations, and it was shown that the effective change in modulation is
often less than what would be expected from the filter used. Such situations of less effective
modulation filtering were mostly observed when processing speech, and particularly
when trying to enhance the modulation content of speech. In the previous chapter’s
discussion, some issues that are likely responsible for these limitations were identified. It
was noted that speech has a far more complicated time-frequency structure than noise,
and that a processing framework that was applied “blindly” with regards to this structure
could impair the processing’s efficiency. Additionally, it will be shown here how the non-
negativity nature of envelopes can be an issue when filtering spectrograms, impairing
the whole process prior to the actual reconstruction. In this chapter, two preliminary
studies are presented to assess these possible limitations. The first section presents
a short-time based implementation of the spectrogram filtering framework, intending
at better-accounting for the intrinsic structure of the signal being processed, limiting
the negative effects of what will be introduced as non-stationarity. The second section
suggests a method to filter a spectrogram according to a given filter magnitude response
while retaining non-negative, i.e., envelope compliant, outputs. The last, short, section
motivates a conceptual approach to the modulation filtering scheme that does not involve a
direct reconstruction from a filtered spectrogram but still relies on the iterative construction
of a time-domain signal. Although the concepts developed in this chapter did not lead to a
concrete improvement of the modulation filtering framework, they are documented here as
they offer insights in some of the issues faced with modulation manipulation, and form a
good basis for potential future directions.

6.1 Short-time based spectrogram filtering

From the experimental results obtained in chapter 5, one of the most straightforward observations

was that the modulation filtering framework performed far more efficiently when applied to noise

67
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than when applied to speech. Speech embeds an intricate underlying structure, mixing intonation

dependent harmonics, transients, high frequency bursts as well as silence. In brief, speech signals

are complex and cannot be easily described. On the other hand, noise signals involve stochastic

processes for their generation. Hence, faithful descriptors of a noise signal are often found in its

statistical properties (e.g., its variance, long-term spectrum, probability distribution, higher-order

moments, etc...). Such statistical descriptors for the noise signal used in this document are relatively

stable over time. This speech-shaped noise can be considered as a stationary signal. In contrast,

speech is not stationary. However, speech is often considered to be a quasi-stationary signal: its

statistical properties vary relatively slowly with time, and short individual segments of speech can

be assumed to be stationary.

The modulation filtering framework presented in chapter 5 involves the reconstruction of a

time-domain signal from a filtered spectrogram. The filtering was performed on a long-term basis,

and the resulting modulation transfer functions (MTFs) for speech (e.g., bottom-left plot in fig.5.1)

were derived for the whole signals. Because speech signals are non-stationary, the MTF of a short

segment of processed speech will deviate significantly from the MTF of the whole signal, i.e.,

long-term based MTFs are not representative of the effect of the processing in shorter speech

segments. In this section, a short-time based filtering approach is suggested to generate filtered

spectrograms with changes in their modulation properties that are more consistent over shorter time

segments. The reconstruction of a time-domain signal from the filtered spectrogram is unchanged

and still as described in chapter 3.

6.1.1 Method

Short-time temporal modulation transfer function

The modulation transfer function was introduced in chapter 5 as an analysis tool to illustrate the

effects of the modulation filtering framework in the modulation domain. As defined in (5.2), it

relied on the ratios between the Fourier magnitudes of processed and unprocessed signals for

each individual channel. These ratios were averaged over the channels to provide the MTF. When

computing the Fourier magnitudes, the Fourier transform of the whole channel was computed. For

non-stationary signals, the Fourier transform of a short segment of the signal will be significantly

different from the Fourier transform of the whole signal. The MTF for this short segment will

therefore deviate from the MTF of the whole signal, indicating that the long-term MTF as defined

in (5.2) is not necessarily a good measure of the efficiency of the modulation filtering for local

sections of the signal.

To analyze the modulation filtering efficiency for local sections of the signal, a short-time based

MTF can be adapted from the MTF definition previously used. The original and processed signals

are decomposed into several overlapping short segments. The MTF for each segment is computed,

and averaged over the segments to provide a short-time MTF average (stMTF). In addition, the

standard deviation of the short-time MTFs can also be measured for each modulation frequency
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Figure 6.1: Short-time modulation transfer function average (stMTF) of modulation-filtered noise (solid line) showing
plus/minus one standard deviation (gray area) and the modulation filter magnitude response (dashed line), plotted for
three different analysis window duration L.

bin. A low standard deviation would indicate that the processing is performed consistently over

short segments. Conversely, a high standard deviation would suggest that the modulation content of

short segments was not processed as expected.

The segmentation of original and processed signals is performed using a sliding window. The

window has a fixed duration, and is time-shifted by a fixed amount between neighbor segments, i.e.,

with a given window repetition rate. To limit spectral leakage from onset and offset discontinuities

when measuring the MTFs of individual segments, a Hanning window is used. The window duration

determines the resolution of the computed stMTFs. A window that is L seconds long will yield

stMTFs with a resolution of 1/L Hz per modulation frequency bin, independent of the sampling

frequency. The MTF is concerned with illustrating modulation properties which are, for speech at

least, concentrated in relatively low frequencies. Therefore the modulation frequency resolution of

the MTF needs to be high enough if one wants to observe the processing effect on low modulation

frequencies. This implies a lower bound on the duration L of the analysis window.

Figure 6.1 presents the short-time MTF average (stMTF, solid line) computed with three different

analysis window durations L, for modulation-filtered noise. The gray area indicates one standard

deviation interval above and below the average, and the dashed line the modulation filter magnitude

response. It illustrates the lower bound requirement on L. The processing in this case typically

involves enhancement of the modulation content between 4 and 16 Hz, suggesting a resolution of

the stMTF of at least 4 Hz, i.e. a window of at least 250 ms. The stMTF obtained with 125 ms

window (right plot in fig.6.1) is clearly degraded in comparison to those obtained with 250 ms and

500 ms long windows (respectively center and left-most plot), and its resolution is not sufficient

to accurately represent modulation frequencies below 8 Hz. Note that for practical reasons, the

implementation of the filterbank allows only for signals longer than 5000 samples (i.e., about

227 ms at the sampling rate of 22050 Hz used here). Hence, if shorter windows are used, such

as 125 ms here, zero-padding of individual segments is necessary before computing their MTF. It

can be observed on fig.6.1 for the 125 ms-window where the actual frequency resolution is not
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the expected 8 Hz but is instead 4.41 Hz (i.e., corresponding to segments of 5000 samples at this

sampling rate).

The stMTF obtained with 250 ms long window, despite its lower resolution, appears smoother

than the one obtained with a longer window. This is a consequence of the windowing. The

window used here, in the frequency domain, has a main lobe width which is comparable to the

frequency range of interest. Typically the main lobe of a Hanning window of L seconds has a

-6 dB cutoff frequency of 2
L Hz (Harris, 1978), i.e., 4 Hz for L = 500 ms and 8 Hz for L = 250 ms.

The windowing in the time domain translates to a convolution in the frequency (or modulation

frequency) domain, and here the non-negligible width of the window’s frequency response acts as a

low-pass filter on the resulting MTFs, which will appear smoother for shorter windows. Eventually,

too short windows, such as for L = 125 ms, will not only smoothe the MTF but will also present

an attenuated response in the region from 4 to 16 Hz, as it acts as a low-pass filter whose cutoff

frequency is below the bandwidth of this region. This can be observed in the right plot of fig.6.1,

where the stMTF in the 4-16 Hz band is significantly attenuated. In the following, a Hanning

window of 500 ms is chosen to compute stMTFs, as it offers a good compromise between a short

window duration and detrimental effects in the representation of the MTF.

The stMTF presented in fig.6.1 exhibits a large standard deviation, indicating that in individual

segments, local MTFs can vary significantly from the final averaged stMTF. The purpose of a

short-term implementation of spectrogram filtering is to generate filtered spectrograms which will

present a lower standard deviation of their stMTF, i.e., for which the outcome of the filtering

procedure is more consistent across time. It is not expected that such an implementation will greatly

reduce the stMTF’s standard deviation for stationary signals such as the noise. However the effect is

expected to be significant for non-stationary signals such as speech, assuming that non-stationarity

is the main cause of the deviations of local short-term MTFs to the averaged stMTF.

Weighted overlap-add filtering approach

Short-term signal processing can often be conducted using a traditional overlap-add (OLA) method

(Allen, 1977). The OLA approach consists in extracting consecutive overlapping segments of the

signal by using a sliding window. Each segment is processed according to its extraction order,

and adequately (i.e., with correct time alignment) added to the output from previously processed

segments. Although the OLA approach, assuming a reasonable choice of window, offers perfect

reconstruction of the original signal when no processing is involved, it might introduce additional

artifacts for certain processing schemes. In the present case, when applied with a Hanning window,

this approach yielded unwanted transients in the filtered signals, e.g., when one segment had

a significantly higher energy content than its neighbor. Hence a weighted overlap add method

(Crochiere, 1980) was applied instead. The WOLA approach is similar to the OLA, the only

difference being that processed segments are windowed again by a synthesis window before being

added to previous processed segments. In the present case, this removed unwanted transients in the

filtered signals.
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Figure 6.2: Short-time modulation transfer function average (solid lines) of modulation-filtered noise (top plots) and
speech (bottom plots), when the spectrogram filtering was conducted on a long-term (left plots) or short-term basis (right
plots). Additionally, one standard deviation interval (gray area) around the average is shown, as well as the modulation
filter magnitude response (dashed line).

Traditionally, Hamming or Hanning windows are used in connection to WOLA. Here however, the

use of such windows yielded large artifacts in the MTFs at a modulation frequency corresponding

to the window repetition rate. Replacing the non-linear filtering scheme (compression followed by

filtering and expansion) with standard filtering removed these artifacts. Similarly, these artifacts

also disappeared when a rectangular window (i.e., no weighting) was used. Although the exact

cause of the phenomenon could not be identified, these results suggest that it originates from a

non-linear interaction of compression and the use of a non-rectangular window. Although the use

of non-rectangular windows would have been preferable to limit spectral leakage in the modulation

domain, it proved unpractical in this specific case. Hence the procedure was conducted using

rectangular windows, for which WOLA performs the same operation as OLA (since no synthesis

window is applied).

The window duration is subject to the same considerations as for the short-time analysis

framework. Although a short window would be preferable to ensure segments of speech to

be quasi-stationary, it is necessary to have a window of at least 500 ms to process modulation

frequencies below 4 Hz. In the end, rectangular windows of 500 ms are used in the following.

6.1.2 Results

Figure 6.2 presents stMTFs for processed noise (top plots) and speech (bottom plots) when the

filtering was performed on a long-term basis (left plots), i.e., as in chapter 5, or on a short-term
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Figure 6.3: Short-time modulation transfer function average (solid lines) of modulation-filtered speech, when the
spectrogram filtering was conducted on a long-term (left plot) or short-term basis (right plot), computed with a 2 s long
window.

basis using an OLA approach (right plots). The processing condition is the same as one used in

chapter 5, a 10 dB enhancement of the modulation content in the 4-16 Hz modulation frequency

band. This condition was chosen because it yielded significant deviations of the MTF from the filter

response, although not as extreme as that observed for 20 dB enhancement. To obtain sufficiently

many segments to have a good estimate of the stMTF and its standard variation, the speech signal

used here is a 30 s long concatenation of several sentences from the CLUE speech test (Nielsen

and Dau, 2009). There is a striking similarity between the stMTFs obtained with long-term and

short-term based filtering. As mentioned before, this was expected in the case of noise, due to

its stationarity. However the similar observation for speech was unexpected. First, the stMTF

for long-term processed speech (bottom-left plot in fig.6.2) is relatively flat and has a very large

standard deviation. This is in accordance with the hypothesis which stated that for non-stationary

signals such as speech, the MTF of short segments of the signal could differ significantly from the

long-term MTF. However, there is no significant change in either the averages or standard deviations

of the stMTF when introducing a short-time based spectrogram filtering procedure (bottom-right

plot in fig.6.2), suggesting that short-term filtering of the spectrogram is not an effective solution to

the variation of MTF in short local segments of speech.

Figure 6.3 presents the same results as the two bottom plots of fig.6.2, but for a longer, 2 s

analysis window for the computation of the MTFs. On this time scale, the short-time spectrogram

filtering approach does not have a significant impact on the standard deviation of the stMTF either.

6.1.3 Conclusion

In an attempt to reduce the variance of MTFs computed for short segments of speech, a short-term

spectrogram filtering method was considered as an alternative to generate a target spectrogram.

This short-term approach was shown to be inefficient at this task, yielding signals with very similar

stMTFs as the previously used long-term approach, both in average and standard deviation. The

fact that no significant difference was observed suggests that even though the inconsistency of
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the MTF of short segments of speech might be explained by the non-stationarity of said speech,

the short-term approach to filtering cannot provide consistent modulation filtering across time.

This could indicate that the filtering procedure on a short-time scale is subject to significant errors

leading to large deviations of the local MTFs. Results from fig.6.3 show that such sources of error

are likely to be localized in time, as they do not affect significantly the long-time average MTFs.

One candidate for such errors is the non-negativity constraint of the filtered spectrogram, and will

be addressed in the next section.

On a practical note, this study revealed that short-time analysis and processing of modulation

properties poses issues that are not usually encountered in short-time analysis of sounds in general.

In the modulation domain, we are concerned with much lower frequencies than we are in the

traditional frequency domain. The resulting lower bound on the short segments duration is very

restrictive as it does not allow the use of segments shorter than about 250 ms, which for speech

would still be considered too long to be considered "quasi-stationary". This is a very restrictive

constraint to a short-time approach to modulation processing, which significantly limits the scope

of its application.

6.2 Non-negative realizations of filtered spectrograms

The modulation filtering framework presented in chapter 5 relies on two steps. First, each of the

channels of the spectrogram of an original signal are filtered, resulting in a target spectrogram. The

"target" denomination refers to the second step, where a time-domain signal is constructed such that

its spectrogram is as close as possible to this target. When first considering the errors introduced

in the whole modulation filtering scheme, the first part of the process, concerned with setting up

a target, was ignored. It was assumed that the second step, the reconstruction from the target

spectrogram, would be the limiting factor. However a significant issue regarding target spectrogram

set up is that the frequency channels of the target spectrogram should correspond to individual

envelopes of the outputs from a filterbank and hence, as envelopes, should be non-negative. This is a

matter of concern, as the basic zero-phase modulation filters applied individually to each envelopes

will not yield non-negative outputs consistent with the definition of envelope.

The reconstruction method is based on the absolute value of the resulting target spectrogram

(see equations (3.20) and (3.23)), which forces non-negativity. However taking the absolute value

post filtering has dramatic effect with regard to the efficiency of the filtering process. The resulting

frequency response of the actual procedure (i.e., filtering followed by absolute value) differs

significantly from the expected frequency response (i.e., that of the filter only). For speech, when

the filter applied consists of a positive gain in a given modulation frequency range, this situation is

prone to yield negative sections in the filtered envelopes.

In the study from chapter 5, this problem was circumvented by limiting the dynamic range of

the envelopes through a compression scheme (raising them to the power 1/3, filtering them, and

then expanding the output back by raising it to the power 3). It was empirically found that this
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strategy provided more contrasted frequency responses (i.e., higher effective gain in the amplified

modulation frequency band) than other means of forcing non-negativity such as absolute value or

half-wave rectification. This was done at the cost of a loss of control over the modulation frequency

band that was enhanced. This can be seen in fig.5.1, where the resulting modulation transfer

functions (MTFs) of the processed signals significantly spread beyond the intended modulation

frequency range of processing. This strategy was chosen as it was believed to be more crucial to

have a significant contrast in the MTFs in order to test the influence on intelligibility. However more

work was conducted towards devising a better solution to the target spectrogram setup problem.

This section investigates other approaches for imposing a given frequency response, further denoted

as requisite magnitude response, to the channels of the original signal’s spectrogram that would

still provide non-negative outputs.

6.2.1 Problem formulation

Given the individual channels {sm}1≤m≤M of the spectrogram of a signal s and a modulation filter

impulse response h, the target spectrogram channels {tm}1≤m≤M, are generated as follows:

tm = sm ∗h, ∀m ∈ [1 ..M] (6.1)

The problem investigated here can be stated as finding a suitable impulse response h such that the

following two conditions are respected:

(i) The magnitude of the frequency response associated to h, |F {h}|, equals the requisite

magnitude response Hr

(ii) The filtered channels are non-negative signals: tm,k ≥ 0, ∀k ∈ Z and ∀m ∈ [1 ..M]

6.2.2 Feasibility of a non-negative impulse response modulation filter

A first approach to solving the problem is to consider the general case where no assumptions are

made regarding the original signal’s spectrogram, i.e., where the aforementioned condition (ii)

stands for any signal. This is then equivalent to dropping the channel dependency and saying the

following:

"Given a requisite magnitude response Hr, find a filter impulse response h, associated with the

magnitude frequency response Hr, such that for any non-negative signal s, s∗h is non-negative

as well."

An interesting preliminary result is that given any non-negative signal s, s ∗ h is non-negative if

and only if h is non-negative. The sufficient condition is straightforward and it is clear that if h is

non-negative, then s∗h is non-negative. The necessary condition is slightly less trivial and can be

proven by contraposition. If the impulse response h is not non-negative (i.e., it contains at least one
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Figure 6.4: Examples of requisite filter magnitude frequency responses Hr as a function of the frequency f . Examples
(a) and (b) were the designs used in the study from chapter 5. Note that Hr is given in dB, hence the zero line shows
frequencies with no gain applied.

negative sample) then there exist some non-negative signals s such that s∗h will not be non-negative.

A convincing example is to consider the signal s given by the discrete-time Dirac delta function.

It is a non-negative signal, but results in s∗h = h which is not, by definition, non-negative. The

problem therefore simplifies to the following:

"Given a requisite magnitude response Hr, find a non-negative filter impulse response h associated

with the magnitude frequency response Hr."

Non-negative impulse response filters have been a topic of study in the digital signal processing

community for many decades. Such filters are generally involved in applications where non-

negativity of the output of the filter is a strict requirement, e.g., "in control systems, electronic

amplifiers, and many other industrial applications" (Meadows, 1972). Despite a long history of

research in this field, Liu and Bauer (2010b) state that "unfortunately, the relationship between a

non-negative impulse response and its corresponding frequency response is still unclear". Even

though a complete understanding of such a relationship has not yet been achieved, the study in

(Liu and Bauer, 2010b) provides sufficient elements for evaluating the feasibility of a non-negative

impulse response modulation filter, for the particular case of our study.

Panels (a) and (b) of fig. 6.4 illustrate the class of filter magnitude frequency responses, Hr, that

were used in chapter 5. We would like to realize these Hr using a non-negative impulse response

filter. The very first result of (Liu and Bauer, 2010a, Lemma 1) provides an upper bound on Hr and

states that if the impulse response of a filter is non-negative, i.e. h [k]≥ 0, for k ∈ Z, then1

|Hr ( f )|2 ≤ H2
r (0) (6.2)

In other words, the maximum of Hr has to be reached for f = 0. This result proves that designing a

non-negative impulse response filter having a magnitude frequency response in the shape of fig.

6.4(a) is impossible, as the response at f = 0 is not a global maximum.

The design from fig. 6.4(a) is not achievable using a non-negative impulse response filter.

However one could imagine a small modification, as illustrated in fig.6.4(c). Here the 0 dB gain

constraint on the lowest frequency band is removed. In this case, the condition given by (6.2)

would be fulfilled. However, a further result in (Liu and Bauer, 2010b) compromises the feasibility

1 The notations have been adapted from (Liu and Bauer, 2010a) to be consistent with the rest of the description.
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of the designs given by fig. 6.4(b) & (c). A consequence of their Lemma 4 is that non-negative

impulse response filters cannot have a gain of 0 dB over a given frequency range, as is the case

for all the filter responses in fig.6.4. Examples of impossible designs which are given in (Liu and

Bauer, 2010b, fig.4) can be related to the designs (b) and (c) presented here in fig.6.4. Although the

designs illustrated in fig.6.4 could in principle be modified to comply with the conditions provided

in (Liu and Bauer, 2010b), it is a requirement in this study to achieve a flat response at 0 dB in a

given range of modulation frequency. Hence, trying to design a non-negative impulse response

modulation filter for the purpose of our study is a dead-end.

6.2.3 Channel dependent non-negative filtering

The argumentation in the previous section is based upon having the condition (ii) defined in

section 6.2.1 standing for any signal s. It was shown how this assumption led to designing non-

negative impulse response filters, which was then proven impossible given the magnitude frequency

responses we want to achieve. If this constraint (for any signal s) is released, the problem can be

rephrased as follows:

"Given a requisite magnitude response Hr, find a filter impulse response h, associated to the

magnitude frequency response Hr, such that for a given non-negative signal s, s∗h is non-

negative as well."

This problem is much less constrained, as it involves the design of a h that is specifically "tailored"

to a given s, such that s ∗ h is non-negative and |F {h}| = Hr. We suggest to reformulate the

problem by circumventing the impulse response h and focusing on the resulting signal t = s∗h:

Given a requisite magnitude response Hr and a non-negative signal s, find a non-negative signal t

such that ∣∣∣∣F {t}F {s}

∣∣∣∣= Hr (6.3)

In this section, a method is suggested to approach this result, given that the non-negativity of t is

a strict constraint and that the constraint given by (6.3) is loose, i.e., that the ratio of the Fourier

magnitudes of t and s should be as close as possible to Hr.

Consistency and bounded multipliers

The approach proposed here is to consider the non-negative signal t as a variable in an optimization

procedure which will aim to minimize an objective function based on (6.3). Before defining a

suitable objective function, some considerations of the problem boundaries need to be assessed.

The final goal is to process speech. As mentioned in section 6.1, speech has an intricate temporal

structure. It is clear that, for the purpose of this study, this structure should be altered as minimally

as possible. This consideration becomes crucial when recalling that several channels have to be
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filtered. Operations such as time-shift or time reversal will not change the Fourier magnitude

response and hence still fulfill (6.3) in individual channels. However, mis-aligned or time-reversed

channels are clearly undesirable for the reconstruction of a time signal that follows. Here, we

introduce an additional constraint that aims at maintaining a certain degree of consistency between

s and t. We suggest the sought signal t to take the form of a term-by-term product of the original

signal s with a vector of bounded non-negative multipliers c, i.e., for a given sample k,

t [k] = c [k] · s [k] , with 0≤ c [k]≤ cmax (6.4)

The lower bound of such multipliers, 0, ensures that t is non-negative, while the upper bound cmax

(with cmax > 1) ensures some consistency with s is maintained. This approach, given a sufficiently

low cmax, should maintain basic features of the original signal, such as regions of high-energy

modulations or silence. The signal given by c, is then considered as a variable in an optimization

algorithm.

Objective function

We define here an objective function based on (6.3):

G (t) = ‖|F {t}|−Hr · |F {s}|‖2
2 (6.5)

where we introduce the bounded multipliers from (6.4):

G (c) = ‖|F {c · s}|−Hr · |F {s}|‖2
2 (6.6)

Because the Euclidean norm is positive definite, for any vector c, G (c) ≥ 0. G (c) = 0, if and

only if (6.3) is verified. Hence, we can find the argument that minimizes the function G using an

optimization approach, in the same fashion as done in chapter 3. Given that the discrete signal s

has a finite number of K elements, the discrete Fourier transform (DFT) applies:

[F {s}]n =
K−1

∑
k=0

ske−2πin k
K , ∀n ∈ [0..K−1] (6.7)

Deriving analytically the gradient of G with regard to c can be done in a way that was done for the

objective functions in chapter 3, where the filterbank operator is replaced by the DFT, resulting in

the following formula:

∇G (c) = 2s ·ℜ
(
F
{
(|F {c · s}|−Hr |F {s}|) · |F {c · s}|−1/2 ·F {c · s}

})
(6.8)

An additional constraint needs to be loosened. In situations where the requisite magnitude response

Hr represents an enhancement of modulations in a given modulation frequency region, such as

the design in fig.6.4(a), it is unrealistic to require a magnitude response of 0 dB at a modulation

frequency of 0 Hz. An enhancement would result in a global increase of energy in the filtered signal,
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Figure 6.5: Left panel, waveforms of original signal (dashed line) and filtered signals using standard filtering (black line),
the dynamic range compression scheme from chapter 5 (orange line) and the bounded multipliers method (red line).
Right panel, resulting magnitude frequency responses when forcing non-negativity using the absolute value (black line),
dynamic range compression (orange) and the bounded multipliers (red). The dashed line (mostly superimposed with
orange line) represents the requisite filter response Hr.

and because the signals involved are non-negative, this translates to an increase of the average value

(DC component). Forcing Hr (0) = 0dB will result in a ill-posed overconstrained problem. It is

suggested here to release the constraint on the DC component by removing its contribution in the

objective function by considering the following:

G = ‖w · (|F {c · s}|−Hr · |F {s}|)‖2
2 (6.9)

where w is a weighing vector of only ones, except for w0 = 0.

A notable difference in the optimization procedure applied here, in comparison to the problems

solved in chapter 3, is that the multipliers c are bounded. The optimization problem is therefore

constrained, with c ∈ [0,cmax]
K . An implementation of the l-BFGS method for constrained

optimization problems available in (Schmidt, 2008) will be applied here.

Implementation and results for one individual channel

Figure 6.5 presents results of the filtering for one channel of the spectrogram of a speech sample,

for a magnitude filter response ideally presenting a 10 dB enhancement in the range of 4 to 16 Hz.

The speech sample is a sentence taken from the CLUE material (Nielsen and Dau, 2009) and the

channel was chosen as the one where the non-negativity requirement was the most problematic, i.e.,

the one presenting the largest negative sections after traditional filtering. It is centered at an audio

frequency of 164 Hz and has strong modulation content in the modulation frequency range that is

enhanced by the filter. The left panel of fig.6.5 presents the first 0.5 s of the original waveform of

the envelope in this channel (black dashed line). The solid black line presents the output from the

zero-phase filtering and exposes the issue presented here: the filtered signal has many regions where

it is negative-valued. If no effort is made to force non-negativity, the reconstruction procedure that
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follows will consider the absolute value of the signal. The absolute value of the waveform is not

plotted here as it mostly overlaps the filtered output. However, its effect on the magnitude of the

frequency response is plotted in a black line on the right panel of fig.6.5, and the deviations to the

expected filter response (dashed line) are significant.

The strategy used in chapter 5 was based on compressing the envelope, filtering it and then

expanding it back. It was empirically found to provide an almost non-negative output while

presenting a good compromise between efficiency of the filtering and control over the processed

modulation frequency band. The waveform and the resulting magnitude of the frequency response

for this approach, with a compression factor p = 1/3, are plotted in orange lines in fig.6.5. It

appears from the resulting waveform that the non-negativity issue is avoided to a large extent, with

only a small negative-valued segment around 0.2 s. However the effect on the frequency response is

significant, as can be observed on the right panel plot. Note that fig.6.5 presents results in only one

channel, for one signal. Hence, it should be kept in mind that such responses are not averaged over

channels nor over many signals such as the responses presented in fig.5.1 and a direct comparison

of the two should be avoided.

The results for the bounded multipliers method introduced here are presented in fig.6.5 (red

lines). This result was obtained after 150 iterations of the optimization algorithm using the objective

function from (6.9). The waveform is by definition non-negative, and is consistent with the original

signal, in the sense that peaks and silences in both signals are occurring at approximately the

same instants in time. The resulting magnitude frequency response can be observed in the right

panel of fig.6.5 and mostly overlaps the requisite response Hr plotted as a dashed line. The release

of the constraint on the DC offset discussed before can be observed on the outcome magnitude

response since the response presents a positive gain (about 7dB) at zero frequency. These results

are satisfying as it appears that the problem given by (6.3) can be solved using such an optimization

approach.

Results for a target spectrogram

The suggested approach for non-negative filtering based on optimal bounded multipliers was applied

individually to each channel of the spectrogram of a speech signal. The speech sample is the same

sentence as used in fig.6.5. Figure 6.6 presents the resulting magnitude frequency responses on the

right hand side, with individual magnitude responses in the top plot, and the magnitude frequency

response averaged over all the channels in the bottom plot. The left-hand side plots correspond

to the result obtained using the dynamic range compression filtering scheme from chapter 5, for

the same signal. For clarity, the waterfall plots present only every second channel. However the

average responses are computed based on all the channels.

It appears from the top-right plots in fig.6.6 that the suggested method based on bounded

multipliers performs more consistently across channels than the dynamic range compression

approach, although the constraint given by (6.3) is better satisfied in channels with lower center

frequencies. Overall, the individual magnitude frequency responses plotted in 6.6 provide a solid
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Figure 6.6: Magnitude frequency responses of filtered channels of the spectrogram of a speech sample for every channel
m (top waterfall plots) and averaged over the channels (bottom plots), when the non-negative filtering strategy employs
dynamic range compression (left plots) or the design of optimal bounded multipliers (right plots). For clarity, only every
second channel was plotted in the waterfall plots. In the bottom plots, the requisite filter magnitude Hr is plotted as a
dashed line.

argument in favor of the method proposed here: the optimal design of bounded multipliers allows

for a non-negative signal to have the magnitude of its Fourier transform modified in order to achieve

a given magnitude response, for signals of various bandwidths (channels with different center

frequencies), to a much better extent than a traditional filtering approach combined with a method

for forcing non-negativity (such as absolute value or dynamic range compression).

Reconstruction of a target spectrogram

The results presented in fig.6.6 illustrate the efficiency of the bounded multipliers method in solving

the problem given by (6.3). However the final application of the non-negative realization of filtered

outputs was to generate a target spectrogram consistent with the non-negativity property of a

spectrogram, such that it could be inverted into a time-domain signal. Figure 6.7 presents the

resulting modulation transfer functions of the time domain signals that were reconstructed from

target spectrograms obtained using the dynamic range compression filtering paradigm (black line)

and the multipliers approach (orange line). These results are for the same filter magnitude response

(dashed line) as used in fig.6.6, and were obtained by averaging the results across 50 sentences of

the CLUE material.

In chapter 5, the non-negativity of filtered spectrograms was dealt with by using a compression-

filtering-expansion scheme which limited the dynamic range of the channels in the spectrogram
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Figure 6.7: Resulting MTF for time-domain signals reconstructed from target spectrograms obtained through the
compression-filtering-expansion approach (labeled CFE, yellow line) and the bounded multipliers approach (orange
line). The dashed line represents the requisite filter magnitude response. These results were averaged over 50 sentences.

prior to filtering them. It was found to yield larger effective gains in the processed band than taking

the absolute value post filtering, although the processed band became wider than expected. This is

illustrated in fig.6.7. Signals reconstructed from target spectrograms generated using the bounded

multiplier approach resulted in the orange line in fig.6.7. This method provides time-domain

signals whose MTFs are significantly different from the one expected from the requisite magnitude

response (dashed line in fig.6.7), with both a lower effective gain in the processed band, and a

large erratic gain in the upper passband (i.e., above 20 Hz). It appears that although this approach

offered a good solution to the non-negativity requirement of the channels in the target spectrogram,

as illustrated in fig.6.6, it does not integrate well in the reconstruction procedure that follows.

In the end, the compression-filtering-expansion scheme initially chosen actually offered a better

compromise between effective processing in the processed band and a flat response at 0 dB in the

upper passband.

These results illustrate that it is not sufficient to consider the problem of setting up a suitable

non-negative target by itself. It has to be considered simultaneously with the reconstruction method

that will follow. Both steps of target setup and reconstruction from the target introduce errors

(i.e., deviations to the expected processing). The "target-related errors" are errors introduced when

trying to enforce a given magnitude frequency response to a set of non-negative signals, while

keeping the outputs non-negative. They are observable (e.g. in the bottom plots of fig.6.6) as the

deviations of the actual response (orange line) to the filter response. Time-domain signals are then

reconstructed from these target spectrograms, yielding additional errors. These "reconstruction

errors" are the differences between the orange curves from fig.6.6 and the final corresponding MTF

curves from fig.6.7. The results provided by these two figures form a clear proof that target-related

errors and reconstruction errors are not independent. The results for the bounded multipliers, in

particular, show that the method used to set up suitable target spectrograms will influence the

reconstruction framework. In this case, the method seems to solve the target setup problem, but

provides target spectrograms that result in poor reconstruction. Achieving a complete understanding

of the relationship between the two types of errors introduced is unlikely, due to the high complexity
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of the problem. However, a safe assumption to explain why the bounded multipliers method

does not integrate well with the following reconstruction is the fact that channels were processed

independently. A filtering scheme that does not operate consistently over the channels is not likely

to maintain the redundancies in the spectrogram that allow for its inversion.

6.3 Towards a target-less approach to modulation filtering

The problems presented earlier in this chapter were all stated in the context of generating a "better"

target spectrogram. It appeared that setting up a suitable target is of major relevance to achieve

modulation filtering based on spectrogram reconstruction. It is as crucial as the reconstruction

method itself. Thus far, target spectrogram setup and reconstruction of a time-domain signal from

this target were considered as two independent sub-problems. However, the choice of a given target

spectrogram will condition the results obtained in the reconstruction, thus they are not independent

problems. This interdependency was exposed in the previous section.

An ideal processing framework that would consider this interaction would imply a "perfect"

target setup. The target spectrogram generated, independently of the processing that was performed,

would be a consistent spectrogram, i.e., the spectrogram of an actual time-domain signal. This

signal would then be recovered by the reconstruction algorithm, up to the limitations mentioned

in chapter 3. How to modify an existing spectrogram to enforce given properties (e.g. a given

magnitude frequency response) while still maintaining a consistent spectrogram is the problem

that would have to be solved. However, current understanding of the internal redundancies in a

spectrogram representation do not allow for such design.

Instead, we suggest here a conceptual approach that does not include a separate step for target

setup. The modifications imposed by the target setup could be replaced by additional constraints

in the reconstruction step. Instead of basing the modulation filtering method on equation (5.3)

involving reconstruction of a target spectrogram T where the channels were generated from an

original signal’s spectrogram Es filtered to achieve a requisite magnitude frequency response Hr,

one could consider minimizing the objective function given as follows:

G (s) = ‖F {Es}−Hr ·F {Es0}‖2
f ro (6.10)

where s0 is the original signal, s the sought signal, and Es0 and Es their respective spectrograms.

This approach always considers the distance (in the Fourier domain) between two consistent

spectrograms, Es and Es0 . Thus, it circumvents the issues implied by setting up a consistent target

spectrogram. Given that the optimization problem can be solved numerically, it would provide an

output signal s that is the optimal signal given a magnitude response Hr.

This approach avoids the significant constraints involved when modulation filtering using filtered

spectrogram reconstruction. However the expression of the objective function in (6.10) is too

intricate to derive a reasonably simple expression of the gradient, making it impossible to apply
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a l-BFGS optimization procedure. Further work on the analytic expression of the gradient might

reveal simplifications allowing for such an implementation. It is, however, impossible to implement

as such. While a complex expression of the gradient can be derived, as it does not simplify and

involves nested sums over many arguments, it would result in a buildup of approximation and

rounding errors that would bias the gradient value too much to obtain a functioning implementation.
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7
General discussion

7.1 Results overview

Common signal analysis procedures often include the extraction of an envelope and its

complementary temporal fine structure (TFS). The envelope of a signal is an intuitive concept, and

various mathematical definitions of envelope extraction coexist. The envelope, as a concept, is

appropriately defined only for narrow-band signals. The envelope of wide-band signals, such as

speech or in general most naturally occurring sounds, is only clearly defined after decomposing

such signals into narrow-band components, e.g., by means of a bank of bandpass filters. The

collection of envelopes of channels at the output of a filterbank is what is then commonly referred

to as the spectrogram of the signal. For narrow-band signals, and for most definitions of envelope,

a certain degree of dichotomy exists in such a decomposition: envelope and TFS are both needed to

faithfully represent the signal. However, spectrograms are obtained from the output of a filterbank

whose filters overlap to a given extent in frequency. This overlap implies that the envelope from

a given channel will convey information from neighboring channels, making the spectrogram

redundant. For cases with sufficient redundancy, it was shown that the dichotomy between envelope

(spectrogram) and TFS can disappear, meaning that the spectrogram, by itself, represents entirely

the signal it was extracted from.

This thesis revolved around a novel approach to reconstruct time-domain signals from a multi-

channel envelope representation, i.e., a spectrogram. It suggested that a time-domain signal could

be iteratively constructed to minimize the distance between its spectrogram and the spectrogram

to reconstruct from, the target spectrogram. This suggestion made no specific assumptions with

regard to the spectro-temporal analysis method that was adopted, i.e., which type of filterbank was

used to provide sub-channels, and which envelope extraction strategy was chosen to extract the

envelope in individual channels. It is in this sense a conceptual approach where applicability in

practice will depend on the choice of analysis framework. It was shown how this framework could

be applied to standard analysis filterbanks where outputs are given by convolution of the signal with

a set of analysis windows, in the way expressed in (3.1). Such designs are common and, for this

study, adequate design of these analysis windows allowed for the use of a Gammatone filterbank,

whose filters’ bandwidth, roll-off, and frequency spacing mimic those of human auditory filters,

providing a well-accepted model of the peripheral auditory system (Glasberg and Moore, 1990).

85
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Many alternatives exist for the choice of the envelope extraction strategy. As the envelope is

mainly an intuitively defined attribute of a signal, there are several mathematical definitions (see

section 2.1). The present study was focused on auditory-inspired spectrogram representations, hence

the choice of a Gammatone filterbank and a class of inner hair-cell (IHC) envelope models based on

channel half-wave rectification followed by low-pass filtering. Additionally, The more traditional

spectrogram representation consisting in the magnitude of the short-time Fourier transform (STFT)

coefficients was also investigated as it is the most common case in previous literature. Chapter 3

detailed how the proposed general framework could apply to the reconstruction of time-domain

signals from such auditory spectrograms and “traditional” spectrograms. These two cases proved

themselves practical, as the mathematics behind the minimization problem could be simplified,

allowing for an efficient implementation. Reconstruction from STFT-based spectrograms has

been extensively studied, with efficient methods specifically tailored to this problem having been

developed. A simple modification of the proposed framework to account for the perceptual

consequences of the reconstruction error allowed to generate time-domain signals showing better

accuracy than more traditional methods. It appeared that this approach led to a reduction in the

intrinsic limitations that the problem of STFT-based spectrogram inversion usually faces, although a

larger-scale study would be needed to validate this result over different configurations of the STFT.

Conversely, application to IHC envelope-based spectrograms has received little attention, with only

few mentions in the literature. It was shown how these limitations that are usually faced in the

reconstruction from STFT-based spectrograms completely disappear when an IHC-based envelope

is used, allowing for far more accurate, near-perfect, reconstruction. Accurate reconstructions

obtained for both definitions of the envelope provide evidence supporting the main hypothesis, that

the spectrogram faithfully represents signals.

In particular, near-perfect reconstruction of speech signals from a spectrogram computed using

the IHC envelope model from (Dau et al., 1996a) provided numerical evidence of a strong

interdependency between IHC envelope and temporal fine structure (TFS). This would suggest

that such simple models of cochlear processing would not discard any TFS-related information.

To further investigate this phenomenon, the study conducted in chapter 4 assessed the robustness

of the reconstruction framework with regards to the parameters involved in the extraction of the

IHC envelope. This study was based on a particular stimulus, a complex tone introduced in

(Santurette and Dau, 2011), which presented peculiar properties. The complex tone, based on

five sinusoidal components equally spaced in frequency, exhibited a periodic envelope. However,

local maxima of the envelope were not aligned with local maxima in the TFS. The results from

(Santurette and Dau, 2011) showed that the pitch perception of this tone was mostly related to the

cues pertaining to the TFS, even though the high frequency content of the tone (the components

spanning a range from around 5.8 kHz to 8.2 kHz) is usually assumed to induce an envelope-based

pitch perception. Among the arguments raised in their discussion, Santurette and Dau (2011)

mention TFS recovery from the output of hair-cell transduction as a possible explanation for the

perceived pitch of their tones. Here, to investigate the degree to which TFS-related information

was retained in a modeled internal representation, this tone was reconstructed from its IHC-based
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spectrogram for various parameter settings of the IHC envelope extractor, and the accuracy of

the reconstruction was assessed. It was shown that perfect reconstruction of the original signal,

hence of TFS-related information, was achievable for IHC models involving low order or high

cutoff frequency low-pass filters, such as the ones from (Dau et al., 1996a) or (Lindemann, 1986).

Increasing the sharpness of this filter first yielded reconstructed signals where the TFS cues were

recovered, although the waveforms were not perfectly reconstructed. This was also the case for

the IHC model from (Breebaart et al., 2001). Further increase of the filter’s order or decrease of

its cutoff frequency finally resulted in noisy reconstructed signals with no evidence of any TFS

recovery. This study therefore suggested that the auditory spectrograms obtained from a Gammatone

filterbank and IHC envelope models computed with physiologically plausible parameters, as the

three models mentioned here, still preserved TFS-related information. While we do not argue that

this information is indeed extracted by higher processing schemes in the auditory pathway (we do

not provide physiological evidence for the results from (Santurette and Dau, 2011)), we provide

numerical evidence that TFS-related information is present in this class of models.

The proposed framework, applied to the reconstruction of time-domain signals from original

spectrograms, provided insights towards the understanding of the relationship between envelope

and TFS in a multiple channel representation. Another application of the reconstruction tool lies

in modulation filtering, or more generally, modulation manipulation. A time-domain signal could

be reconstructed from a modified spectrogram, i.e. a spectrogram which has been subject to some

manipulations prior to the reconstruction. In doing so, the reconstructed signal would be expected to

exhibit changed properties in its modulation content concordant with the manipulations performed

on the spectrogram. Many studies in the literature have considered the modulation content of

speech to be one of the key elements for its understanding. For example, Jørgensen and Dau (2011)

suggested a model to estimate speech intelligibility in a range of adverse conditions, which is based

solely on the concept of signal-to-noise ratio in the modulation domain. Chapter 5 investigated how

the spectrogram reconstruction framework could be applied to perform modulation filtering and

generate, by modulation filtering noise or speech, mixtures with a controlled signal-to-noise ratio in

the modulation domain. Such signals would be ideal for a systematic evaluation of the model from

(Jørgensen and Dau, 2011). The intelligibility of mixtures obtained with either modulation filtered

noise or speech was measured on human subjects, and compared to predictions from the model

proposed in (Jørgensen and Dau, 2011). A good match between predictions and data was obtained

for mixtures of modulation filtered noise and unprocessed speech. This suggested that modulation

filtering of noise was a suitable approach to control the signal-to-noise ratio in the modulation

domain of a mixture, and that the modulation filtering framework, when applied to noise, was

relatively efficient. Conversely, significant deviations between predictions and data were observed

for mixtures of modulation filtered speech and unprocessed noise. This was partly explained by the

lower efficiency of the modulation filtering framework when applied to speech.

Chapter 6 addressed issues limiting the efficiency of modulation filtering using a spectrogram

reconstruction method. This approach, by considering the whole spectrogram of a signal, operates

on long time scales. Shorter sections of processed signals might therefore not exhibit the requested
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modulation properties. To test this, a short-time based implementation for spectrogram filtering was

suggested. However, the modulation-frequency content of spectrogram channels is much lower than

the usual audio frequency domain. Unfortunately, processing low modulation frequencies (below

4 Hz) is not compatible with the extraction and processing of very short segments (under 250 ms

long) of signals, making a short-time approach to spectrogram filtering impractical. However, a

significant compromise on the duration of segments allowed for an implementation. No significant

difference was observed between signals reconstructed from short-term vs. long-term filtered

spectrograms, suggesting that other sources of error are responsible for short sections of the

processed signal that do not exhibit the expected and consistent changes in modulation. The

sub-channel envelopes of speech signals undergo large variations in amplitude in relatively short

time. Filtering these channels to obtain a target spectrogram can yield negative sections in the

output, which are inconsistent with the definition of the envelope as a non-negative signal. An

ideal solution to this problem would have been the design of a non-negative impulse response

filter. However, this was shown to be impossible given the desired types of magnitude responses.

A channel-dependent approach was proposed to produce non-negative outputs that present the

expected magnitude frequency response. While this approach was shown to solve this specific

problem, it disrupts the subsequent reconstruction step. Processing the sub-channel envelopes

independently appears to compromise the original channel interaction which allows recovery of the

TFS. Finally, a conceptual approach to circumvent this problem was suggested, but could not be

implemented practically due to significant mathematical challenges. If these challenges could be

overcome, it could form a good basis for future improvement of the method.

7.2 Additional discussions

In this final section, we provide further discussions in the form of the answers to four questions.

These questions relate to the modulation filtering approach that was considered in chapters 5 and 6:

• to what cases can it be applied?

• what are its limitations and in which directions should further investigations be conducted?

• why the method was not implemented with the "well-behaved" modern definitions of

envelopes presented in chapter 2?

• how does it compare to previous attempts to perform modulation filtering?

Which scenarios can benefit best from modulation filtering?

In chapter 5, we performed modulation filtering on individual elements of a mixture of speech

and noise, as our objective was to control the SNRenv of the mixtures. Having access to either the

speech or the noise is uncommon in most practical applications. Being able to process speech prior

to its mixture with noise might be possible in a few scenarios, for example when speech is delivered
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through loudspeakers in an airport or a train-station which presents an ambient noisy background.

In these specific cases, one could imagine processing modulations in the recorded speech so that its

intelligibility, once mixed with ambient noise, would be higher. But in such cases, the speech prior

to processing is, at worse, "conversational speech". A well-designed modulation processing scheme

might be able to improve the intelligibility of said speech, but at best to the level of "clear speech"

or maybe "hyperarticulated speech". When processing speech only, the improvement cannot be

expected to be better than what an actual speaker could perform, if he/she was confronted with

this given noisy background. For research applications though, the interest in processing speech or

noise prior to mixing is clear. As was carried out in chapter 5, this allows to generate stimuli with

controlled modulation properties for investigating their perceptual influence.

A much more practical scenario, which was not thoroughly investigated in this thesis, is the

processing of the mixture itself. Typically, this case is interesting for hearing aid development.

A microphone will pick up the mixture of speech and background noise and the hearing aid will

not have access to individual elements of the mixture for processing them. Noise removal in

the modulation domain has been performed in the past and led to significant improvement of

intelligibility (e.g., Wójcicki and Loizou, 2012). Modulation filtering approaches would have the

advantage over noise removal methods of being systematic (i.e., independent of the input signal)

and hence maybe simpler to implement in a hearing assistive device.

Which directions to take for improving further this modulation filtering approach?

In chapters 3 and 4, satisfying results were obtained with regard to the accuracy of reconstructed

signals. This indicates that, given the actual spectrogram of a signal, i.e., a consistent spectrogram,

the reconstruction method performs well and can recover the original time-domain signal accurately.

In chapter 5 the results were more mixed. Although it appeared that the modulation content of noise

could be manipulated effectively, processing speech led to artifacts which proved detrimental to

intelligibility. As mentioned in the discussion of this chapter (section 5.4.3), two sources of artifacts

can be identified and both regard the processing scheme prior to the spectrogram reconstruction.

This target spectrogram generation does not account for the following:

• the internal characteristics of a speech spectrogram, i.e., the resulting target spectrogram

might correspond to distorted speech instead of clear speech.

• the consistency of the resulting spectrogram, i.e., the filtered spectrogram is not associated

with any time-domain signal.

Hence, the processing performed in chapter 5 could be considered naive. A more informed

processing scheme with regard to the two aforementioned points is more likely to improve the

results. Thus, investigating "smarter" ways to generate target spectrograms is a promising direction

for improving the modulation filtering framework.
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There is, however, a fundamental limit to this approach. The spectrogram extraction operator,

by associating say an M-channel spectrogram to any time-domain signal of say L samples, maps

the domain RL to the M-times higher dimensional domain RM×L. Assuming that the spectrogram

extraction is an injective operation (the spectrogram faithfully represents the signal), it means that

there is a probability of unity that any set of coefficients from RM×L is not part of the image of the

spectrogram operator, i.e. that it is not a consistent spectrogram. This means that any arbitrarily

manipulated spectrogram will not result in a consistent spectrogram, and hence cannot be exactly

inverted back to a time-domain signal. In other words, arbitrary modifications of the modulation

content of a signal cannot be performed with perfect accuracy; an approximation has to be made

at some point. This compromise has to be considered when developing better methods for target

spectrogram generation.

Would the use of more "modern" envelope definitions overcome the limitations faced for
modulation filtering?

In section 2.1.3, we described studies which aimed at refining the definition of envelope in order to

overcome the limitations faced by the Hilbert envelope. As such envelopes "behave" better, the

question of using them in the context of modulation filtering comes naturally. Signed envelope

(Cohen et al., 1999; Li and Atlas, 2004) or complex-valued envelope (e.g., Atlas et al., 2004) are

based on estimation of carrier wave frequency in each channel and therefore the implementation in

the framework of our method is difficult. If we assume anyway that the implementation is feasible,

there is no doubt that modulation filtering carried out with these definitions of envelopes could be

more accurate (see, e.g., results from (Clark and Atlas, 2009)) as it would at least circumvent the

non-negativity issue discussed in section 6.2. However, there are two arguments against the use of

such envelopes in the context of this thesis, both relating to a certain degree of discrepancy that

these definitions present with regard to the intuitive, perceptual envelope.

First, discrepancies in the frequency content of the envelopes can be illustrated by the example

presented in fig.1.1. When the 440 and 444 Hz tones are superimposed, we perceive a pulsating

tone at a rate of 4 Hz, corresponding to the absolute value of the cosine decomposition in (1.2).

However the cosine component itself, which would be the signed envelope, has a frequency of 2 Hz

(the mean between the frequencies of the two components). The signed envelope, in that case, does

not reflect our perception. As there is no mapping between frequencies of the "perceived" envelope

and "mathematical" envelope, accurate and controllable manipulation of the perceptual envelope is

not possible. Although "mathematical" modulation filtering would be possible, and possibly more

accurate than what was achieved here, "perceptual" modulation filtering would not. And in the

context of this thesis, we are interested in the latter.

A second limitation originates in the definition of such envelopes holding for very narrow-band

channels of the filterbank. In an auditory-inspired filterbank (e.g., Patterson et al., 1988) channels

with high center frequency will have a wide bandwidth. The complex-valued envelope used in

(Clark and Atlas, 2009) is defined from its associated carrier. The carrier wave itself is defined
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as a complex exponential at a frequency that is the "spectral center of gravity" of the sub-band

signal in a close vicinity around each instant in time. In wider-band channels, the instantaneous

frequency can drift significantly from this spectral center of gravity. These changes in frequency

are carried in the envelope. It was observed in such cases that the real-part and imaginary-part of

the complex-valued envelope could vary quickly, although its magnitude was almost remaining

constant: the complex-valued envelope is rotating around the origin of the complex plane without

significant changes in its magnitude. This strongly impairs its applicability to modulation filtering:

in that case, applying a low-pass filter to the complex-valued envelope would essentially set the

output to zero, although the perceived envelope should not have been affected by the filter. This

problem is very similar to the first limitation developed above, though it is not directly caused

by the definition of the envelope but rather by using it outside of its valid range (i.e., not for a

narrow-band filterbank).

How does the modulation filtering framework presented here compare to "vocoding"
approaches?

As mentioned in the second point of this section, a perfectly accurate implementation of any

arbitrary manipulation of the modulation content is impossible. Some approximation has to be

made. The main difference between our approach and "vocoding" approaches lies in where in

the process this approximation is made. Here, by vocoder approaches, we include any of the

previous methods in the literature which involved the use of extracted envelopes as modulators

for a newly generated carrier, be it a narrow-band noise or a sine-wave of the instantaneous

frequency or channel’s center frequency. This obviously includes the literal vocoders studies from

(Dudley, 1939), (Flanagan et al., 1965) and (Shannon et al., 1995), but also the psycho-acoustically

motivated studies from (Ghitza, 2001), (Smith et al., 2002), (Zeng et al., 2004), (Gilbert and

Lorenzi, 2006), and following. Such vocoding approaches amount to providing a model of the input

signal in a domain where it can be more easily manipulated. For example, the "model" of the signal

suggested by Ghitza (2001) consists in dichotically interleaving channels generated by modulating

a pure cosine carrier by the speech envelope in that channel. In that domain, envelope recovery is

eliminated and Ghitza (2001) shows that manipulation of the speech envelope is made possible.

The main advantage of such methods is that, if the vocoding strategy (i.e., the model of the signal)

is well-designed, processing will be performed flawlessly in that domain. The approximation, in

that case, lies in the time-frequency representation of the signal (i.e., the model of the signal).

In contrast, the method we suggest is based on an actual spectrogram and not a "model" of the

signal. What is approximated is not the signal, as it is for the vocoder, but rather the processing that

is performed. When manipulating the actual signal, we do not perform the required manipulations

exactly, but attempt to get as close as possible to it. The advantage is that the envelope recovery

issue mentioned in (Ghitza, 2001) is circumvented. As the spectrogram reconstruction is based on

minimizing a criterion itself defined in the spectrogram domain, the envelope recovery is indirectly

taken into account: one could say that the stimuli is manipulated directly in the recovered envelope
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domain. Consequently, an additional advantage is that, while vocoding approaches try to reduce

interaction between channels (e.g., the interleaved channels in (Ghitza, 2001)) in order to limit

the band-widening effects of the Hilbert envelope, our approach fully accounts for it and hence

can apply to more realistic models of auditory filterbanks that include a large amount of overlap

between channels.

Overall, vocoding approaches are probably a safer choice for simple manipulations in psycho-

acoustical studies, as they offer better control over the manipulations performed. But modulation

filtering through spectrogram reconstruction is a promising technique. With further understanding

of the intricate structure of auditory spectrograms, the target spectrogram generation could be

largely improved from the simple processing carried out in chapter 5 of this thesis. Eventually, it

could allow for generating stimuli with requested modulation properties at the output of the cochlea,

and without making approximations on the input signal.
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A common way of analyzing signals in a joint time-frequency domain is found 
in the spectrogram, which can be interpreted as a multi-channel envelope 
representation of the signal. The envelope, as it reflects slow changes in the 
amplitude of a signal, cannot by itself fully represent a signal. However there 
is evidence that the spectrogram, because it involves multiple channels, 
could be a faithful representation of the signal. In this work, a method is 
suggested to recover audio signals from spectrograms computed for different 
definitions of the envelope. For auditory-motivated spectrograms, assessing 
the accuracy of reconstructed signals provides insights in the informational 
content of the cochlear representation. Additionally, more traditionally defined 
spectrograms can be manipulated before reconstruction, allowing for 
temporal modulation filtering. The influence of modulation filtering applied to 
either the speech or noise component of a mixture on its intelligibility is 
investigated, resulting in strategies for modest intelligibility enhancement and 
exhibiting limitations to overcome in future work. 
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