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Abstract

Speech is a crucial part of the way we communicate with each other. We have
the ability to convey complex information via speech sounds and rely on our
hearing sense to decode and interpret this information. The auditory system is
adapted to extracting target speech sounds in adverse acoustic conditions and
high-level cognitive processing furthermore allows us to make sense of what we
hear, even if the acoustic information is severely degraded or sparse. In order
to determine speech intelligibility in a given acoustic condition, sentences are
typically presented to listeners and the amount of correctly recognized speech
items is counted, providing an overall measure of speech intelligibility. However,
such a macroscopic speech intelligibility measure is rather coarse as it represents
a combination of (i) effects of the salience of the perceived speech and (ii) effects
related to linguistic processing (e.g., using context information).

This thesis presents an alternative approach reflecting a microscopic mea-
sure of speech perception that is solely related to the salience of the perceived
speech, i.e., without effects of linguistic context. Here, the perception of in-
dividual consonants is investigated using nonsense syllables like /ta, ba/ as
stimuli and evaluating the responses in terms of consonant recognition and
consonant confusions. This approach allows to investigate the effects of acous-
tical transmission channels (e.g., rooms, mobile phones), as well as effects of
hearing impairment and hearing-instrument signal processing on the funda-
mental speech sounds. Here, the effects of different sources of variability in
consonant-in-noise perception are analyzed, such as differences in the stimuli
and differences in the normal-hearing listeners. Based on the experimental
data, a computational model of microscopic speech perception is proposed that
consists of a model of the auditory periphery and a template-matching based
decision stage. Model predictions of the consonant-in-noise data were obtained
and shown to account for the perceptual effects both in terms of consonant
recognition and confusions. Furthermore, effects of hearing-instrument signal
processing on consonant perception were studied and shown to lead to distinct
consonant confusions. The corresponding model predictions showed a large
agreement with the perceptual data, both in terms of consonant recognition
and confusions.

The experimental results of this thesis have implications for the design of
consonant perception experiments. Furthermore, the proposed model frame-
work could be useful for the evaluation of hearing-instrument processing strate-
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gies, particularly when combined with simulations of individual hearing im-
pairment.



Resumé

Tale er en central del af daglig kommunikation. Vi kan bruge talelyde til at for-
midle kompleks information som kan afkodes og fortolkes gennem hørelsen.
Det auditive system er tilpasset evnen til at udtrække bestemte lyde i vanskelige
akustiske omgivelser og yderligere kognitiv bearbejdning gør os i stand til at
afkode hvad vi hører, selv når den akustiske information er degraderet eller knap.
Taleforståelighed i en given akustik bestemmes traditionelt ved at præsentere
lyttere for hele sætninger hvorefter antal korrekt genkendte ord anvendes som
globalt mål for taleforståelighed. Et sådant makroskopisk mål for taleforståelig-
hed er forholdsvist uspecifikt idet det repræsenterer en kombination af både (i)
virkninger, der er knyttet til talens saliens, og (ii) virkninger, der er knyttet til
den lingvistiske bearbejdning i sig selv (fx brug af kontekstuel information).

I denne afhandling præsenteres en alternativ tilgang i form af et mikrosko-
pisk mål for taleperception, der udelukkende er baseret på talens saliens, dvs.
uden konteksteffekter. Perception af individuelle konsonanter undersøges ved
brug af stimuli i form af stavelser uden betydningsindhold, som fx /ta, ba/,
der undersøges eksperimentelt i form af konsonant-genkendelse eller møn-
stre af konsonant-forvekslinger. Denne tilgang gør det muligt at undersøge,
hvilken virkning den akustiske transmissions-kanal (fx forskellige rum eller
mobiltelefoner), hørenedsættelse eller signalbehandling i et høreapparat har
på de grundlæggende talelyde. Forskellige kilder til variabilitet i perceptionen
af konsonanter i støj undersøges, som fx variabilitet i de akustiske stimuli samt
variabilitet i lyttere med normal hørelse. På baggrund af eksperimentelt da-
ta fremsættes en computationel model for mikroskopisk taleperception, der
består af en model af det perifere auditive system samt et mønster-baseret
genkendelses-modul. Det vises at modelforudsigelser af data for konsonan-
ter i støj kan gøre rede for de perceptuelle data, både i forhold til konsonant-
genkendelse og -forveksling. Modelforudsigelserne Virkninger af forskellige
former for signal behandling i høreapparater på konsonant-perception blev
undersøgt og resulterede i distinkte mønstre af konsonant-forveksling. Tilhø-
rende model-forudsigelser viste god overensstemmelse med de perceptuelle
data, både i forhold til konsonant-genkendelse og -forveksling.

De eksperimentelle resultater der præsenteres i nærværende afhandling
har betydning for udformningen af eksperimenter, der undersøger konsonant-
perception. Derudover vil den foreslåede modellering kunne anvendes til evalu-
ering af processerings-strategier for høreinstrumenter, især når de kombineres
med simuleringer af det individuelle høretab.
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1
General introduction

The human auditory system is a highly developed sensory organ that is capable

of detecting and interpreting the large variety of acoustic information that sur-

rounds us. We have the ability to convey immensely complex information via

speech sounds and rely strongly on our hearing sense to decode and interpret

this information. The auditory system is adapted to speech understanding and

allows us to hear out the desired speech signal when the speech is masked by

other sounds. We are also able to adapt to changes in the speech signals we hear,

for example to another talker’s articulation or to changes induced by a transmis-

sion channel like a mobile phone. However, our ability to understand speech

does not only originate from our auditory processing, but also from analyzing

the acoustic information using high-level cognitive processing. This allows us

to make use of our linguistic knowledge to make sense of what we hear, even

if the acoustic information is severely degraded. The field of psychoacoustics

provides the means to measure the detectability and recognizability of acoustic

signal features in various acoustic conditions. Similarly, psychoacoustic meth-

ods have been applied to measure the recognition of speech information in

terms of the intelligibility of sentences, as well as to examine the recognition of

speech sounds in terms of recognition and confusions of individual phonemes.

To measure the recognition of speech information, researchers have tested

the intelligibility of sentences in the presence of, e.g., stationary noise, fluctu-

ating noise, competing talkers, and reverberation. Various speech tests have

been designed, some of which consist of syntactically diverse meaningful sen-

tences, as in the “hearing in noise test” (e.g., HINT; Nilsson et al., 1994; Nielsen

and Dau, 2011) and the “conversational language understanding evaluation”

(CLUE; Nielsen and Dau, 2009). In these tests, the listener is presented with

a given sentence, e.g., mixed with background noise, and asked to repeat the

sentence to an experimenter who evaluates whether the sentence was correctly

understood. As this procedure is time consuming and requires large speech

corpora as well as the presence of an experimenter, matrix sentence tests (e.g.,

1



2 1. Introduction

Hagerman, 1982; Wagener et al., 2003) have been proposed as an alternative. In

these tests, semantically unpredictable sentences (i.e., without meaning) are

presented within a fixed syntactical structure, using only a limited number of

words for each noun, verb, etc. While this allows computer-based self-scoring of

the listeners and limits the required size of the speech corpus, it also facilitates

guessing and can lead to an overestimation of speech intelligibility in adverse

conditions.

Commonly, the speech reception threshold (SRT) has been used to quan-

tify speech intelligibility, which reflects the speech-to-masker energy at which

50% of the presented speech items have been correctly identified. The use of

long-term (meaningful) speech units provides a macroscopic perspective on

speech perception, as listeners can exploit information obtained from various

stages of speech processing. For instance, missing acoustic information can

be restored using lexical, semantic and/or syntactic information (e.g., Miller

and Licklider, 1950; Kashino, 2006). Thus, while macroscopic speech intelligi-

bility tests may provide useful global measures for, e.g., comparing different

speech transmission channels, the measures do not necessarily provide infor-

mation about the transmission of the actual acoustic speech cues, which may

be affected by the transmission channel (e.g., noise, reverberation, non-linear

processing in a phone or a hearing aid) and/or by the receiver (e.g., due to

hearing impairment).

Speech perception can alternatively also be studied at a more basic level

using a microscopic approach. Many studies have focused on investigating the

perception of consonants and vowels embedded in nonsense syllables. The

perception of consonants has attracted special attention, as many consonants

exhibit short duration and high-frequency energy, which makes them perceptu-

ally more vulnerable and thus more “critical” than the vowels in most conditions

(Phatak and Allen, 2007). Typically, combinations of consonants and vowels

(e.g., /ta/, /ba/, etc.), mixed with stationary noise, have been considered and

the perceptual data have been analyzed in terms of consonant recognition

(i.e., the percentage of correctly identified consonants) as well as in terms of

consonant confusions. In contrast to the macroscopic approach, the micro-

scopic approach (i) uses short-term speech stimuli, (ii) analyzes recognition

as well as confusions, and (iii) employs nonsense speech stimuli, thus exclud-

ing the contribution of effects related to lexicon, meaning, and syntax. In this

sense, microscopic speech perception tests are strongly related to the “original”
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psychoacoustic measures of signal detection and identification, while they at

the same time test the integrity of the considered speech categories (e.g., the

consonants).

Interestingly, one of the very first speech studies (e.g., Fletcher and Galt,

1950), conducted in the context of research on telephone speech transmission

quality, focused on the recognition of consonants and vowels to assess the

amount of correctly transmitted articulation under conditions of noise and

spectral filtering. These investigations eventually resulted in the Articulation

Index (AI) model (ANSI, 1969, see further below). In a famous study, Miller

and Nicely (1955) investigated perceptual confusions among consonants in

conditions of white noise at various signal-to-noise ratios (SNRs) and spectral

filtering. Their study suggested that distinct perceptual confusions among

consonants may have a major effect on speech intelligibility in noise. Many

studies followed, investigating consonant perception with respect to articulatory

features (Wang and Bilger, 1973), the influence of the noise spectrum (Phatak

and Allen, 2007; Phatak et al., 2008), and the spectro-temporal “footprints” of

specific consonant cues (Li et al., 2010; Li et al., 2012). While the earlier studies

used various speech tokens to represent a given consonant, recent studies

indicated substantial perceptual differences across different speech tokens of

the same type (e.g., Toscano and Allen, 2014).

However, a systematic investigation of the factors that influence consonant

perception in noise (e.g., different speech tokens, different masking-noise wave-

forms, listener effects) has so far not been undertaken. This may be particularly

relevant given that consonant tests have been shown to be informative for as-

sessing individual hearing impairment (Phatak et al., 2009; Trevino and Allen,

2013), evaluating hearing-aid amplification schemes (Scheidiger and Allen,

2013), and examining effects of highly non-linear hearing-aid signal processing

strategies (Schmitt et al., 2016).

To simulate the behaviour of human listeners and to better understand the

acoustic features that are crucial for speech intelligibility, a variety of compu-

tational models has been proposed. These speech intelligibility models have

been based on the assumption that speech intelligibility is related to the SNR

after simplified simulations of the signal processing in the auditory system.

These simulations typically include the well-established frequency-selective

processing in the peripheral auditory system, while some models also consider

a modulation-frequency selective process, inspired by findings from psychoa-
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coustic amplitude-modulation detection studies (Dau et al., 1997). Modeling

approaches like the AI (ANSI, 1969) and the Speech Intelligibility Index (ANSI,

1997; Rhebergen et al., 2006) take the speech and noise signals as separate in-

puts and predict speech intelligibility based on a weighted average of the SNR

across a range of spectral bands. The widely used Modulation Transfer Func-

tion (MTF) based modeling approaches, like the Speech Transmission Index

(STI, Houtgast et al., 1980) and the speech-based STI (sSTI, Payton and Braida,

1999), predict speech intelligibility based on both a frequency-selective and

a modulation-frequency selective analysis of the signal processed through a

transmission channel. The recently proposed speech-based Envelope Power

Spectrum Model (sEPSM, Jørgensen and Dau, 2011; Jørgensen et al., 2013) ap-

plies a frequency-selective and a modulation-frequency selective analysis to

the noisy speech and the noise alone and relates speech intelligibility to the

signal-to-noise ratio in the envelope domain (SNRenv). The STI and, in particu-

lar, the sEPSM have been shown to yield a larger predictive power as compared

to the AI/SII, which are solely based on spectral signal analysis.

Only a few studies have attempted to predict microscopic speech perception

data, which may be particularly insightful with respect to understanding effects

of differences in the sensory processing (e.g., induced by a hearing impairment)

and effects of hearing-aid compensation strategies on fundamental speech

cues. These studies combined elaborate models of the auditory periphery with

a template-matching speech recognition back end to predict nonsense syllable

perception in terms of recognition and confusions. In particular, the auditory

model of Dau et al. (1996), which consists of a linear auditory filterbank, an en-

velope extraction stage, a nonlinear adaptation stage, and a low-pass filter, was

used in combination with a template matcher by Holube and Kollmeier (1996)

to predict consonant recognition. Jürgens and Brand (2009) used a later version

of the model (Dau et al., 1997), which contains a modulation filterbank and

also constitutes the basis of the sEPSM model, to predict consonant recognition

in normal-hearing (NH) listeners, as well as in hearing-impaired (HI) listeners

(Jürgens et al., 2014). Another related auditory model by Jepsen et al. (2008),

which includes nonlinear amplification in the auditory filterbank and thus ac-

counts for active processes in the cochlea, was used for predicting consonant

perception in HI listeners using template matching (Jepsen et al., 2014).

However, while the proposed “normal-hearing” microscopic models were

shown to largely account for average consonant recognition scores (Holube and
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Kollmeier, 1996) and consonant-specific recognition scores (Jürgens and Brand,

2009) measured at different SNRs in stationary noise, they did not account well

for the consonant confusions made by the listeners. Furthermore, it remained

unclear whether these models would be able to capture the perceptual differ-

ences observed on the level of individual speech tokens of the same type (e.g.,

Toscano and Allen, 2014).

The present thesis addresses two main challenges. First, an in-depth experi-

mental investigation of the factors that influence consonant-in-noise percep-

tion in NH listeners is described. This investigation was conducted to clarify

the role of various potential sources of variability and, thus, gain essential in-

sights regarding the perceptual reference for modeling consonant perception.

Second, a computational model of microscopic speech perception is proposed,

designed as an extension of the model of Dau et al. (1997) towards predicting

consonant recognition and confusions. The model differs considerably from

the model of Jürgens and Brand (2009) in that it maintains the crucial decision-

stage mechanisms of Dau et al. (1997). The predictive power of the model was

evaluated using the detailed data set measured in the experimental investiga-

tion of consonant-in-noise perception as well as consonant perception data

obtained in conditions of hearing-instrument signal processing.

Chapter 2 describes an extensive investigation of the factors that influence

consonant perception in NH listeners. In particular, two consonant percep-

tion experiments were conducted and analyzed with respect to perceptual

differences that arise from variations in the source (i.e., in the stimulus) and

differences that are related to the receiver (i.e., the listeners). The source-related

variability comprises effects of differences in speech tokens of the same type

(spoken by different talkers or the same talker) as well as effects of differences in

the noise waveforms. The receiver-related variability reflects differences across

different listeners as well as within individual listeners in terms of test-retest

reproducibility. The different factors are compared by means of graphical exam-

ples (confusion patterns and confusion matrices) and using an analysis scheme

based on the perceptual distance between responses.

Chapter 3 proposes a computational model of microscopic speech percep-

tion based on the auditory processing model of Dau et al. (1997). The model

consists of a temporally dynamic template matching back end, combined with

a cross-correlation based decision metric and an internal-noise term. The pre-

dictive power of the model in terms of consonant recognition and consonant
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confusions is evaluated based on the data obtained in Chapter 2. The evaluation

is conducted by means of graphical comparisons of data and model predictions,

as well as using correlation analyses.

Chapter 4 presents experimental investigations of effects of hearing-

instrument signal processing on consonant perception and assesses the predic-

tive power of the proposed microscopic model for the considered conditions.

In particular, effects of strong nonlinear frequency compression and impulse-

noise suppression on consonant perception in NH listeners are considered

experimentally and in the model. Furthermore, consonant perception data

from a study by DiNino et al. (2016), obtained with simulations of cochlear-

implant processing in NH listeners, are used to test the model. The model

performance for the two data sets is evaluated using comparisons of confusion

matrices as well as correlation analyses.

Finally, Chapter 5 summarizes the main findings and discusses the impli-

cations of the experimental results, the limitations and perspectives of the

experimental method, as well as the role of the model components and the

limitations and perspectives of the proposed model framework.



2
Sources of variability in consonant

perception of normal-hearing listenersa

Abstract Responses obtained in consonant perception experi-

ments typically show a large variability across stimuli of the same

phonetic identity. The present study investigated the influence

of different potential sources of this response variability. It was

distinguished between source-induced variability, referring to per-

ceptual differences caused by acoustical differences in the speech

tokens and/or the masking noise tokens, and receiver-related vari-

ability, referring to perceptual differences caused by within- and

across-listener uncertainty. Consonant-vowel combinations (CVs)

consisting of 15 consonants followed by the vowel /i/ were spoken

by two talkers and presented to eight normal-hearing listeners both

in quiet and in white noise at six different signal-to-noise ratios.

The obtained responses were analyzed with respect to the different

sources of variability using a measure of the perceptual distance be-

tween responses. The speech-induced variability across and within

talkers and the across-listener variability were substantial and of

similar magnitude. The noise-induced variability, obtained with

time-shifted realizations of the same random process, was smaller

but significantly larger than the amount of within-listener variability,

which represented the smallest effect. The results have implications

for the design of consonant perception experiments and provide

constraints for future models of consonant perception.

a This chapter is based on Zaar and Dau (2015).

7
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2.1 Introduction

Speech intelligibility is often characterized in terms of the percentage of cor-

rectly identified meaningful words or sentences presented to the listener, either

in quiet or in the presence of a noise masker or interfering talker(s). For instance,

a common measure of speech intelligibility is the speech reception threshold

(SRT), which reflects the speech-to-masker/interferer energy at which 50% of

the presented speech items have been correctly identified. The SRT measure

may be considered as reflecting a macroscopic view on speech perception. The

term macroscopic is threefold in the sense that (i) long-term speech units are

used, such as words or sentences, (ii) only speech recognition is considered

while confusions of words are not investigated, and (iii) meaningful speech is

used, typically consisting of common words in a syntactically correct sentence

structure. In this type of experimental setting, listeners can exploit informa-

tion obtained from various stages of speech processing. For instance, missing

acoustic information can be extrapolated using lexical, semantic and/or syntac-

tic information. Approaches for measuring macroscopic speech intelligibility

range from presenting syntactically diverse meaningful sentences as in the

“hearing in noise test” (e.g., HINT, Nilsson et al., 1994; Nielsen and Dau, 2011)

and the “conversational language understanding evaluation” (CLUE, Nielsen

and Dau, 2009) to using matrix sentence tests (e.g., Hagerman, 1982; Wagener

et al., 2003), where semantically unpredictable sentences are presented within

a fixed syntactical structure. Therefore, macroscopic speech intelligibility tests

differ in the semantic and syntactic predictability provided, while lexical effects

play a considerable role in any of these tests.

Addressing speech intelligibility at a more fundamental level, many studies

have focused on investigating the perception of smaller units of speech, such

as syllables or phones (i.e., consonants and vowels). The perception of vowels

has been shown to be more robust in the presence of steady-state noise than

the perception of many consonants (Phatak and Allen, 2007). Therefore, the

most “critical” or vulnerable phones in this context are consonants. Combi-

nations of consonants and vowels (e.g., /ta/, /ba/, etc.) have typically been

considered and the perceptual data have been analyzed in terms of consonant

recognition (i.e., the percentage of correctly identified consonants) as well as

in terms of consonant confusions. This type of approach may be considered

as microscopic as it (i) uses short-term speech stimuli, (ii) analyzes recognition
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as well as confusions, and (iii) employs nonsense speech stimuli, thus exclud-

ing the contribution of effects related to lexicon, meaning, and syntax. The

microscopic approach therefore allows for an analysis of the mapping from the

acoustical stimulus to the associated phone percept by minimizing the biases

induced by higher-level speech processing. This could be relevant, for example

when analyzing the effects of acoustical transmission channels (e.g., mobile

phones), hearing impairment, and hearing-aid signal processing algorithms

on the perception of the fundamental building blocks of speech. However, in

order to fully exploit the microscopic approach it seems crucial to understand

the factors that contribute to consonant perception.

The first investigations of nonsense syllable perception were conducted

by Fletcher and colleagues in the context of their pioneering research on tele-

phone speech transmission quality at the Bell Laboratories between 1919 and

1945 (e.g., Fletcher and Galt, 1950; see also Allen, 1994). Nonsense consonant-

vowel-consonant (CVC), consonant-vowel (CV), and vowel-consonant (VC)

combinations were used to assess the amount of correctly transmitted artic-

ulation under conditions of noise and spectral filtering. These investigations

resulted in the definition of the articulation index (AI), a technical measure to

determine the quality of speech transmission channels (French and Steinberg,

1947). Although Fletcher and Galt (1950) did not directly address phonetic con-

fusions, their work provided the basis for further research on nonsense speech

perception.

Miller and Nicely (1955) conducted the first study that focused on perceptual

confusions among consonants. CVs consisting of the sixteen most common

English consonants followed by the vowel /a/ (as in father) were spoken by

five talkers and presented to four listeners. In a set of experimental conditions,

white noise was added at various signal-to-noise ratios (SNRs) and different

band-pass filters were applied to the speech. After each presentation, listeners

had to indicate the consonant they had heard. The responses were pooled

across listeners and displayed as confusion matrices (CMs). Several perceptual

confusion groups of consonants (e.g., /p, t, k/) were observed and the data were

investigated in terms of the information transmitted by different articulatory

features (voicing, nasality, affrication, duration, and place of articulation). Wang

and Bilger (1973) considered CVs and VCs consisting of 25 consonants and the

vowels /a, i, u/ and applied a sequential information analysis in an attempt

to derive an ideal set of relevant articulatory features. However, their results
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suggested that an articulatory feature-based analysis might be inappropriate

to account for the data. Furthermore, Wang and Bilger (1973) found that the

accompanying vowel had an influence on the consonant detection performance

as well as the type of consonant-vowel combination (CV or VC), demonstrating

that consonant perception does not solely depend on the consonant but also

on the vowel context the consonant is embedded in.

In a related more recent study, Allen (2005) re-analyzed the Miller and Nicely

(1955) data and related them to the AI. Allen proposed that confusion matrices

should be analyzed in terms of perceptual events rather than in terms of artic-

ulatory features. He introduced the confusion pattern (CP) which, for a given

speech stimulus, depicts the proportions of the different response alternatives

as a function of the experimental conditions (e.g., SNRs). The CP was shown to

be more appropriate than the confusion matrix for characterizing perceptual

confusion groups and other trends in the data since it provides an overview of

the data across experimental conditions. Phatak et al. (2008) reproduced the

main results obtained in the Miller and Nicely (1955) study and demonstrated

considerable noise-type specific perceptual differences (comparing white noise

and speech-weighted noise). They also showed that different speech tokens of

the same phonetic identity induced strong differences in consonant recogni-

tion and confusions. Li et al. (2010; 2012) developed a psychoacoustic method

named “three-dimensional deep search” which was designed to identify the

spectro-temporal cue regions of consonants based on experimental consonant

recognition data obtained with noise masking, spectral filtering, and time trun-

cation. As this kind of microscopic speech investigation relies heavily on the

characteristics of the individual speech tokens, the perceptual differences across

different speech tokens of the same phonetic identity came more into focus.

Consistent with the findings of Phatak et al. (2008), Singh and Allen (2012)

demonstrated the occurrence of major within-consonant speech-token specific

differences in the recognition of stop consonants. Toscano and Allen (2014)

investigated across- and within-consonant recognition errors for CVs consisting

of the sixteen consonants used by Miller and Nicely (1955) followed by four

different vowels. Each of the CVs was spoken by fourteen different talkers

and presented at six SNRs in speech-weighted noise. The results suggested

that consonant recognition greatly varies across consonants as well as within

consonants (i.e., across talkers and accompanying vowels). This implies talker-

dependent effects, which have also been shown for spoken word recognition
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(e.g., Mullennix et al., 1989) and represent a major challenge in automatic speech

recognition (Benzeghiba et al., 2007).

While the above studies provided major insights into consonant percep-

tion from various perspectives, it has remained unclear (i) to what extent the

reported speech-token dependence of consonant perception is related to artic-

ulatory differences across talkers or to differences in the accompanying vowel,

(ii) how articulatory differences across different utterances of a given talker

affect consonant perception, and (iii) whether spectro-temporal details of the

individual masking-noise waveform affect consonant perception. Furthermore,

perceptual differences across and within individual listeners have not yet been

addressed systematically, apart from individual studies considering hearing-

impaired (HI) listeners (e.g., Phatak et al., 2009; Trevino and Allen, 2013) or

groups of listeners with different language background (e.g., Cutler et al., 2004).

The present study was undertaken in an attempt to quantify the relative

importance of some of the factors that influence consonant perception both in

terms of stimulus-related (“source”) and listener-related (“receiver”) effects.

Here, it was distinguished between source-induced variability and receiver-

related variability. Source-induced variability refers to perceptual differences

that arise due to variations in the acoustic properties of the stimulus and is sub-

divided into (i) speech-induced variability (perceptual differences arising from

articulatory differences in speech tokens of the same phonetic identity, catego-

rized as across-talker and within-talker variability) and (ii) noise-induced vari-

ability (perceptual differences arising from differences in the waveform of the

masking noise). Receiver-related variability refers to the uncertainty/variation

of the perceptual response due to encoding/resolution differences and limits in

the listeners and is subdivided into (i) across-listener variability and (ii) within-

listener variability. Additional well-known sources of variability like the position

and type of the accompanying vowel, as well as the long-term spectral char-

acteristics of the noise (e.g., white vs. speech-weighted) were not considered

here.

Fifteen Danish consonants combined with the vowel /i/ as CVs were used

in the present study, spoken by non-professional native Danish talkers and

presented to NH native Danish listeners. Two experiments were conducted

using white noise maskers at six SNRs. Experiment 1 investigated the effect

of variations in the speech stimulus using several speech tokens for each CV

presented in deterministic white noise maskers. Experiment 2 addressed the
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effect of noise variability using only a single speech token per CV and presenting

it in different deterministic realizations of white noise maskers. The experi-

mental data were analyzed with respect to source-induced variability using

the data obtained in experiment 1 for analyzing the speech-induced variability,

and using the data obtained in experiment 2 for analyzing the noise-induced

variability. Furthermore, the data obtained in the two experiments were ana-

lyzed with respect to receiver-related variability by comparing the responses

to physically identical stimuli across and within listeners. The analyses were

performed by comparing example confusion patterns and confusion matrices.

The entire set of the collected data was furthermore analyzed using a perceptual

distance measure and the entropy of responses to quantify the contributions of

the different considered sources of variability.

2.2 Method

2.2.1 Experiment 1: Effects of variations in the speech stimulus

Listeners

Eight native Danish listeners (one female, seven male) with audiometric thresh-

olds of 20 dB hearing level (HL) or less at the measured frequencies between 125

Hz and 8 kHz participated in the experiment. The age of the listeners ranged

from 19 years to 27 years, except for one listener who was 38 years old. The

average age was 26 years. Listeners were paid for their participation in the

experiment.

Stimuli

CVs consisting of the 15 consonants /b, d, f, g, h, j, k, l, m, n, p, s, S, t, v/

followed by the vowel /i/were used throughout this study. For experiment 1,

six recordings of each CV were taken from the Danish nonsense syllable speech

material collected by Christiansen and Henrichsen (2011). For each CV, three

of these speech tokens were spoken by one particular male talker, the other

three speech tokens were spoken by one particular female talker. A total of 90

speech tokens was used in the experiment (15 CVs× 3 speech tokens× 2 talkers).

The individual speech tokens were cut and faded in and out manually. Their

levels were equalized using VUSOFT, a software implementation of an analog

VU-meter developed by Lobdell and Allen (2007), which was also used for level
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equalization in Phatak et al. (2008). The level equalization was performed such

that all CVs showed the same VUSOFT peak value. This equalization strategy is

based on the vowel levels, thus ensuring realistic relations between the levels of

the individual consonants. Therefore, the vowel levels across the equalized CVs

were similar while the consonant levels differed, much like in natural speech.

After equalization, the reference speech level for the SNR calculation was defined

as the overall root-mean-square level of all speech tokens.

For the masking noise generation, a “half-frozen” noise approach was taken

in order to avoid a potential blur in the perceptual data that might arise from an

effect of differences in the noise waveforms. Specifically, the noise waveform

was fixed (“frozen”) for a given speech token in a given SNR condition and

the waveform of the presented mixture of speech and noise was thus exactly

the same across (i) repeated presentations of a speech token in a given SNR

condition and (ii) across different listeners. For each speech token and each

SNR condition, one white Gaussian masking noise token with a duration of 1 s

was generated and faded in and out using raised cosine ramps with a duration

of 50 ms.

SNR conditions of 12, 6, 0, -6, -12, and -15 dB were created by fixing the noise

level and adjusting the level of the speech tokens based on the reference speech

level according to the desired SNR. The sound pressure level of the noise was set

to 60 dB, while the overall stimulus level differed depending on the level of the

speech (i.e., on the SNR). This fixed noise level approach was chosen instead of

the commonly used fixed speech level approach in order to avoid extremely high

noise levels at low SNRs, which can lead to annoyance and fatigue in listeners.

The speech tokens were mixed with the respective noise tokens such that the

speech token onset was temporally positioned 400 ms after the noise onset.

The clean speech at the respective levels, the noise tokens, and the mixture of

speech and noise tokens were individually stored in “.wav” format at a sampling

rate of 44.1 kHz with a resolution of 16 bits per sample.

Experimental design

The experiment was split into two sessions, one using the 45 male talker speech

tokens and the other one using the 45 female talker speech tokens. The listen-

ers performed the individual sessions on different days. One session lasted

approximately 2.5 hours including instruction, training, and breaks. Two con-

trol conditions with speech in quiet were defined, “Q60” and “Q45”. Q60 was
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designed to evaluate whether the speech tokens were sufficiently identifiable

in ideal listening conditions; the speech was presented in quiet at the same

presentation level at which the fixed-level noise was presented in the SNR con-

ditions [60 dB sound pressure level (SPL)]. Since the noise level was fixed and

the speech level was adapted to generate the individual SNR conditions, Q45

was designed to investigate whether the speech tokens were still sufficiently

intelligible in quiet at the lowest speech level occurring in the SNR conditions;

the speech was therefore presented at 45 dB SPL, corresponding to the speech

level in the -15 dB SNR condition.

The experimental sessions were split into eight consecutive blocks corre-

sponding to the eight experimental conditions. In order to get the listeners

accustomed to the task, the first condition was the “easy” control listening con-

dition Q60, followed by the slightly more challenging control condition Q45.

The third to eighth conditions were the six SNR conditions ranked from easy to

difficult, i.e., with SNR = 12, 6, 0, -6, -12, and -15 dB. Each block consisted of a

training run followed by the experiment run. In the training run, all 45 stimuli

(depending on the condition speech tokens or speech tokens mixed with the

predefined noise tokens) were presented once in random order to familiarize

the listener with the respective condition. In the experiment run, each of the

45 stimuli was presented 3 times, resulting in a total of 135 presentations. The

order of presentation was again randomized. One experimental block therefore

comprised 180, a whole session 1440 stimulus presentations.

Procedure and apparatus

Listeners were seated in a sound attenuating listening booth in front of a com-

puter and listened to the stimuli monaurally through Sennheiser HD580 head-

phones. For headphone equalization, a 256-tab finite impulse response filter de-

signed to equalize the third-octave smoothed version of the headphone transfer

function in the range between 40 Hz and 21 kHz was applied. The test software

was run under Matlab on a Windows-based PC. The stimuli were played at a

sampling rate of 44.1 kHz. After each stimulus presentation, listeners had to

choose one of the response alternatives displayed on a graphical user interface

(GUI). The task was identical in training and experiment with no feedback pro-

vided. When in doubt, the listeners could repeat the sound playback up to two

times using a “repeat” button included in the GUI. The response alternatives

consisted of 15 buttons displaying the consonants in the corresponding Danish
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spelling (b, d, f, g, h, j, k, l, m, n, p, s, Sj, t, v) and one button labeled “I don’t

know”. Listeners could respond to the stimulus using a computer mouse. After

a decision was made, the next stimulus was played after a 500-ms pause. Prior

to the experiment, the listeners were instructed to make use of the “repeat”

button whenever they were uncertain about their percept and to use the “I don’t

know” button instead of guessing when they had only heard the vowel. The

proportions of responses for each speech token and condition were calculated

via division of the obtained occurrences of responses by the number of stimulus

presentations. The “I don’t know” responses were evenly distributed across

all response alternatives. The conversion was performed both for the pooled

responses across listeners and the individual listeners’ responses. Three ob-

servations per stimulus and individual listener were obtained; the number of

pooled observations per stimulus was thus 24 (3 observations × 8 listeners).

2.2.2 Experiment 2: Effects of variations in the noise

Listeners

Eight native Danish listeners (one female, seven male) with audiometric thresh-

olds of 20 dB hearing level (HL) or less at the measured frequencies between 125

Hz and 8 kHz participated in the experiment. Four of these listeners had also

participated in experiment 1. The age of the listeners ranged from 20 years to

28 years, with a mean age of 24 years. Listeners were paid for their participation

in the experiment. To obtain test-retest data, a subset of the original listener

panel (four of the eight listeners) conducted a retest approximately one month

after the first test.

Stimuli

Experiment 2 addressed perceptual differences induced by different “frozen-

noise” masker waveforms. For each type of CV from experiment 1, only one

recording was used, resulting in 15 speech tokens. The recordings were a subset

of the speech material used in experiment 1, spoken by the male talker. The

level of the speech tokens was equalized according to the VUSOFT peak value

(cf. Sec. 2.2.1). Three masking-noise conditions (frozen noise A, frozen noise

B, and random noise) were considered. For each speech token, one particular

white noise waveform with a duration of one second was generated and labeled

“frozen noise A”; the same noise token was then circularly shifted in time by
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100 ms to obtain “frozen noise B”. The noise tokens were faded in and out

using raised cosine ramps with a duration of 50 ms. The noise waveforms for

the random noise condition were newly generated for each presentation and

faded in and out in the same manner during the experimental procedure. The

responses obtained in the random noise condition were not considered in the

analysis as this condition was only included to prevent listeners from noise

learning. Note that, for a given speech token, the frozen-noise tokens in this

experiment were the same across all SNR conditions (“frozen”), in contrast to

experiment 1 where different noise tokens were used across SNR conditions

(“half-frozen”). SNR conditions of 12, 6, 0, -6, -12, and -15 dB were created by

fixing the noise level to 60 dB SPL and adjusting the level of the speech tokens (cf.

Sec. 2.2.1). Each speech token was mixed with the two respective frozen-noise

tokens such that the speech token onset was temporally positioned 400 ms after

the noise onset. For the random-noise condition, the same was done during

the experiment using randomly generated noise waveforms. The clean speech

at the respective levels, the frozen-noise tokens, and the mixture of speech and

frozen noise tokens were individually stored in “.wav” format at a sampling rate

of 44.1 kHz with a resolution 16 bits per sample.

Experimental design

As in experiment 1, two control conditions were defined (“Q60” and “Q45”), in

which the speech was presented in quiet at 60 dB SPL and 45 dB SPL, respectively

(see also Sec. 2.2.1). The experiment was split into eight consecutive blocks

corresponding to the eight experimental conditions (in this order: Q60, Q45,

SNR = 12, 6, 0, -6, -12, and -15 dB). Each block consisted of a training run

followed by the experiment run. For the quiet conditions Q60 and Q45, the

training run comprised one presentation of each of the 15 speech tokens; in the

experiment run, each of the speech tokens was presented 5 times, amounting

to 75 presentations. The order of presentation was randomized. For the SNR

conditions, the training run consisted of 3 presentations of each of the 15 speech

tokens, i.e., 45 presentations. The masking noise was newly generated for each

presentation during the training run. In the experiment run, each speech token

was presented 5 times in each masking-noise condition, i.e., 5 times in frozen

noise A, 5 times in frozen noise B, and 5 times in random noise, resulting in

a total of 225 presentations. The order of presentation was randomized. One

entire experimental block comprised 90 (quiet conditions Q60 and Q45) or
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270 (main conditions, SNR: -15. -12, -6, 0, 6, 12 dB), the whole experiment

1800 stimulus presentations. The full experiment lasted approximately 3 hours

including instruction, training, and breaks.

Procedure and apparatus

The listening situation, instructions, interface, and further technical details were

the same as in experiment 1, described in Sec. 2.2.1. The data were converted to

proportions of responses in the same manner as described in section Sec. 2.2.1.

Five observations per stimulus and individual listener had been obtained; the

number of pooled observations was thus 40 (5 observations × 8 listeners).

2.2.3 Perceptual distance calculation

To quantify the size of the different source-induced and receiver-related effects,

a measure of perceptual distance was applied. Following an approach suggested

by Scheidiger and Allen (2013), each response alternative (i.e., each consonant)

was considered to represent one dimension in an R-dimensional space (with

R denoting the number of response alternatives). In this space, each response

pattern was considered as a vector. The perceptual distance between two such

response patterns was calculated as the normalized angular distance between

two R-dimensional response vectors x and y,

D[x, y] = cos−1
� 〈x, y〉
||x|| · ||y||

�

·
100%
π
2

(2.1)

where 〈x, y〉 denotes the scalar product and ||x|| and ||y|| represents the Eu-

clidean norm of the response vectors x and y, respectively. The response vectors

contain the proportions of responses for all R response alternatives (with R= 15);

thus, the values of the individual coordinates range from 0 to 1 and the angular

distance between the two vectors therefore ranges from 0 toπ/2. Normalization

by π/2 and multiplication by 100% yields the normalized angular distance in

percent.

The perceptual distance measure was used to describe the amount of per-

ceptual variability induced by the different sources of variability considered in

this study. It was calculated between all pairwise combinations of individual

listeners’ responses that are representative of each factor. For instance, the

perceptual influence of across-talker variability can be described using the
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perceptual distances between all pairs of response vectors obtained with pairs

of speech tokens of the same phonetic identity that were spoken by different

talkers.

The calculations were performed for each SNR condition separately based

on the response vectors obtained with the individual listeners. Depending on

the factor, the number of considered response pairs and thus the number of

individual distance values varied. For each factor and each SNR condition, a dis-

tribution of perceptual distance values (across the considered response pairs)

was obtained. As a reference for maximal distance, the perceptual distance

across CVs (DacrCV) was calculated from the data obtained in experiment 1. To

quantify the source-induced variability, the perceptual distances across talkers,

within talkers (DacrTalk and DwtnTalk, both based on experiment 1), and across

noise tokens (DacrNoise, based on experiment 2: frozen noise A vs. frozen noise

B condition) were calculated using response vectors obtained with physically

different stimuli of the same phonetic identity. To assess the receiver-related

variability, the perceptual distances of the responses across listeners (DacrList,

based on experiment 1 and 2) and within listeners (DwtnList, based on experiment

2 test vs retest) were calculated by comparing response vectors obtained with

physically identical stimuli. The perceptual distance within listeners represents

the listener uncertainty and was thus considered as a baseline for minimal per-

ceptual distance. A detailed description of the perceptual distance calculation

is provided in Sec. 2.7.2.

A more common descriptor of response variability used in related studies

(e.g., Miller and Nicely, 1955; Phatak et al., 2008) is the entropy of responses. For

comparison with the results obtained based on the perceptual distance measure,

the data were also analyzed using the normalized entropy (see Sec. 2.7.3 for

details). The perceptual distance may provide an intuitive approach for investi-

gating the perceptual effects of the different sources of variability, whereas the

application of the normalized entropy for this purpose is formally less straight-

forward (see Sec. 2.7.2 and Sec. 2.7.3).
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2.3 Results

2.3.1 Consonant recognition in quiet

The average recognition rate across all 90 speech tokens used in experiment

1 was found to be 99.2% with a standard deviation of 2.7% across CVs for Q60

(at 60 dB SPL presentation level), while the average recognition rate was 96.1%

with a standard deviation of 8.5% across CVs for Q45 (at 45 dB SPL). Regarding

experiment 2, the analysis showed that the average recognition rate across all

15 speech tokens was 98.8% with a standard deviation of 3.4% across CVs for

Q60, while the average recognition rate was 98.2% with a standard deviation of

4.8% across CVs for Q45. All speech tokens used in the two experiments were

thus considered sufficiently recognizable in quiet and taken into account for

the further analyses.

2.3.2 Source-induced variability

To illustrate the source-induced variability in consonant perception, i.e. percep-

tual differences that occur for physically different stimuli of the same phonetic

identity, selected example confusion patterns (CPs) are shown for the “average

listener”, representing the average proportions of responses obtained with eight

listeners. The examples illustrate the large observed effect of the considered

source variations on consonant recognition and confusions. An analysis of the

complete data set follows further below (Sec. 2.4).

Speech-induced variability

Figure 2.1 shows average CPs obtained in experiment 1 for the CVs /di/ (left

panels), /hi/ (middle panels), and /pi/ (right panels), spoken by the male talker

A (top panels) and the female talker B (bottom panels), respectively. The figure

illustrates the perceptual effect of across-talker variability. For a given speech

token, the CPs show the proportions of the four predominant responses as a

function of SNR. The proportions of correct responses, denoted as recognition

curves, are depicted as thick black lines. The thinner colored lines indicate

confusions. The Q60 quiet condition is included as a reference (the rightmost

value on the abscissae).

It can be seen that /di/ spoken by talker A (top left panel) is far more con-

fusable (mainly with /gi/) and hence far less recognizable than /di/ spoken by
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talker B (bottom left panel), particularly at SNRs between -12 and 0 dB. In con-

trast, an utterance of /hi/ spoken by talker A (top middle panel) was perfectly

recognized by the listeners at SNRs down to 0 dB while the same CV spoken by

talker B (bottom middle panel) yielded pronounced confusions (with /pi/, /ki/,

and /fi/) and thus recognition rates of less than 50% at the same SNRs (0, 6,

and 12 dB). Comparably large differences were observed between /pi/ spoken

by talker A (top right panel) and /pi/ spoken by talker B (bottom right panel),

especially at SNRs of 0 and 6 dB.

Figure 2.1: Across-talker comparison of average confusion patterns for /di/ (left panels), /hi/
(middle panels), and /pi/ (right panels). The upper and lower panels show the results for talker
A (male) and talker B (female), respectively. The correct responses are indicated as thick black
lines and confusions are shown as thinner lines in different colors; the data points are labeled
with the corresponding consonants. Only the four predominant responses are depicted for
clarity. A slight horizontal jitter was introduced to the data for better readability. The ordinate is
scaled logarithmically to emphasize the confusions. The 7% minimum of the ordinate represents
chance level.

Figure 2.2 shows average CPs obtained in experiment 1 for two different

recordings of the CVs /gi/ spoken by the same male talker A (left panels), /ki/

spoken by the same female talker B (middle panels), and /Si/ spoken again by

female talker B (right panels). The figure thus illustrates the perceptual effect of

within-talker variability.

The two different recordings of /gi/ spoken by talker A (left panels) caused

large differences in the recognition curves and the confusions, particularly at

SNRs of 6 and 12 dB. Similarly, the two recordings of /ki/ spoken by talker B

(middle panels) yielded substantially different recognition rates and confusions,

in particular at SNRs of 0, 6, and 12 dB. Regarding the two recordings of /Si/

spoken by talker B (right panels), it can be seen that this CV was generally

detected quite robustly. However, large differences in the recognition rates



2.3 Results 21

obtained with the two different recordings were observed for SNRs of -6 and

-12 dB.

Figure 2.2: Within-talker comparison of average confusion patterns for /gi/ (left panels), /ki/
(middle panels), and /Si/ (right panels). The upper and lower panels show the results for two
different recordings of the same CV, spoken by the same talker (male talker A in the case of /gi/
and female talker B in the cases of /ki/ and /Si/). The confusion patterns were obtained as
described in Fig. 2.1.

Noise-induced variability

Figure 2.3 shows average CPs obtained in experiment 2 for the speech tokens

/fi/ (left panels), /gi/ (middle panels), and /ni/ (right panels), each presented

in frozen noise A (top) and frozen noise B (bottom), respectively. All speech

tokens were spoken by the male talker A. Thus, the only difference in the acoustic

waveforms of the considered stimulus pairs was a 100-ms temporal shift in the

masking-noise waveform.

For the same recording of /fi/ (left panels), the two different noise wave-

forms led to different CPs. Noise A (top) caused a steeply sloping recognition

curve due to a major confusion with /di/ while noise B (bottom) produced

a shallower recognition curve as the /di/ confusion was less pronounced. In

the case of /gi/ (middle panels), noise A (top) and noise B (bottom) led to sub-

stantial differences in the recognition rate at most SNRs as noise A produced

different and more pronounced confusions and thus lower recognition rates as

compared to noise B. Regarding the results for /ni/ (right panels), noise A (top)

yielded a more steeply sloping recognition curve than noise B (bottom). The

confusions obtained with the two noise waveforms were the same but much

more pronounced for noise A than for noise B.
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Figure 2.3: Across-noise token comparison of average confusion patterns for /fi/ (left panels),
/gi/ (middle panels), and /ni/ (right panels). The upper and lower panels show the confusion
patterns for the same speech token mixed with different waveforms of frozen noise (top: frozen
noise A, bottom: frozen noise B). All speech tokens were spoken by male talker A. The only
difference between frozen noise A and frozen noise B was a 100-ms temporal shift. The confusion
patterns were obtained as described in Fig. 2.1.

2.3.3 Receiver-related variability

Here, examples of receiver-related variability are shown in terms of selected

confusion matrices (CMs). The results demonstrate the observed effect of

perceptual differences that occur across listeners and within listeners when no

source-induced variability is present, i.e., for physically identical stimuli. An

overall analysis of the results follows further below (Sec. 2.4).

Across-listener variability

Figure 2.4 shows the across-SNR average of CMs obtained in experiment 2 for

four individual listeners. Only the responses obtained in noise B were consid-

ered here; thus, the speech and noise waveforms of the stimuli were identical

across repeated stimulus presentations and across listeners. The left and right

panels show two examples, each comparing the data obtained with two listen-

ers. Each row in the CM reflects the across-SNR average of the proportions of

responses obtained for a given speech token mixed with a given noise waveform.

The circles indicate the proportions of responses; the filled gray circles show

the data obtained with listeners 1 (left) and 3 (right) and the open red circles

represent the data obtained with listeners 2 (left) and 4 (right). Thus, the amount

of overlap between the filled gray circles and the open red circles indicates the

agreement between the responses of listeners 1 and 2 (left) and listeners 3 and

4 (right). The figure hence illustrates the effect of across-listener variability.
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Comparing the results of listeners 1 and 2 (left panel), considerable differ-

ences can be seen. For example, for /di/ and /ni/, listener 1 showed a larger

recognition rate than listener 2, reflected along the diagonal where the filled

gray circles exceed the open red circles in size. In contrast, for /fi/ and /mi/, lis-

tener 1 showed a smaller recognition rate than listener 2. Regarding confusions,

represented by the off-diagonal circles in the CMs, a large variability was found.

Some of the major confusions occurred in both listeners (e.g., /di/ confused

with /gi/). However, the proportions of the individual confusions mostly dif-

fered, as indicated by the differences in the size of the overlapping off-diagonal

filled gray and open red circles. Furthermore, many distinct confusions made

by listener 1 (e.g., /fi/ confused with /bi/) were not made by listener 2 and vice

versa.

Comparing the results of listeners 3 and 4 (right panel), the inter-individual

differences in the results become even more apparent. The recognition rates

(diagonal entries in the CMs) differed for /di/, /fi/, /gi/, /hi/, /li/, /mi/, /ni/,

/pi/, and /vi/ (i.e., for nine out of fifteen CVs). Particularly in the case of /di/,

listener 3 showed a high recognition rate, while listener 4 selected /gi/ instead of

/di/ in about the same number of presentations. Some of the confusions were

observed in both listeners, indicated by the overlapping off-diagonal filled gray

and open red circles (e.g., /li/ confused with /vi/). However, the proportions

of the shared confusions differed and most of the confusions made by listener 3

were not made by listener 4, as indicated by the non-overlapping off-diagonal

filled gray and open red circles.

Within-listener variability

Figure 2.5 shows the across-SNR average of CMs obtained in test and retest of

experiment 2 for two individual listeners. As above, only the responses obtained

in frozen noise B were considered here; the speech and noise waveforms of the

stimuli were therefore identical across repeated stimulus presentations and

across test and retest. The illustration of the CMs is equivalent to the one used

above. However, while Fig. 2.4 compared results across two pairs of listeners

(listener 1 vs. 2 and listener 3 vs. 4), the left and right panels of Fig. 2.5 show the

comparison of results obtained in test and retest for two individual listeners

(listener 1 and listener 3). The figure therefore illustrates the effect of within-

listener variability.

Listener 1 (left panel) showed fairly similar recognition rates in test and



24 2. Sources of variability in consonant perception

Figure 2.4: Across-listener comparison of confusion matrices for the 15 speech tokens used in
experiment 2, mixed with frozen noise B. The speech and noise waveforms presented to the
individual listeners were identical. For visual clarity, the responses were averaged across SNR
conditions. For each stimulus (in each row of the matrix), the size of the circles indicates the
proportions of responses for the individual response alternatives (columns of the matrix). Left:
Responses of listener 1 (gray filled circles) vs. listener 2 (red open circles). Right: Responses of
listener 3 (gray filled circles) vs. listener 4 (red open circles).

retest, as can be seen from the overlap of the filled gray and the open red circles

along the diagonal. However, for /fi/, /gi/, /ki/, /pi/, and /vi/, the recognition

rates were found to be slightly larger in the test (filled gray circles) than in the

retest (open red circles). Regarding confusions, it can be seen that most of the

major confusions were reproducible since most of the large off-diagonal circles

overlap. However, the proportions of the confusions differed slightly across test

and retest results, indicated by the differences in the sizes of the filled gray and

the open red off-diagonal circles.

Listener 3 (right panel) also showed a large similarity of results obtained

in test and retest. The recognition rates were found to be virtually identical,

indicated by the perfect overlap of the on-diagonal filled gray and open red

circles. Two exceptions were the results for /li/ and /mi/, where the recognition

rate in the retest (open red circles) exceeded the recognition rate in the test

(filled gray circles). As observed for listener 1, most of the major confusions were

reproducible since most of the large off-diagonal circles share a large overlap

while the proportions of the confusions partly differed between the test and

retest results.
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Figure 2.5: Within-listener comparison of confusion matrices for the 15 speech tokens used in
experiment 2, mixed with frozen noise B. The speech and noise waveforms presented to the
listeners in test and retest were identical. For visual clarity, the responses were averaged across
SNR conditions. The confusion matrix depiction was obtained as in Fig. 2.4. Left: Responses of
listener 1 obtained in test (gray filled circles) and retest (red open circles). Right: Responses of
listener 3 obtained in test (gray filled circles) and retest (red open circles).

2.4 Analysis

The entire data set of the present study was analyzed in terms of source-induced

and receiver-related effects using perceptual distance distributions as defined

in Sec. 2.2.3. Figure 2.6 shows the mean perceptual distances, in percent, de-

rived from the response variability across CVs (black), across talkers (blue),

within talkers (green), across noise tokens (red), across listeners (light gray), and

within listeners (dark gray), respectively, as a function of SNR. On the left, the

average across SNR is shown. The error bars indicate the standard error across

the underlying distributions of perceptual distance values obtained with the

individual response pairs. The standard errors are proportional to the number

of the respective considered response pairs, which varied greatly across the

individual sources of variability (across CVs: 30240; across talkers: 1080; within

talkers: 720; across noise: 120; across listeners: 3360; within listeners: 120).

The averages of the perceptual distances across SNR (leftmost bars) provide

a good approximation of the size of the perceptual effects induced by the con-

sidered sources of variability. The reference for maximal perceptual distance,

the perceptual distance across CVs (black bars), confirmed the expected large

effect of consonant identity (91%). Regarding the source-induced perceptual
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distances across stimuli of the same phonetic identity, the largest perceptual dis-

tance of 51% was obtained for the across-talker condition (blue bar), followed by

the perceptual distance of 47% obtained for the within-talker condition (green

bar). This indicates that articulatory differences in utterances of a given talker

had a perceptually comparable effect to articulatory differences in utterances of

different talkers of different gender. The perhaps most striking observation was

that even a slight temporal shift in the waveform of the noise masker mixed with

the same speech token produced a considerable effect and led to a perceptual

distance of 39% (red bar). Regarding the receiver-related effects, a substantial

across-listener effect was found, corresponding to a perceptual distance of 46%

for physically identical stimuli (light gray bar). This indicates a large variability

in the consonant perception across NH listeners with similar language back-

ground. The across-listener effect was found to be as large as that resulting

from within-talker variability (47%, green bar). In other words, the perceptual

variability across listeners presented with physically identical stimuli was in the

range of the perceptual variability in individual listeners induced by different

speech tokens of the same phonetic type. In contrast, the relatively low percep-

tual distance within listeners of 30% (dark gray bar) indicated that the individual

listeners were able to reproduce their responses fairly reliably.

Two-tailed paired-sample t-tests were performed to verify the statistical

significance of the differences observed across the considered conditions. The

across-CV reference condition was not considered here. The tests were con-

ducted based on the across-SNR average of the obtained distance distributions.

As the sample sizes for the individual conditions differed, with 120 being the

minimum sample size, 120 observations were randomly chosen from each sam-

ple. The procedure was iterated 10.000 times for convergence and the resulting

p-values and t-values were then averaged. A significance level ofα= 0.05 was as-

sumed and divided by 10 to correct for the ten considered comparisons between

the five remaining conditions (αcorr = 0.005). The results are given in Table 2.1

and indicate that all considered conditions were significantly different from

each other (p < 0.005) except the across-talker, within-talker and across-listener

conditions.

The SNR-specific results show that the within-listener perceptual distance

(dark gray bars in Fig. 2.6) increased with decreasing SNR. The lower the SNR,

the more challenging was the task and the less reproducible were the responses

of the individual listeners obtained with identical stimuli in test and retest.
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Table 2.1: T-test results obtained for across-SNR average perceptual distance distributions. Bold
numbers indicate p-values < 0.005, with 0.005 being the significance level after Bonferroni
correction.

Conditions t(119) p

DwtnList vs DacrTalk 9.9448 0.0000

DwtnList vs DwtnTalk 8.2776 0.0000

DwtnList vs DacrNoise 4.6621 0.0000

DwtnList vs DacrList 8.2242 0.0000

DacrNoise vs DacrTalk 5.3434 0.0000

DacrNoise vs DwtnTalk 3.6554 0.0031

DacrNoise vs DacrList 3.6789 0.0040

DacrTalk vs DwtnTalk -1.6744 0.2038

DacrTalk vs DacrList -1.6130 0.2210

DwtnTalk vs DacrList 0.0441 0.5194

The within-listener response variability represents an intrinsic limitation and

was therefore considered as the baseline (“internal noise”). The perceptual

distances obtained across talkers (blue bars), within talkers (green bars), across

noise tokens (red bars), and across talkers (light gray bars) increased along with

– but were well above – the within-listener distance (as indicated by the shaded

regions in Fig. 2.6). The perceptual distance across CVs, reflecting the maximal

perceptual distance, showed the opposite trend since responses obtained with

stimuli of different phonetic identity were compared: when the task was easy, the

perceptual distance across responses obtained with stimuli of different phonetic

identity was at ceiling (e.g., /bi/ and /di/ correctly recognized at large SNRs,

response vectors thus orthogonal); with decreasing SNR the perceptual distance

across these responses decreased as the recognition dropped and the number

of confusions increased. Thus, while the perceptual distance across CVs (black

bars) represented the largest contribution at all SNRs, it almost reached the level

of the CV-specific perceptual distances for an SNR of -15 dB. Disregarding the

influence of the listener uncertainty (within-listener distance, dark gray bars),

the relation between the CV-specific perceptual distances remained almost the

same at all SNRs. Thus, the across-SNR average distances described earlier

capture the main effects observed at all SNRs.

Figure 2.7 shows the relation between the perceptual distance (abscissa) and

the normalized entropy (ordinate) by means of a scatter plot. The respective
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Figure 2.6: Mean perceptual distances as a function of SNR and averaged across SNR (left cluster).
The error bars represent the standard error across the considered response pairs. As a reference
for the maximum occurring perceptual distance, the perceptual distance across different CVs
is shown (black bars). Comparing responses to physically different stimuli that share the same
phonetic identity, the perceptual distances across talkers (blue bars), within talkers (green bars),
and across frozen masking-noise tokens mixed with the same speech token (red bars) are depicted.
Comparing responses across physically identical stimuli, the perceptual distances across listeners
(light gray bars) and within listeners (dark gray bars) are shown. The shaded areas represent
values below the within-listener distance, i.e., below the internal-noise baseline.

conditions are indicated by different colors and symbols, whereas the different

SNRs are indicated by the size of the symbols. For large SNRs, the normalized

entropy and the perceptual distance were almost fully correlated, i.e., the large

symbols lie on top of the diagonal. For lower SNRs, the normalized entropy

slightly exceeded the perceptual distance and the correlation between the two

measures thus slightly decreased. Still, the overall correlation was 0.99. The

SNR-specific correlation coefficients decreased with decreasing SNR but were

all above 0.98. The results obtained based on the perceptual distance are thus

supported by the concept of entropy.

2.5 Discussion

2.5.1 Summary of main findings

The present study investigated the effects of different sources of variability in

NH listeners’ perception of consonants presented in steady-state masking noise.

Two main categories of perceptual variability were defined: source-induced

and receiver-related variability. The former describes perceptual differences

caused by acoustical differences in stimuli of the same phonetic identity and was

subdivided into speech-induced variability (across talkers and within talkers)
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Figure 2.7: Scatter plot of perceptual distance in percent (abscissa) versus normalized entropy
in percent (ordinate) for the different considered conditions: across CVs (black circles), across
talkers (blue squares), within talkers (green diamonds), across noise tokens (red triangles), across
listeners (light gray circles), and within listeners (dark gray circles). The perceptual distance and
normalized entropy values obtained for the six different SNR conditions (12, 6, 0, -6, -12, and -15
dB) are plotted against each other. The sizes of the respective symbols are proportional to the
SNR values. The gray diagonal dashed line represents perfect correlation of perceptual distance
and normalized entropy.

and noise-induced variability. A special case of source-induced variability is the

variability across consonants, which has been considered here as a reference for

maximal variability. The latter comprises perceptual differences across listeners

and within listeners. To quantify the relative influence of the individual sources

of variability, the responses obtained in two experiments were analyzed in terms

of example comparisons using a subset of the data and by means of a perceptual

distance measure and the entropy of responses using the entire data set.

Regarding the source-induced variability for stimuli of the same phonetic

identity, it was shown that the largest perceptual variability was induced by

across-talker articulatory differences, closely followed by the effect of within-
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talker articulatory differences. Furthermore, even a slight temporal shift in the

waveform of the steady-state masking noise was found to produce a smaller,

yet clearly measurable and statistically significant perceptual effect. Regarding

receiver-related variability, the analysis showed that, for physically identical

stimuli, the perceptual differences across the NH listeners were very large (in

the range of the speech-induced differences). In contrast, the within-listener

variability (listener uncertainty) was found to be much smaller, indicating that

the reproducibility of the responses for individual listeners was much larger than

the agreement between the responses of different listeners. The within-listener

variability depended inversely on the SNR, i.e., the “internal noise” (listener

uncertainty) was proportional to the “external noise” (acoustic noise).

2.5.2 Relation to other studies

In the present study, a large perceptual effect of across-talker articulatory differ-

ences was found for identical CVs. This is consistent with other recent studies on

consonant perception (e.g., Phatak et al., 2008; Singh and Allen, 2012; Toscano

and Allen, 2014), which demonstrated that different speech tokens of the same

phonetic identity spoken by different talkers elicit largely different percepts. In

contrast, early studies on consonant perception (e.g., Miller and Nicely, 1955;

Wang and Bilger, 1973) pooled the responses obtained with different speech

tokens of the same phonetic identity spoken by different talkers, thus neglecting

the talker-specific perceptual details.

The effect of within-talker articulatory differences was in the present study

found to be almost as large as the effect of across-talker articulatory differences.

This has otherwise not been reported yet since related studies on consonant

perception typically used only one speech token from a given talker for each CV.

A within-talker effect was expected given the natural within-talker articulatory

variability; however, the authors of the present study did not expect such a

prominent effect.

A significant perceptual effect of a temporal shift in the masking noise wave-

form was found, demonstrating that different white-noise waveforms, mixed

with the same speech token, can elicit different speech percepts. Thus, the

common assumption in various previous studies (e.g., Miller and Nicely, 1955;

Phatak and Allen, 2007; Phatak et al., 2008) of an invariance of consonant percep-

tion across steady-state noise realizations cannot be supported by the present

study. In fact, the results obtained here suggest that the interaction between a
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given speech token and the spectro-temporal details of the “steady-state” mask-

ing noise waveform matter in the context of microscopic consonant perception.

When analyzing responses obtained with individual speech tokens (as in Li et al.,

2010; Li et al., 2012; Singh and Allen, 2012; Toscano and Allen, 2014), averaging

responses across noise realizations thus appears problematic.

Furthermore, the results of the present study showed that, even for phys-

ically identical stimuli, the across-listener perceptual variability is large. The

within-listener perceptual variability was found to be clearly smaller. Studies on

consonant perception in NH listeners (e.g., Miller and Nicely, 1955; Phatak and

Allen, 2007; Phatak et al., 2008; Toscano and Allen, 2014) relied solely on across-

listener average data without assessing deviations from the across-listener av-

erage due to inter-individual perceptual differences. Toscano and Allen (2014)

stated that listeners were highly consistent without providing explicit evidence

for this claim. Their analysis was based on consonant recognition only while

the analysis performed in the present study also took consonant confusions

into account, which may yield different results. Nevertheless, the assumption

that consonant perception of NH listeners with similar language background is

as consistent across listeners as within listeners is in contrast to the results of

the present study. Therefore, across-listener average data should be treated as a

population response that is not representative of individual listeners (and vice

versa).

2.5.3 Implications for the design of consonant perception experi-

ments

The present study demonstrated that all considered differences in the speech

token and/or in the noise token led to different consonant percepts. Further, the

perceptual variability across NH listeners with the same language background

was found to be large. The implications of these findings for the design of

consonant experiments largely depend on the goal of the respective study.

If the goal is to “globally” assess consonant perception as a function of con-

sonant identity and SNR, it should be ensured that the described sources of

variability (source-induced and receiver-related) do not bias the resulting data.

Thus, (i) many speech tokens spoken by different talkers should be considered

for each consonant to cover the speech-induced variability, (ii) randomly gener-

ated masking noise should be employed to cover the noise-induced variability,
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and (iii) many listeners should be tested to cover the across-listener perceptual

variability. The responses may then be averaged across different speech tokens

of the same phonetic identity, different noise waveforms, and different listeners,

yielding an overall pattern of consonant perception as a function of consonant

identity and SNR. A more realistic description of the data obtained in such an

experiment may be achieved by interpreting the responses obtained with each

considered CV as multi-dimensional probability distributions across speech

tokens, noise tokens, listeners, and SNR.

In contrast, if the purpose of the study is to investigate which acoustic cues

determine a specific confusion pattern, (i) the responses need to be evaluated

for each speech token separately (since different speech tokens can elicit differ-

ent speech percepts), (ii) the combination of speech token and masking-noise

token needs to be unique (since the use of randomly generated masking noise

mixed with identical speech tokens can elicit different speech percepts in each

trial), and (iii) the responses need to be evaluated in individual listeners (due to

the substantial perceptual differences across listeners). This level of detail is also

needed when assessing effects of individual hearing impairment and hearing-

aid signal processing via consonant perception tests. If the above constraints

are not respected, the observed results may well be blurred by speech-induced

variability, noise-induced variability, and across-listener perceptual variability.

Recent detailed studies of consonant cues (Li et al., 2010; Li et al., 2012) indeed

analyzed the data for each speech token individually. However, random real-

izations of steady-state masking noise were used for each trial in the masking

experiments and the analyses were performed based on across-listener average

data.

2.5.4 Implications for consonant perception modeling

So far, no model has been proposed that is able to predict consonant perception

in terms of recognition and confusions. The results of the present study may

provide some general constraints for microscopic models of speech perception.

If the goal is to predict the average responses for a given consonant and SNR

obtained with many speech tokens, many noise realizations, and many listen-

ers, the model’s responses should reflect the same average outcome measures

obtained with the same set of stimuli. Such a “global” model would not be de-

signed to account for the sources of variability considered in the present study,

but may account for the effects of consonant identity and SNR. For such an
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approach, the observations from the present study motivated that the decision-

making process in the model back end should incorporate an internal-noise

term that scales with the amount of external noise represented in the stimulus.

If a model of consonant perception is targeted towards more details in

the consonant perception results, the model needs to reflect all sources of

variability. For instance, the fact that a temporal shift in the noise waveform

can lead to substantial perceptual differences indicates that a suitable model

front end should be sensitive to signal-to-masker phase relations probably

already in the peripheral processing of the stimuli. Furthermore, similar to the

considerations regarding the “global” model, the observed relation between

SNR and within-listener variability suggests that an internal-noise term which

scales with the amount of external noise in the stimulus should be incorporated

in the model back end. The observed large across-listener perceptual variability

represents a major challenge for modeling, since this variability can either

arise from differences in the sensory processing in the individual listeners, or

from differences at higher-level processes, or both. Such differences may occur

even in the case of NH listeners (as considered in the present study), since (i)

the applied “criterion” for NH was not very strict, (ii) the audiogram may not

be a sufficient descriptor for sensory processing, and (iii) higher-level speech

processing may differ across listeners independent of their sensory capabilities,

e.g., due to different cognitive abilities. How these inter-individual differences

across NH listeners can be quantified and eventually integrated into a modeling

framework remains a major challenge.

2.5.5 Limitations of the approach

In the present study, several parameters that are known to play a perceptual role

were fixed to solely focus on specific sources of variability, as it is not feasible

to test all possible factors at once. Specifically, the vowel (/i/), the type of

consonant-vowel combination (CV) and the spectral shape of the noise (white)

were fixed. The same holds for the choice of response alternatives, response

method, and the instructions given to the test subjects. The influence of these

parameters, which also represent sources of variability, was thus neglected.

The claims made in the present study were based on a set of 90 speech

tokens, spoken by two talkers, and presented to two different panels of eight

listeners (experiment 1 and experiment 2) and a panel of four listeners (retest of

experiment 2), respectively. Therefore, the results may be biased by the choice



34 2. Sources of variability in consonant perception

of speech tokens, talkers, and listeners. Furthermore, the relative size of the

reported effects may be different when considering speech samples obtained

from natural speech utterances as opposed to isolated syllable productions.

The individual sources of variability investigated in the present study repre-

sent categories and only provide indications about the relative contributions

of these categories (e.g., across-talker articulatory differences) to consonant

perception. Thus, it remains unanswered here which specific acoustical prop-

erties of the stimuli caused the observed perceptual differences. The three-

dimensional deep search method introduced by Li et al. (2010) might be one

way of addressing this question in terms of a spectro-temporal analysis. An-

other approach might be to identify the importance of consonant cue regions

as a function of audio frequency and modulation frequency, as suggested by

Christiansen et al. (2007). Further investigations are required to provide an

understanding of the relationship between acoustic features in the noisy speech

waveform, their internal representation in the auditory system, and the contri-

bution of the different features to robust phoneme recognition.

2.6 Summary and conclusions

An experimental approach to investigate the influence of various sources of

variability in consonant perception was presented. The study focused on the

consonant perception of NH listeners presented with CVs in white noise at

different SNRs. The perceptual variability was split into two main categories,

source-induced and receiver-related variability. Using example-based compar-

isons for the different conditions, and quantifying the observations by means

of a measure of perceptual distance, the relative importance of the individual

sources of variability was described. Regarding the source-induced variability,

the largest effect was found for across-talker articulatory differences, followed

by within-talker articulatory differences. Furthermore, even the waveform of

the masking noise was shown to induce a significant perceptual effect. In terms

of receiver-related effects, a large variability of the responses across listeners

was found, whereas the within-listener variability was rather small. Further-

more, the within-listener variability (i.e., the “internal noise”) was found to be

proportional to the amount of masking noise (“external noise”) in the stimulus.

The results from the present study complement current knowledge on con-

sonant perception. It is suggested that, in addition to speech-induced variability,
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also noise-induced variability as well as across-listener perceptual variability

should be taken into account, which has implications for the design of conso-

nant perception experiments and models of consonant perception.
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2.7 Appendix

2.7.1 Description of the data set

The data set considered for the analysis comprised various factors. Table 2.2

provides an overview of the dimensionality of the data set. For clarity, the Q45

and Q60 quiet conditions were not considered here. In experiment 1, 3 record-

ings from each of the 2 talkers of each of the 15 CVs were used. All speech tokens

were mixed with white noise at 6 different SNRs and presented to 8 listeners.

The listeners had to select one of 16 response alternatives (15 consonants and “I

don’t know”). Each speech token was presented 3 times at each SNR (Ntrial1 = 3).

In experiment 2, only 1 speech token was used for each of the 15 CVs. All speech

tokens were mixed with 2 different white noise waveforms at 6 different SNRs

and presented to 8 listeners. The random masking-noise condition from this

experiment was neglected here since it was not used in the analysis. Again, the

listeners had to select one of the same 16 response alternatives. Each combina-

tion of speech token and noise waveform was presented 5 times at each SNR

(Ntrial2 = 5). The retest of experiment 2 was conducted with only Nlist,retest = 4 of

the 8 listeners.

The responses obtained in experiment 1 are denoted as a function

RI(c ,τ,ρ, s , l ,ν). Accordingly, the responses obtained in experiment 2 are de-

noted RII(c ,η, s , l ,ν). Table 2.2 describes the function variables. For each fea-

sible combination of variables, the functions RI and RII return the vectors
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Table 2.2: Overview of the entire data set along with the mathematical notation used for the
individual factors.

Factors Variable name Experiment 1 Experiment 2

CVs c NCV = 15 NCV = 15

Talkers τ Ntalk = 2 – (1)

Recordings ρ Nrec = 3 – (1)

Masking-noise conditions η – (1) Nnoise = 2

SNRs s NSNR = 6 NSNR = 6

Listeners l Nlist = 8 Nlist = 8

Response alternatives – Nresp =NCV +1 Nresp =NCV +1

Trials ν Ntrial1 = 3 Ntrial2 = 5

rI = [rI,1, rI,2, ..., rI,Nresp
] and rII = [rII,1, rII,2, ..., rII,Nresp

], respectively, which have

a length of Nresp, a value of “1” for the element corresponding to the chosen

response, and a value of “0” for all other elements. The last element of these

vectors corresponds to the “I don’t know” response and all other elements corre-

spond to the 15 consonants provided as response alternatives. The proportions

of responses were obtained by distributing the “I don’t know” responses evenly

across the 15 other response alternatives, summing the responses across all

trials, and finally dividing by the number of trials. For the data RI obtained in

experiment 1, the conversion of the responses obtained with a given CV, talker,

recording, SNR, and listener is expressed as:

pI,i =
1

Ntrial1

Ntrial1
∑

ν=1

rI,i (ν) +
rI,Nresp

(ν)

NCV
, i = 1, 2, ..., NCV . (2.2)

For the data RII obtained in experiment 2, the conversion of the responses

obtained with a given CV, masking-noise waveform, SNR, and listener is pro-

vided by:

pII,i =
1

Ntrial2

Ntrial2
∑

ν=1

rII,i (ν) +
rII,Nresp

(ν)

NCV
, i = 1, 2, ..., NCV . (2.3)

The resulting vectors pI = [pI,1, pI,2, ..., pI,NCV
] and pII = [pII,1, pII,2, ..., pII,NCV

]

contain the respective proportions of responses and are summarized as the func-
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tions PI(c ,τ,ρ, s , l ) and PII(c ,η, s , l ), representing the proportions of responses

obtained in the two experiments.

2.7.2 Calculation of perceptual distance

The perceptual distance measure is defined in Sec. 2.2.3. The perceptual dis-

tance across CVs was calculated across all response pairs obtained with speech

tokens of different phonetic identity based on PI,

DacrCV(s , l ,τ,τ′,ρ,ρ′,δ) =D[PI(c ,τ,ρ, s , l ), PI(c
′,τ′,ρ′, s , l )] (2.4)

where c = [1, NCV − 1], c ′ = [c + 1, NCV], τ = [1, Ntalk], τ′ = [1, Ntalk], ρ =

[1, Nrec], and ρ′ = [1, Nrec]. The variable δ= [1, Nδ] describes all Nδ =
∑NCV−1

n=1 n

possible combinations of CV identities. For each SNR, the across-CV distances

between Nlist ·N2
talk ·N

2
rec ·Nδ = 30240 response vector pairs were calculated.

The perceptual distance across talkers was calculated across all response

pairs obtained with speech tokens of the same phonetic identity spoken by

different talkers, based on PI,

DacrTalk(s , l , c ,ρ,ρ′) =D[PI(c ,τ,ρ, s , l ), PI(c ,τ′,ρ′, s , l )] (2.5)

where τ= 1 and τ′ = 2=Ntalk, ρ = [1, Nrec], andρ′ = [1, Nrec]. For each SNR,

the across-talker distances between Nlist ·NCV ·N2
rec = 1080 response vector pairs

were calculated.

The perceptual distance within talkers was calculated across all response

pairs obtained with different speech tokens of the same phonetic identity, spo-

ken by the same talker, based on PI,

DwtnTalk(s , l , c ,τ,δ) =D[PI(c ,τ,ρ, s , l ), PI(c ,τ,ρ′, s , l )] (2.6)

where ρ = [1, Nrec − 1] and ρ′ = [ρ + 1, Nrec]. The variable δ = [1, Nδ]

describes all Nδ =
∑Nrec−1

n=1 n possible combinations of recordings from a given

talker. For each SNR, the within-talker distances between Nlist ·NCV ·Ntalk ·Nδ =
720 response vector pairs were calculated.

The perceptual distance across noise tokens was calculated across all re-

sponse pairs obtained with identical speech tokens mixed with two different
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frozen noise tokens based on PII,

DacrNoise(s , l , c ) =D[PII(c ,η, s , l ), PII(c ,η′, s , l )] (2.7)

where η = 1 and η′ = 2 = Nnoise. For each SNR, the across noise-token

distances between Nlist ·NCV = 120 response vector pairs were calculated.

The perceptual distance across listeners was calculated across all response

pairs obtained with physically identical stimuli but different listeners based on

PI and PII,

DacrList,I(s , c ,τ,ρ,δ) =D[PI(c ,τ,ρ, s , l ), PI(c ,τ,ρ, s , l ′)] (2.8)

DacrList,II(s , c ,η,δ) =D[PII(c ,η, s , l ), PII(c ,η, s , l ′)] (2.9)

where l = [1, Nlist−1] and l ′ = [l +1, Nlist]. The variableδ= [1, Nδ] describes

all Nδ =
∑Nlist−1

n=1 n possible combinations of listeners. For each SNR, the across-

listener distances between NCV ·Ntalk ·Nrec ·Nδ = 2520 response vector pairs

were calculated from PI and between NCV ·Nnoise ·Nδ = 840 response vector

pairs from PII. DacrList,I and DacrList,II were combined to DacrList, (comprising

2520+840 = 3360 distance values per SNR).

The average perceptual distance within listeners was calculated across all

response pairs obtained with physically identical stimuli and identical listeners

in test and retest of experiment 2, i.e., based on PII,test and PII,retest,

DwtnList(s , c ,η, l ) =D[PII,test(c ,η, s , l ), PII,retest(c ,η, s , l )] (2.10)

where l = [1, Nlist,retest]. For each SNR, the within-listener distances between

Nlist,retest ·NCV ·Nnoise = 120 response vector pairs were calculated.

2.7.3 Calculation of normalized entropy

In analogy to the calculation of the perceptual distance, the data were also

analyzed in terms of entropy. The entropy specifies the amount of variability

in a given response vector. Here, the normalized entropy was used, which was

defined as:

Hno r m (p) =
100%

log2(min[R, N])
·

R
∑

i=1

pi log2

�

1

pi

�

, ∀ pi > 0 (2.11)
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where p = [p1, p2, ..., pR], pi is the proportion of response alternative i, R

denotes the number of response alternatives, and N represents the number of

observations. The denominator is the theoretical entropy maximum Hma x =

log2(min[R, N]). Division by Hma x thus normalizes the entropy to a range from

0 to 1; multiplication by 100% yields the normalized entropy in percent.

The normalized entropy describes the perceptual variability for a given

response vector whereas the perceptual distance measure represents a compar-

ison between a pair of response vectors. To quantify the effect of the different

sources of variability based on the normalized entropy, the perceptual variability

induced by the different sources of variability therefore had to be contained in

individual response vectors. To obtain such response vectors, the raw data RI

and RII were converted to proportions of responses obtained (on a trial-by-trial

basis) with (1) different CVs, (2) identical CV but different talkers, (3) identical

CV and talker but different recordings, (4) identical speech token but differ-

ent masking-noise waveforms, (5) identical stimulus but different listeners, (6)

identical stimulus and listener but test and retest results. The “I don’t know”

responses were here attributed to randomly chosen response alternatives. The

entropy is sensitive to differences in N, the number of observations. To avoid

an obscured across-condition comparison, it was therefore necessary to have

the same basic number of observations for all the considered conditions that

were to be compared. As this was not the case in the data set (e.g., NCV = 15 but

Ntalk = 3), a “fair” entropy comparison could only be obtained using random

processes and iterating them many times for the resulting entropy to converge

to its true value. The effective number of observations was set to N = 3, which

corresponds to Ntrial1 and Nrec. To illustrate the procedure, three examples are

given that represent the cases (1) Nfactor >N, (2) Nfactor <N, and (3) Nfactor =N.

(1) Nfactor > N. The normalized entropy across CVs (NCV = 15), EacrCV , was

calculated based on RI. For each SNR condition and for each listener, 3

vectors rI obtained in 3 randomly chosen trials with 3 different randomly

chosen CVs were collected, summed, and converted to a proportions of re-

sponse vector p via division by N= 3. In order for the random processes to

converge, the procedure was iterated 1000 times. The normalized entropy

was calculated and eventually averaged across listeners and iterations.

(2) Nfactor <N. The normalized entropy across talkers (Ntalk = 2), EacrTalk, was

calculated based on RI. For each SNR condition, for each CV, and for each
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listener, 3 vectors rI obtained in 3 randomly chosen trials with (1) one

randomly chosen recording of talker A, (2) one randomly chosen recording

of talker B, and (3) one recording of talker A or talker B (randomly chosen

from the residual recordings) were collected, summed, and converted to

a proportions of response vector p via division by N = 3. The procedure

was iterated 1000 times for convergence. The normalized entropy was

calculated and averaged across CVs, listeners, and iterations.

(3) Nfactor = N. The normalized entropy within talkers (Nrec = 3), EwtnTalk,

was calculated based on RI. For each SNR condition, for each CV, for

each talker, and for each listener, 3 vectors rI obtained in 3 randomly

chosen trials with the 3 different recordings spoken by the respective talker

were collected, summed, and converted to a proportions of response

vector p via division by N = 3. The procedure was iterated 1000 times

for convergence. The normalized entropy was calculated and averaged

across CVs, talkers, listeners, and iterations.

Similar calculations were performed to obtain the normalized entropy across

noise tokens (EacrNoise), across listeners (EacrList), and within listeners (EwtnList).



3
Predicting consonant recognition and

confusions in normal-hearing listenersb

Abstract

The perception of consonants in background noise has been in-

vestigated in various studies and was shown to critically depend

on fine details in the stimuli. In this study, a microscopic speech

perception model is proposed that represents an extension of the

auditory signal processing model by Dau et al. [(1997). J. Acoust.

Soc. Am. 102, 2892–2905]. The model was evaluated based on the

extensive consonant perception data set provided by Zaar and Dau

[(2015). J. Acoust. Soc. Am. 138, 1253–1267], which was obtained

with normal-hearing listeners using 15 consonant-vowel combi-

nations (CVs) mixed with white noise. Accurate predictions of the

consonant recognition scores were obtained across a large range

of signal-to-noise ratios. Furthermore, the model yielded convinc-

ing predictions of the consonant confusion scores, such that the

predicted errors were clustered in perceptually plausible confusion

groups. The large predictive power of the proposed model suggests

that adaptive processes in the auditory preprocessing in combina-

tion with a cross-correlation based template-matching back end

can account for some of the processes underlying consonant per-

ception in normal-hearing listeners. The proposed model may

provide a valuable framework, e.g., for investigating the effects of

hearing impairment and hearing-aid signal processing on phoneme

recognition.

b This chapter is based on Zaar and Dau (2016).

41
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3.1 Introduction

The way how humans decode speech has been investigated from various per-

spectives. Most commonly, the percentage of correctly identified words or

sentences is assessed in the presence of some acoustical interference or degra-

dation, such as additive noise and/or reverberation. The speech reception

threshold (SRT), i.e., the signal-to-noise ratio (SNR) at which, e.g., 50% correct

responses are obtained, has often been used to describe the properties of the

transmission channel and/or the receiver (cf. Hagerman, 1982; Nilsson et al.,

1994; Wagener et al., 2003; Nielsen and Dau, 2009; Nielsen and Dau, 2011).

Such speech tests provide some useful macroscopic information about limiting

effects induced by the acoustic conditions or the global speech reception ability

of listeners. However, the SRT measure is rather coarse as it reflects responses

averaged across many speech tokens. Furthermore, the listeners’ performance

may be strongly influenced by cognitive effects as listeners can restore missing

acoustic information using semantic predictability and lexical information (e.g.,

Miller and Licklider, 1950; Warren, 1970; Bashford et al., 1992; Kashino, 2006).

Speech perception has also been studied at a more basic level using a mi-

croscopic approach. Several studies have reported consistent misperceptions

of isolated words (e.g. Cooke, 2009; Tóth et al., 2015), typically collected in

conditions of speech-on-speech masking using an open response set. Such an

approach excludes semantic predictability while taking the language-specific

lexical possibilities for misperceptions into account. Various other studies have

focused on the perception of consonants embedded in nonsense syllables (e.g.,

Miller and Nicely, 1955; Wang and Bilger, 1973; Phatak and Allen, 2007; Phatak

et al., 2008; Zaar and Dau, 2015), e.g. in the form of consonant-vowel combi-

nations (CVs like /ba/, /ta/, etc.), typically presented in steady-state noise at

various SNRs in the context of a closed response set. This approach has the

advantage that (i) the contribution of higher-level semantic and lexical effects is

eliminated due to the nonsense nature of the stimuli and that (ii) the importance

of the critical1 high-frequency speech cues is emphasized as many consonants

contain high-frequency energy (cf. Li et al., 2010; Li et al., 2012). These aspects

make consonant perception measurements an interesting tool for assessing

1 Many hearing-impaired listeners suffer from a loss of sensitivity at high-frequencies, which

affects their speech perception but is difficult to measure using macroscopic tests with mean-

ingful, low-frequency dominated speech.
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the effects of acoustical transmission channels as well as the effects of hearing

impairment and hearing-aid signal processing on fundamental speech cues.

Miller and Nicely (1955) investigated consonant perception in terms of con-

sonant recognition and confusions, such that not only the amount of errors

but also the patterns of confusions were analyzed. Their study suggested that

distinct perceptual confusions among consonants may have a major effect on

speech intelligibility in noise. Miller and Nicely (1955) and related studies (e.g.,

Wang and Bilger, 1973) used many speech tokens to represent each consonant.

The obtained responses were averaged across tokens such that the data were

represented as a function of consonant identity. This analysis approach was

later shown to misrepresent the data since substantial perceptual differences

across different speech tokens of the same phonetic identity were observed

(Phatak et al., 2008; Singh and Allen, 2012; Toscano and Allen, 2014). Zaar and

Dau (2015) employed a measure of the perceptual distance between responses

obtained with CVs presented in noise to investigate the influence of various

sources of perceptual variability on consonant perception. Consistent with the

aforementioned studies, different speech tokens of the same phonetic identity

were found to induce a large perceptual variability. Moreover, even a slight

temporal shift in the steady-state masking noise waveform was shown to induce

a perceptual effect when presented along with the same speech token. On the

receiver side, it was found that different normal-hearing (NH) listeners with

the same language background showed large perceptual differences when pre-

sented with identical stimuli, whereas the individual listeners could reproduce

their responses fairly reliably in a retest. Overall, the listeners’ sensitivity to

fine differences in the stimuli suggests that measures of consonant perception

represent a detailed descriptor of the listeners’ sensory processing.

To better understand how specific effects in consonant perception are re-

lated to differences in sensory processing, computational models of speech

perception may be insightful. Various macroscopic speech intelligibility mod-

els have been presented, which are all based on simulations of the auditory

periphery in terms of frequency selectivity (e.g., ANSI, 1969; ANSI, 1997; Rhe-

bergen et al., 2006), while some models also consider modulation-frequency

selective processing (e.g., Houtgast et al., 1980; Payton and Braida, 1999; Jør-

gensen and Dau, 2011; Jørgensen et al., 2013). Based on the assumption that

speech intelligibility is monotonically related to the speech-to-noise power

ratio in the considered domain, these macroscopic models have been shown
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to account well for average SRTs in various acoustic conditions. Only a few

modeling studies have addressed microscopic speech perception, where typi-

cally elaborate models of the auditory periphery have been combined with a

speech recognition back end to predict nonsense syllable perception. As “blind”

automatic speech recognition (ASR) systems perform much worse than human

listeners in terms of phoneme recognition (e.g., Sroka and Braida, 2005; Meyer

et al., 2011), all microscopic speech perception models presume some kind of

a-priori information about the stimuli to reduce the gap to human recognition

performance.

Messing et al. (2009) used a non-linear model of the auditory periphery with

a feedback mechanism in combination with a simplistic template matching

back end (using “frozen speech”, i.e., a-priori knowledge about the presented

speech token) to predict results of a diagnostic rhyme test (DRT) obtained

with NH listeners. The predictions matched the data quite well in terms of

the errors as a function of phonetic attributes. Jepsen et al. (2014) applied a

similar approach to model DRT results in hearing-impaired (HI) listeners, using

a different non-linear auditory model that includes an adaptation process and

a modulation filterbank (Jepsen et al., 2008). However, the two studies used

highly controlled synthetic consonant-vowel-consonant (CVC) syllables mixed

with speech-shaped noise (SSN). Thus, it remained unclear to what extent these

models could generalize to the less controlled case of natural speech stimuli.

Cooke (2006) predicted NH listeners’ consonant perception obtained

with natural vowel-consonant-vowel (VCV) syllables in SSN based on the

spectro-temporal excitation pattern (Moore, 2003). Speech-dominated spectro-

temporal “glimpses” in the speech and noise mixture were fed to a Hidden-

Markov Model (HMM) based missing-data speech recognizer trained on talker-

specific speech samples. While the model accounted reasonably well for the

consonant-specific recognition scores, the predicted consonant confusions

differed strongly from those observed in the measured data.

Holube and Kollmeier (1996) used an auditory model (Dau et al., 1996) in

combination with a template-matching back end to predict the recognition of

CVCs in SSN in NH and HI listeners. The auditory model by Dau et al. (1996)

consists of a linear auditory filterbank, an envelope extraction stage, a nonlinear

adaptation stage, and a low-pass filter, such that the internal representation (IR)

is a function of time and frequency. In order to compensate for the temporal

differences in the CVC test signals and the CVC templates, Holube and Kollmeier
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(1996) applied a dynamic time warping (DTW) algorithm (Sakoe and Chiba,

1978) as a back end. The DTW algorithm temporally warps (i.e., locally stretches

and compresses) two signals such that they ideally align in time according to

some distance measure. The templates were mixed with noise at the same SNR

as the test signal and the decision was based on the minimum distance between

the test signal and the templates after DTW. Assuming a-priori knowledge, the

speech signal contained in the correct template was identical to the test speech

token such that the distance between the two signals resulted only from the

differences in the noise waveforms. The model by Holube and Kollmeier (1996),

fitted to account for psychoacoustic data of the individual NH and HI listeners

using the original “optimal detector” back end from Dau et al. (1996), was shown

to predict CVC-in-noise recognition data of the individual listeners (averaged

across all considered speech tokens) with good accuracy while confusions were

not considered.

Focusing on consonant- and vowel-specific recognition and confusion data

(measured in NH listeners using CVC and VCV syllables in SSN), Jürgens and

Brand (2009) applied a modeling approach largely comparable to that of Holube

and Kollmeier (1996). The difference in the model front end was mainly the use

of a modulation filterbank (Dau et al., 1997) instead of an envelope low pass

filter, which is supported by several studies arguing that temporal modulations

play a crucial role in consonant perception (e.g., Christiansen et al., 2007; Gallun

and Souza, 2008). In the back end, Jürgens and Brand (2009) considered differ-

ent distance measures for the DTW and investigated model configurations with

and without a-priori knowledge. Their study concluded that (i) a-priori knowl-

edge was necessary to obtain realistic consonant recognition performance, (ii)

the Lorentzian distance measure yielded the best predictions when a-priori

knowledge was used, (iii) consonant- and vowel-specific recognition scores were

generally well predicted (although the model tended to overestimate the recog-

nition performance for many consonants at large SNRs), and (iv) the confusion

predictions were inaccurate.

Thus, while the above microscopic speech perception models yielded rea-

sonable predictions in terms of consonant-specific recognition scores, conso-

nant confusions have not yet been predicted successfully. Moreover, it has been

demonstrated that consonant perception depends on individual speech tokens

and, to some extent, even on the specific choice of the masking noise wave-

forms (Zaar and Dau, 2015). The discussed models have been either evaluated
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with respect to the grand average recognition performance across phonemes

or on phoneme-specific data that still represent averages across many speech

tokens of the same type. In contrast, modeling consonant perception on a

token-by-token basis has not been considered yet.

The present study considers another microscopic speech perception model

that was evaluated on the basis of the extensive data set provided by Zaar and

Dau (2015), obtained with 15 CVs (each represented by six speech tokens) in

conditions of white masking noise at six SNRs. A similar auditory model front

end as the one employed by Jürgens and Brand (2009) was used and a template-

matching process was applied in the back end. In contrast to Jürgens and Brand

(2009), the IR of the noise alone was subtracted from the IRs of the test signals

and the templates prior to template matching (as in the models by Dau et al.,

1996; 1997). Furthermore, while a DTW algorithm was applied to temporally

align test signals and templates, a maximum-correlation based approach was

chosen in the decision stage (cf. Dau et al., 1996; 1997), as opposed to the

minimum-distance based approach by Jürgens and Brand (2009). As proposed

by Dau et al. (1996; 1997), a constant-variance internal noise was added in

the decision stage. Finally, the speech and noise materials used in the present

study (CVs in white noise) largely differed from the material used in Jürgens and

Brand (2009), where CVCs and VCVs in SSN were considered. Average consonant

recognition scores, consonant-specific recognition and confusion scores, as

well as speech-token specific consonant recognition and confusion scores were

considered to evaluate the model. Additionally, the response behavior of the

listeners and the model was investigated by means of an entropy-based analysis.

3.2 Model framework and experimental conditions

3.2.1 Front-end processing

As in Jürgens and Brand (2009), the auditory preprocessing stages from Dau et al.

(1997) were used. The model is shown in Fig. 3.1 (“auditory model”). The first

stage of the model simulates the frequency selectivity of the human auditory

system by means of a linear filterbank, consisting of 15 fourth-order gammatone

filters with center frequencies logarithmically spaced between 315 Hz and 8 kHz.

The outputs of the gammatone filters were shifted in time to time-align the peak

delay of the individual gammatone filters. The second stage represents a rough



3.2 Model framework and experimental conditions 47

approximation of the transformation of the basilar membrane vibrations into

inner hair cell potentials and is realized as an envelope extraction mechanism.

Each gammatone filter output signal is half-wave rectified and then filtered

using a low pass filter with at a cut-off frequency of 1 kHz. The third stage

consists of a chain of five adaptation loops that were designed to mimic adaptive

properties of the auditory periphery and to account for perceptual forward

masking in human listeners (Kohlrausch and Püschel, 1988; Kohlrausch et al.,

1992; Dau et al., 1996). For stationary signals, the adaptation loops provide

an approximately logarithmic compression, whereas faster fluctuations are

transformed more linearly. Therefore, the adaptation loops effectively perform

an onset enhancement of the individual subband envelope representations.

The time constants chosen for the five adaptation loops were τ1 = 5 ms, τ2 =

20 ms, τ3 = 129 ms, τ4 = 253 ms, and τ5 = 500 ms (taken from Dau et al.,

1996). The fourth stage of the model is a low-frequency modulation filterbank

consisting of a third-order low pass filter with a cut-off frequency of 2 Hz in

parallel with three second-order band pass filters with a constant Q of 1 and

center frequencies of 4, 8, and 16 Hz, respectively. After being fed through

the adaptation loops, each subband envelope is thus further decomposed into

four modulation bands. The output of the model front end obtained for any

given input signal x (t ) is denoted as Rx (t , fg , fm ), where t denotes the temporal

samples, fg represents the gammatone filter center frequency, and fm refers

to the modulation frequency. CV speech tokens mixed with white noise were

considered in this study (see Sec. 3.2.3). As in the original auditory model (Dau et

al., 1997), and in contrast to Holube and Kollmeier (1996) and Jürgens and Brand

(2009), the noisy speech token (s +n) and the noise alone (n) were separately

passed through the model front end, yielding the respective temporal patterns

Rs+n and Rn . As an input to the back end, the difference between these temporal

patterns was obtained as the model’s signal representation: Rs =Rs+n −Rn .

3.2.2 Speech recognition back end

The model predictions were obtained using a template-matching approach. An

overview of the modeling approach is depicted in Fig. 3.1. In order to compare

a given test signal (stimulus) with a given template, the corresponding signal

representations Rt e s t (t , fg , fm ) and Rt e mp (t , fg , fm )were time aligned using a

DTW algorithm as proposed by Sakoe and Chiba (1978). The DTW algorithm

locally compresses and expands the time axes of two signal representations
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such that the temporal alignment is ideal according to the chosen distance

measure. In the present study, the Euclidean distance2 measure was used and

defined as

D (ti , t j ) =
√

√

√

∑

fg

∑

fm

�

Rt e s t (ti , fg , fm )−Rt e mp (t j , fg , fm )
�2

, (3.1)

where ti and t j denote arbitrary temporal samples. Traditionally, the chosen

distance measure has also been used as a decision metric, i.e., the template

showing the smallest distance to the test signal was chosen as the model re-

sponse (e.g., Holube and Kollmeier, 1996; Jürgens and Brand, 2009). In the

present study, however, the DTW algorithm was solely applied to obtain time

aligned versions3 of the test-signal and template representations, bRt e s t and
bRt e mp , respectively. Inspired by the original auditory model (Dau et al., 1996;

Dau et al., 1997), the correlation coefficient between these time-aligned repre-

sentations was then calculated as the model’s decision metric as:

C (bRt e s t , bRt e mp ) =

∑

t , fg , fm

h

bRt e s t (t , fg , fm )− bRt e s t

i

·
h

bRt e mp (t , fg , fm )− bRt e mp

i

Nt ,g ,m ·σt e s t ·σt e mp
,

(3.2)

where bRt e s t and bRt e mp represent the mean values and σt e s t and σt e mp

the standard deviations of bRt e s t and bRt e mp , respectively, and Nt ,g ,m denotes

the number of elements (number of samples × number of gammatone filters ×
number of modulation filters). A constant-variance Gaussian noise was added to

the correlation coefficients, reflecting the listeners’ uncertainty (internal noise).

The variance of the noise was kept the same across experimental conditions.

Eventually, the consonant corresponding to the template that yielded the largest

correlation with the test signal was chosen as the model response (see Sec. 3.2.4).

2 The Euclidean distance was used for DTW as it yielded far more plausible time alignment

results as compared to the Lorentzian distance suggested by Jürgens and Brand (2009).
3 The DTW algorithm from Sakoe and Chiba (1978) was applied without any path limitations,

such that any local time-axis warping was in principle allowed.
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Figure 3.1: Scheme of the proposed consonant perception model. For the test signal and a set of
templates, the noisy speech and the noise alone were passed separately through the auditory
model, consisting of a gammatone filterbank, an envelope extraction stage, a chain of adaptation
loops, and a modulation filterbank. The difference between the temporal patterns of the noisy
speech and the noise alone was obtained. The resulting representations of the test signal and
the templates were time-aligned using a dynamic time warping (DTW) algorithm. Finally, the
cross-correlation coefficients between the test signal and each template were calculated and,
after addition of a constant-variance internal noise, converted to percent.

3.2.3 Simulated conditions

The model was evaluated using the experimental conditions described in Zaar

and Dau (2015; experiment 1). 15 CVs consisting of the 15 consonants /b,

d, f, g, h, j, k, l, m, n, p, s, S, t, v/ followed by the vowel /i/ were used

whereby six recordings of each CV were taken from a Danish nonsense syllable

speech material (Christiansen and Henrichsen, 2011). For each CV, three of

these speech tokens were spoken by one particular male talker, the other three

speech tokens were spoken by one particular female talker, amounting to a total

of 90 speech tokens (15 CVs × 3 speech tokens × 2 talkers).

The speech tokens were equalized based on the peak level of an analog

VU-meter simulation that responds sluggishly to the input signal (VUSOFT;

Lobdell and Allen, 2007), such that they exhibited similar vowel levels while

the consonant levels differed (cf. Zaar and Dau, 2015). White Gaussian noise

was mixed with the speech tokens at different SNRs. SNR conditions of 12,

6, 0, -6, -12, and -15 dB were created by fixing the noise at a sound pressure

level of 60 dB and adjusting the level of the speech tokens (based on the overal

root-mean-square level of all speech tokens) according to the desired SNR.

Each speech token was paired with one particular noise token in a given SNR

condition. The noise tokens had a duration of one second and were faded in
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and out using raised cosine ramps with a duration of 50 ms. The speech tokens

were mixed with the respective noise tokens such that the speech token onset

was temporally positioned 400 ms after the noise onset. Eight NH native Danish

listeners were presented three times with each speech token at each SNR and

asked to vote for the consonant they heard. Thus, 24 responses (8 listeners × 3

repetitions) were collected per speech token and SNR, while 144 responses (8

listeners × 3 repetitions × 3 speech tokens × 2 talkers) were obtained per CV

and SNR. The occurrences of responses were divided by the number of stimulus

presentations to obtain the proportions of responses. The above described

stimuli and the corresponding consonant perception data of Zaar and Dau

(2015) were used throughout this study as inputs to the model and as reference

data, respectively.

3.2.4 Simulation procedure

The same experimental stimuli the listeners had been presented with were fed

to the model. While Jürgens and Brand (2009) added threshold-equalizing noise

to the signals, audibility thresholds were not explicitly considered in the present

study since the fixed-level masking noise was above the NH listeners’ thresholds

in the considered frequency range. Each test signal (i.e., each experimental

stimulus) was compared to a talker-specific template set. The speech token

contained in the correct template was identical to the speech token contained

in the test signal (assumption of a-priori information); the other 14 consonants

were each represented by the three available talker-specific speech tokens, such

that, overall, 43 speech tokens were used as templates (1×1 + 14×3). The mask-

ing noise waveforms in the test signals were the same as in the experiment. The

templates were mixed with randomly generated white noise at the test-signal

SNR in analogy to the stimulus generation described in Sec. 3.2.3. Five different

templates were obtained from each considered speech token by mixing the

speech token with five randomly generated noise waveforms. Thus, for a given

test signal, the correct response alternative was represented by 5 templates (1

speech token × 5 noise tokens), whereas the other response alternatives were

each represented by 15 templates (3 speech tokens× 5 noise tokens), amounting

to 215 templates overall.

All test signals and templates and the corresponding noise signals were fed

through the model front end, as described in Sec. 3.2.1, to obtain the respective

signal representations Rt e s t and Rt e mp . The signal representations were cut
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such that the noise-only parts at the beginning and the end were omitted and

only the speech-containing portions4 of the test signals and templates were

further processed. For computational efficiency, the temporal resolution was

reduced from a sampling rate of 44.1 kHz to 100 Hz by buffering Rt e s t and Rt e mp

into 10-ms time frames and taking the mean value across all samples within each

frame. Time aligned versions of the signal representations – bRt e s t and bRt e mp –

were obtained for each combination of test signals and templates using DTW

and the correlation coefficients between them were calculated (as described in

Sec. 3.2.2). As a result, correlation coefficients between each test signal and each

of the respective 215 templates were obtained. Internal Gaussian noise was

added to the correlation coefficients with a constant variance ofσ2
i n t = 0.05. The

variance of the internal noise was chosen such that it yielded the best possible

agreement of the predicted and measured grand average consonant recognition

scores, i.e., the noise globally calibrated the model but did not change across

SNRs, stimuli, or templates.

To convert the noisy correlation coefficients obtained for a specific test sig-

nal to proportions of responses, multiple subsets of templates were drawn from

the available 215 templates. Model responses were obtained based on each

template subset and finally averaged across the considered subsets. Each subset

consisted of 15 templates, each representing a different response alternative

(i.e., one consonant). To ensure an unbiased comparison, all feasible combi-

nations of templates were considered as subsets. As the 14 incorrect response

alternatives were each represented by 15 different templates and the correct

response alternative was represented by 5 different templates (see above), the

number of combinations (i.e., the number of template subsets) was 1514 · 5.

For each subset, the template that showed the largest correlation with the test

signal was selected as the model response. The occurrences of model responses

were then divided by the number of considered template subsets to obtain the

modeled proportions of responses. The procedure described above was iterated

100 times with randomly generated internal noise in each iteration and the

results obtained in the individual iterations were finally averaged.

4 The start and end times of the speech-containing portions were defined as the first and last

sample of the corresponding clean speech token’s power (in dB) that were less than 40 dB

below the speech token’s power maximum.
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3.3 Results and analysis

3.3.1 Consonant recognition

Figure 3.2 depicts the grand average consonant recognition scores, i.e., the

average recognition scores across all considered speech tokens, as a function

of SNR. The open circles represent the average consonant recognition scores

measured in NH listeners (Zaar and Dau, 2015). The filled black circles show the

model predictions from the present study, obtained with the calibrated model

(with internal noise variance σ2
i n t = 0.05), while the small gray circles and

dashed gray lines represent model predictions obtained with a range of internal

noise variances ranging fromσ2
i n t = 0, i.e., no internal noise, toσ2

i n t = 0.5. It

can be observed that the predictions obtained with the calibrated model at this

global level were very close to the perceptual data. This was the case for both

the SRTs (data: -3 dB / predictions: -3.4 dB) and the slopes of the recognition

curves. Thus, the correlation between the two curves was at ceiling (Pearson’s

r = 0.998) and the root-mean-squared error (RMSE) between them was small

(RMSE = 1.68%).
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Figure 3.2: Grand average consonant recognition scores in percent as a function of SNR.The open
black circles represent the perceptual data and the filled black circles show the model predictions
obtained with the calibrated model (internal noise varianceσ2

i n t = 0.05). The small gray circles
and dashed gray lines represent model predictions obtained with a range of internal-noise
variancesσ2

i n t , which are indicated next to the corresponding curves.

Regarding the role of the internal noise, the upper dashed gray lines (σ2
i n t = 0

andσ2
i n t = 0.03) reveal that the model overestimated consonant recognition at
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SNRs of 0, 6, and 12 dB when no or not enough internal noise was considered,

resulting in overly steep slopes. In contrast, internal noise variancesσ2
i n t > 0.05

led to an underestimation of consonant recognition and thus to too shallow

slopes. For the following figures and analyses only the calibrated model was

considered.

Figure 3.3 shows the consonant-specific recognition scores, i.e., the conso-

nant recognition scores averaged across speech tokens of the same phonetic

identity (e.g., /bi/). The consonants are indicated in the upper left corners

of the respective figure panels. Comparing the measured recognition scores

(open circles) across panels, it can be observed that the individual consonants

exhibited drastic differences with respect to their perceptual robustness to the

influence of the masking noise. For instance, the consonant /t/ (bottom mid-

dle panel in Fig. 3.3) was, on average, almost perfectly recognized by listeners

down to an SNR of -6 dB and still recognized about 50% of the times at -15 dB

SNR. This noise robustness can also be observed for /s/ (right panel in fourth

row) and /S/ (bottom left panel). In contrast, some of the consonants were

perceptually much more vulnerable. For example, /v/ (bottom right panel in

Fig. 3.3) shows a recognition score of only about 80% at the large SNRs of 12

and 6 dB, followed by a sudden drop to around 30% at 0 dB SNR, from where

the recognition scores approached chance-level (6.7%) performance towards

lower SNRs. Equally low recognition scores can also be observed for /b/, /f/,

/h/, /l/, /m/, and /p/.

The recognition scores predicted by the model are indicated as filled circles

in Fig. 3.3. Overall, the model predictions of the consonant-specific recognition

scores fit the perceptual data very well. In particular, the noise robustness of /s/,

/S/, and /t/ was well reflected in the predictions, as indicated by the overlap of

the corresponding measured and simulated recognition curves. Furthermore,

the predicted recognition curves for most of the other consonants provided an

almost exact match with the measured ones (e.g., /f, g, h, k, n, v/). In the case

of /b/, /l/, /m/, and /p/, the model performed slightly better than the listen-

ers, particularly for large SNRs. For /d/ and /j/, however, the model slightly

underestimated the listeners’ performance. The predicted recognition scores

in these cases showed an offset across all SNRs while the predicted recognition

curves were qualitatively quite similar to the measured ones.

To quantify the agreement between predictions and measurements, Pear-

son’s r was calculated at each SNR condition between the measured and the
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Figure 3.3: Consonant-specific recognition scores in percent as a function of SNR (averaged
across speech tokens of the same type). The open circles represent the perceptual data and the
filled circles show the corresponding model predictions. The consonants are indicated in the
upper left corners of the panels.

predicted recognition scores (i) across the consonant-specific recognition scores

(averaged across different speech tokens of the same type) and (ii) across the

speech-token specific recognition scores. Table 3.1 summarizes the results. It

can be seen that the measured and predicted recognition scores were signif-

icantly (p < 0.05) correlated across consonants; for SNRs of 6, 0, -6 and -12

dB the correlations were highly significant (p < 0.01). Correspondingly, the

correlations were large particularly at medium SNRs (maximum: r = 0.76 at

0 dB SNR /minimum: r = 0.55 at 12 dB SNR). Furthermore, Table 3.1 shows

that the measured and predicted recognition scores were highly significantly

(p < 0.01) correlated even for individual speech tokens. Again, the largest cor-
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Table 3.1: Correlation between perceptual and predicted consonant recognition scores in terms
of Pearson’s correlation coefficients r and the corresponding p -values. p -values indicating
significant correlation (p < 0.05) are given in bold font. For each SNR condition, the correlation
analysis was performed across consonants (left) and across individual speech tokens (right).

Across consonants Across speech tokens

SNR r p r p

12 dB 0.55 0.017 0.35 0.000

6 dB 0.65 0.004 0.39 0.000

0 dB 0.76 0.001 0.43 0.000

-6 dB 0.75 0.001 0.57 0.000

-12 dB 0.75 0.001 0.56 0.000

-15 dB 0.57 0.013 0.31 0.001

relation was observed at medium SNRs (maximum: r = 0.57 at -6 dB SNR /

minimum: r = 0.31 at -15 dB SNR). As expected, the correlation coefficients

across the speech-token specific recognition scores were generally lower than

the correlation coefficients across the consonant-specific recognition scores.

However, the p -values for the speech-token specific correlations were also lower,

indicating higher significance than in the consonant-specific case. This was

due to the difference in the number of data points considered for the individual

correlations (15 for the consonant-specific case vs. 90 for the speech-token

specific case).

3.3.2 Consonant confusions

Figure 3.4 provides an overview of the entire measured and predicted data in

terms of a confusion matrix (CM). The perceptual data and the model predic-

tions were averaged across speech tokens of the same identity and across the

six considered SNRs to obtain the CM. The vertical axis indicates the presented

consonants, while the horizontal axis represents the consonants provided as

response alternatives. Therefore, the full response patterns obtained for the

individual consonants (consisting of the average consonant recognition as well

as consonant confusion scores) are reflected in the individual rows of the CM

and the average recognition scores are represented by the diagonal elements

of the CM. The perceptual data and the predictions are depicted as circles, the

size of which indicates the underlying proportions of responses according to
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the six categories shown in the figure’s legend.

A complete overlap of circles indicates a large agreement between the re-

spective measured (filled gray circles) and predicted (open red circles) average

response scores. Such complete overlap can be observed along the CM’s diago-

nal, which reflects the average consonant recognition scores. This is another

view of the good agreement of measured and predicted consonant-specific

recognition scores demonstrated in Table 3.1 and Fig. 3.3. The off-diagonal

CM elements represent the average consonant confusions. Certain groups of

consonants that were likely to be confused with each other (confusion groups)

can be observed in the perceptual data (filled gray circles). Most notably, three

groups can easily be identified: /m, n, j, l, v/, /f, h, b, g, d, p, k/, and /s, S,

t/. Additionally, there was some overlap between the first and the second group.

In general, the confusion predictions of the model (open red circles) captured

the measured confusions (filled gray circles) quite well, as can be seen from

the overlap of the off-diagonal circles. In particular, the vast majority of the

measured confusions was reflected in the predictions (70 out of 81 measured

confusions “hit” by the model according to the categories used in Fig. 3.4), i.e.,

the model’s errors were, on average, very similar to the errors made by the lis-

teners. This was also reflected in the clustering of the model predictions, which,

to a large extent, followed the confusion group clustering discussed above for

the perceptual data. However, the model tended to underestimate the extent

of the confusions (i.e., there are many red circles that are smaller than their

gray counterparts) and, instead, predicted additional confusions (e.g. /m, n, j/

confused with /f, h, b, g, d, p/) that were not reflected in the perceptual data

(36 “false alarms” predicted by the model according to the categories used in

Fig. 3.4).

Figure 3.5 shows three example confusion patterns (first introduced by Allen,

2005) for /m/, /s/, and /k/, respectively, each reflecting the average responses

obtained with six different speech tokens. While /m/ and /s/ represent two

examples with highly correlated measured and predicted confusions (Pearson’s

r of 0.76 and 0.96, respectively; cf. Table 3.2), /k/ showed the least correlation

between the measured and the predicted confusions (Pearson’s r of 0.43). In

the top row, the perceptual data are depicted in terms of consonant recognition

(black line) and consonant confusions (colored lines) as a function of SNR. In

the bottom row, the corresponding model predictions are shown. It can be

observed that the model predictions captured the types of confusions made by
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Figure 3.4: Data and predictions averaged across SNR and across speech tokens of the same type,
depicted as a confusion matrix. The presented consonants are shown on the vertical axis and
the response alternatives on the horizontal axis. The filled gray circles represent the perceptual
data while the open red circles show the model predictions. The size of the circles indicates the
proportions of responses according to the six categories provided in the legend.

the listeners to a large extent. /m/ was confused with /n, l, v, j/ both by the

listeners and the model (left panel). /s/ (middle panel) was confused with /t,

S, f/ by the listeners and the model, while the fourth confusion at the lowest

SNR of -15 dB differed (listeners: /d/; model: /v/). In the case of /k/, it can

be seen that there still was some agreement, as the model and the listeners

showed confusions with /h/ and /p/. However, the other measured confusions

(/d, g/) were not reflected in the model predictions, which instead showed

confusions with /f, b/. Nevertheless, the overall agreement between measured

and predicted confusions was large (mean Pearson’s r across consonants: 0.66;
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cf. Table 3.2).

As already seen in the CM (Fig. 3.4), the perceptual confusions were more

pronounced than the predicted ones, i.e., the listeners were more consistent in

their errors than the model. This is reflected in the generally lower confusion

scores obtained in the model predictions as compared to the perceptual data.

For instance, in the case of /m/ (top left panel), the listeners showed a very

pronounced confusion with /n/, which reached up to 44% at 6 dB SNR. In the

model predictions (bottom left panel), however, the maximum confusion with

/n/ reached only 17% (at 0 dB SNR). Similar underestimations of the confusions

can be observed for the consonant /s/ (middle panel), as well as for many other

consonants that exhibited large perceptual confusions (not shown here).
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Figure 3.5: Measured (top) and predicted (bottom) confusion patterns obtained for /m/ (left),
/s/ (middle), and /k/ (right). The data were averaged across different speech tokens of the same
type. The correct responses are indicated as thick black lines and the confusions are shown as
thinner lines in different colors; the data points are labeled with the corresponding consonants.
Maximally five responses are depicted for clarity, which were chosen based on their extent. A
slight horizontal shift was introduced to the data for better readability. The ordinate is scaled
logarithmically to emphasize the confusions.

To evaluate the significance of the observed agreement between the con-

fusions in the perceptual data and in the model predictions, Pearson’s r was

calculated between the measured and predicted across-SNR average response

patterns using (i) consonant-specific data (i.e., data averaged across differ-

ent speech tokens of the same type) and (ii) speech-token specific data. Only

the erroneous responses obtained for each CV/speech token (i.e., only the

off-diagonal elements of the CM) were correlated; the recognition scores (on-

diagonal elements of the CM), which would otherwise strongly dominate the

correlations, were excluded in order to evaluate the qualitative agreement of

the measured and predicted confusions irrespective of the recognition score

agreement. This confusion correlation was only taken into account if the cumu-
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lative error Pe (i.e., the sum of all perceptual confusions averaged across SNR)

exceeded 20%.

The left part of Table 3.2 summarizes the results obtained with the

consonant-specific data in terms of a correlation coefficient r and a corre-

sponding p -value for each stimulus consonant. The analysis revealed that the

predicted confusions were strongly correlated with the measured confusions

when considered at the consonant level (maximum: r = 0.96 for /s/; minimum:

r = 0.43 for /k/; average: ra v g = 0.66). Almost all (12 out of 15) consonant-

specific confusion correlations were significant (p < 0.05, in bold font), except

for /l/ and /k/, which exhibited p -values just above 0.05. For /t/, no correlation

was obtained as the error was too small (Pe ≤ 20%).

For the speech-token specific case, correlation coefficients and p -values

were obtained for each of the 90 speech tokens. For the sake of compactness,

the right side of Table 3.2 shows a collapsed version of the results obtained with

the speech-token specific data in terms of the average correlation coefficients r

and the average p -values p for each stimulus consonant (i.e., averaged across

speech tokens of the same type). Additionally, the number of significantly

correlated confusion patterns (p < 0.05), Ns, and the number of considered

speech tokens (with Pe > 20%), Nc, are provided in the rightmost column of

Table 3.2. The speech-token specific confusion correlation analysis revealed

that the confusion correlations were significant only for 43 of the 83 eligible

speech tokens (7 of the 90 speech tokens showed Pe ≤ 20% and were thus not

considered). The maximum average confusion correlation at the speech-token

level was r = 0.89 for /S/. All other correlations were much smaller, with a

minimum at r =−0.02 for /t/. The average confusion correlation coefficient

across all considered 83 speech tokens was r a v g = 0.47.

In addition to the confusion correlation analysis of the across-SNR average

data described above, the consonant-specific and speech-token specific confu-

sion correlations were also evaluated for the individual SNR conditions. The

left side of Table 3.3 shows the average correlation coefficients and p -values

obtained based on the consonant-specific data. The number Ns of consonants

exhibiting significant confusion correlation (p < 0.05) and the number Nc of

considered consonants (with Pe > 20%) are given in parentheses. It can be

observed that the model captured most of the measured confusions well at the

consonant- and SNR-specific level. Average confusion correlations ranged be-

tween 0.44 and 0.66 and the highest correlation values were obtained for SNRs
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Table 3.2: Correlation between perceptual and predicted consonant confusion scores as a func-
tion of the presented consonant (only obtained if the overall error Pe > 20%). The Pearson’s
correlation coefficients r and the corresponding p -values were obtained across the response
alternatives (excluding the recognition scores) based on the consonant-specific and on the
speech-token specific across-SNR average data, respectively. The speech-token specific correla-
tion results were then averaged across the different speech tokens of the same type (averages
r and p ). p -values indicating significant confusion correlation (p < 0.05) are given in bold
font. The rightmost column additionally contains the number Ns of tokens showing significant
confusion correlation (p < 0.05) and the number Nc of considered tokens (with error Pe > 20%).
The consonants are ordered as in Fig. 3.4.

Consonant-specific data Speech-token specific data

Consonant r p r p (Ns/Nc)

/m/ 0.76 0.001 0.56 0.045 (4/6)

/n/ 0.76 0.001 0.58 0.042 (5/6)

/j/ 0.68 0.004 0.51 0.095 (4/6)

/l/ 0.45 0.053 0.24 0.332 (2/6)

/v/ 0.60 0.012 0.37 0.222 (2/6)

/f/ 0.60 0.011 0.42 0.098 (3/6)

/h/ 0.69 0.003 0.45 0.117 (2/6)

/b/ 0.65 0.006 0.52 0.055 (3/6)

/g/ 0.60 0.012 0.55 0.048 (4/6)

/d/ 0.49 0.038 0.31 0.217 (2/6)

/p/ 0.82 0.000 0.55 0.047 (4/6)

/k/ 0.43 0.060 0.33 0.176 (2/6)

/t/ N/A N/A -0.02 0.520 (0/2)

/s/ 0.96 0.000 0.89 0.000 (4/4)

/S/ 0.80 0.000 0.54 0.058 (3/5)

of 0 and 6 dB. The model showed significant confusion correlations for almost

all (19 out of 22) considered consonants at SNRs ≥ 0 dB and for more than half

(24 out of 43) of the considered consonants at negative SNRs. When considering

the speech-token specific data per SNR (right side of Table 3.3), the average

confusion correlations were substantially lower, ranging from 0.24 to 0.44. The

largest average correlations were again found for SNRs ≥ 0 dB, with significant

confusion correlations obtained for about half (57 out of 113) of the considered

speech tokens. For negative SNRs, the confusions were significantly correlated

for only 30% (75 out of 250) of the considered speech tokens. This substantial

decrease of the model performance at the level of individual speech tokens
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Table 3.3: Correlation between perceptual and predicted consonant confusion scores as a func-
tion of SNR (only obtained if the overall error Pe > 20%). For each SNR condition, the Pearson’s
correlation coefficients r and the corresponding p -values were obtained across the response
alternatives (excluding the recognition scores) based on the consonant-specific and on the
speech-token specific data, respectively. The SNR-specific results were then averaged across the
different consonants and the different speech tokens, respectively (averages r and p ). p -values
indicating significant confusion correlation (p < 0.05) are given in bold font. The p -values are
accompanied by the number Ns of consonants/tokens showing significant confusion correlation
(p < 0.05) and the number Nc of considered consonants/tokens with error Pe > 20% (maximally
15 consonants/90 speech tokens).

Across consonants Across speech tokens

SNR r p (Ns/Nc) r p (Ns/Nc)

12 dB 0.47 0.097 (2/4) 0.44 0.156 (11/20)

6 dB 0.66 0.014 (6/6) 0.37 0.226 (14/33)

0 dB 0.66 0.019 (11/12) 0.43 0.165 (32/60)

-6 dB 0.44 0.118 (7/13) 0.27 0.258 (21/77)

-12 dB 0.45 0.157 (9/15) 0.26 0.283 (27/85)

-15 dB 0.49 0.104 (8/15) 0.24 0.294 (27/88)

and SNRs was probably caused by the extremely low number of observations5

considered in this case, which resulted in noisy reference data.

3.3.3 Entropy-based analysis

The above analysis demonstrated that while the model mostly accounted for

the types of measured confusions, it showed a tendency to underestimate the

amount of these confusions and, instead, additionally selected other confu-

sions that were not reflected in the perceptual data. This suggests that the

model responded more randomly than the listeners. To analyze the overall

response behavior of the listeners and the model in terms of the randomness of

the responses, the entropy of responses was calculated (cf. Miller and Nicely,

1955; Phatak et al., 2008; Zaar and Dau, 2015). In particular, the normalized

entropy for a given response vector p= [p1, p2, ..., pR], with p1, ..., pR denoting the

proportions of responses for the individual response alternatives, was defined

5 24 observations were available per speech token and SNR condition; in case of the error just

exceeding the 20% threshold, the considered confusion patterns therefore consisted of only 5

observations.
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as:

Hno r m (p) =
100%

log2(R)
·

R
∑

i=1

pi log2

�

1

pi

�

, ∀ pi > 0 (3.3)

with log2(R) representing the theoretical entropy maximum. The normalized

entropy is therefore confined to the interval [0%, 100%]. When the randomness

in the response vector is minimal, i.e., one element has a value of 1 and the

other elements are 0, the normalized entropy is 0%. When the randomness in

the response vector is maximal, i.e., all elements have the same value of 1/R, the

normalized entropy is 100%. The normalized entropy was calculated per SNR

condition (i) for each response vector in the consonant-specific perceptual data

and predictions and (ii) for each response vector in the speech-token specific

perceptual data and predictions and, finally, averaged across consonants and

speech tokens, respectively.

Figure 3.6 shows the normalized entropy obtained from the perceptual data

(white bars) and from the model predictions (black bars) as a function of SNR for

the consonant-specific case (left panel) and for the speech-token specific case

(right panel). The entropy generally increased with decreasing SNR as the task

became more challenging and the consonant percept became more uncertain

due to the increased masking effect of the noise, such that more errors and

less systematic errors occurred. Furthermore, the entropy in the consonant-

specific perceptual data (left panel, white bars) was around 10% larger than

the entropy in the speech-token specific perceptual data (right panel, white

bars), except at the largest SNR of 12 dB (5% difference). This indicates that

averaging across speech tokens of the same type increases the randomness in

the responses, implying perceptual differences across the considered speech

tokens. This effect has already been shown for the considered data set on a

listener-by-listener basis (Zaar and Dau, 2015) and is here confirmed for the

across-listener average data, highlighting the importance of considering the

data (and predictions) at the speech-token level.

Regarding the comparison between the perceptual data and the model

predictions, the entropy analysis revealed that the model predictions showed a

larger entropy than the perceptual data. This was the case both for the entropy

analysis at the consonant level (left panel of Fig. 3.6, black bars vs. white bars)

and at the speech-token level (right panel, black bars vs. white bars), with

differences of up to 13% in both cases. Thus, the entropy-based analysis showed



3.4 Discussion 63

that the model’s response behavior was indeed more random than that of the

listener panel.
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Figure 3.6: Normalized entropy in percent as a function of SNR calculated from the perceptual
data (white bars) and the model predictions (black bars). Left: normalized entropy obtained from
consonant-specific data and predictions; right: normalized entropy obtained from speech-token
specific data and predictions. The normalized entropy was calculated for each consonant/speech
token and SNR and then averaged across consonants/speech tokens.

3.4 Discussion

3.4.1 Relation to other studies

The model proposed in the present study represents an extension of the auditory

detection model by Dau et al. (1997) towards predicting microscopic speech

perception data. The main references for comparison of the model performance

are the related modeling work of Jürgens and Brand (2009), which partly in-

spired the present study, and the Glimpse-model approach by Cooke (2006).

However, it should be noted that these models were evaluated on different stim-

uli and data, such that a direct comparison is difficult. In particular, Jürgens

and Brand (2009) used VCVs in steady-state SSN and Cooke (2006) employed

VCVs in N-talker babble modulated SSN, while the present study used CVs in

steady-state white noise (cf. Zaar and Dau, 2015). In terms of the grand average

consonant recognition as a function of SNR, the proposed model showed an

almost perfect fit with the perceptual data, whereas the model by Jürgens and

Brand (2009) showed an overly steep recognition curve in their study (see their

Fig. 3); this is mainly attributable to the calibration of the proposed model using

internal noise (as shown in Fig. 3.2, see also Sec. 3.4.2), which had not been

performed by Jürgens and Brand (2009). Cooke (2006) only considered one

SNR condition, such that no comparison is feasible here. Regarding consonant-
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specific recognition scores, Jürgens and Brand (2009) showed a good agreement

between their perceptual data and the corresponding predictions at medium

to low SNRs, whereas their model predicted perfect recognition irrespective

of the considered consonant at large SNRs, which was not reflected in their

perceptual data (see their Fig. 4). Cooke (2006) obtained reasonable predictions

of the consonant-specific trends in the recognition scores for the considered

SNR of -6 dB (see his Fig. 10). The model presented in the current study, how-

ever, provided significantly correlated recognition scores across consonants at

all considered SNR conditions, including large positive SNRs of 6 and 12 dB.

Furthermore, the proposed model yielded highly significantly correlated recog-

nition score predictions even at the speech-token level, which has so far not

been reported in the related literature. Finally, while Jürgens and Brand (2009)

and Cooke (2006) concluded that their respective models did not account well

for consonant confusions, the present study demonstrated that the proposed

model predicted the perceptual consonant confusions to a large extent (at the

consonant-specific level).

3.4.2 Significance of the model components

During the development of the proposed model, many decisions were taken

regarding the model design. This section lays out the reasons for including the

individual model components and how they influence the predictions.

The auditory model used as a front end (Dau et al., 1997) was adapted for

consonant perception modeling in a similar way as in Jürgens and Brand (2009).

The low-frequency bands (between 50 and 300 Hz), typically considered in the

gammatone filterbank, were omitted in order to mitigate the effect of differences

in the low-frequency vowel portions of the stimuli and the templates, which

may otherwise result in undesired effects that are independent of the consonant

cues (e.g., prediction biases based on vowel-portion similarity6). The envelope

extraction stage and the adaptation loops were parametrized as suggested by

Dau et al. (1997). The onset enhancement performed by the adaptation loops

provided realistic predictions as, e.g., the onset of the high-frequency frication

6 Since the low-frequency energy of the CVs is large compared to the mid- and high-frequency

bands but does not contribute substantially to consonant perception, slight differences in

the vowel pronunciation can induce biases that are independent of consonant-cue similarity

and thus detrimental to the predictive power of the model.
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noise of an /s/ was enhanced such that it became more similar to the high-

frequency burst of a /t/, which led to a perceptually plausible confusion at

low SNRs (see Fig. 3.5, middle panels). Finally, four low-frequency modulation

filters were applied, as also proposed by Jürgens and Brand (2009). It should

be noted that simulations obtained using a simple low-pass filter with a cut-off

frequency of 8 Hz (Dau et al., 1996) instead of a modulation filterbank led to

comparably accurate results. However, the modulation-filterbank model is

expected to generalize to a broader range of conditions as (i) the corresponding

Dau et al. (1997) model accounts for more psychoacoustic conditions than the

Dau et al. (1996) model and (ii) modulation-domain based macroscopic speech

intelligibility models (e.g., Houtgast et al., 1980; Jørgensen et al., 2013) have

been shown to account for a large variety of acoustic conditions.

While Jürgens and Brand (2009) directly fed the outputs of the model front

end obtained with the noisy speech tokens to the back end, the present study

followed the original model from Dau et al. (1997) in that the difference between

the front-end outputs obtained with the noisy speech and the noise alone was

considered in the back end. This assumption of a-priori knowledge about

the masking noise was necessary to correctly predict the robustness of high-

frequency cues (observed in the perceptual data for /s, S, t/). In contrast,

Jürgens and Brand (2009) could partly predict the robustness of high-frequency

cues (/t, s, ts, S/, see their Fig. 4) without this assumption. However, they

used masking noise with a speech-shaped spectrum (sloping down towards

high frequencies), such that the masking in the relevant high-frequency region

was much less effective than in the present study, where white masking noise

with a flat spectrum was employed. Thus, it can be concluded that if all the

relevant consonant cues are masked to a comparable extent, the assumption of

a-priori knowledge about the masking noise appears to be necessary for realistic

predictions, at least when using the auditory model of Dau et al. (1997) as a

front end. The need for such a mechanism in the model is consistent with the

results from a study by Mesgarani et al. (2014), which showed that spectrograms

reconstructed from neural representations of noisy phonemes measured in

ferret primary auditory cortex were more similar to the clean phonemes than

to the noisy ones. This implies the existence of a de-noising mechanism at

higher stages of auditory processing, which the auditory model considered

in the present study does not capture. Using a-priori knowledge about the

noise may thus be considered as a simplistic way of simulating a de-noising
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mechanism.

The model’s decision was based on the maximum cross-correlation (as in

Dau et al., 1997; see also Gallun and Souza, 2008) of the time-aligned IRs of

the test signal and the templates, as opposed to the minimum distance used

by Jürgens and Brand (2009). The cross-correlation has the advantage that it

is insensitive to level differences (i.e., solely describes covariation), which may

be more closely related to the perceptual decision-making process than any

distance measures (be it Euclidean or Lorentzian distance), which are typically

sensitive to level differences. An earlier distance-based version of the model

indeed yielded less convincing predictions of the perceptual data, partly due to

biases that were presumably induced by this level sensitivity. A similarly biased

behavior can be observed in the Jürgens and Brand (2009) predictions (see

their Fig. 6, panel 2). The correlation-based back end alleviated this problem

to a large extent and, thus, yielded realistic predictions in terms of consonant

recognition and confusion scores.

Finally, the constant-variance internal noise in the model’s decision stage

(representing the listeners’ uncertainty, cf. Dau et al., 1997) provided a realistic

amount of uncertainty at medium to large SNRs, where the predicted recog-

nition scores otherwise exceeded the measured ones, leading to overly steep

recognition curves (see upper gray curve in Fig. 3.2). This result has also been

reported by Jürgens and Brand (2009), who did not include an explicit calibra-

tion mechanism in their model. Although the internal noise affected the model

predictions differently at different SNRs (cf. Fig. 3.2), the internal noise used in

the present study merely calibrated the model as a whole, i.e., it did not change

across SNRs, stimuli, or templates. The entropy-based analysis showed that

the model responded slightly more randomly than the listeners did. It might

seem intuitive to reduce the internal-noise variance in order to mitigate this

mismatch; however, this is not feasible as it would considerably worsen the

model’s prediction accuracy with respect to the consonant recognition scores.

3.4.3 Limitations of the approach

Despite its large predictive power for the considered data/stimuli, the conso-

nant perception model proposed in the present study needs to be tested for

generalizability using other data sets that differ with respect to the speech to-

kens (e.g., VCVs instead of CVs), the native language of the talkers and listeners

(e.g., English instead of Danish), and/or the noise type (e.g., SSN instead of
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white noise). Furthermore, as all stimuli were above NH audibility thresholds

in the considered frequency bands, no audibility thresholds were considered

in the model. Therefore, the model is bound to fail for partly or fully inaudible

stimuli due to low presentation levels or hearing impairment. This could be

overcome by adding threshold-simulating noise (cf. Jürgens and Brand, 2009;

Jürgens et al., 2014) or by excluding the frequency bands below threshold from

further processing (cf. Jørgensen and Dau, 2011). Moreover, it has been shown

in Zaar and Dau (2015), based on the data set considered in the present study,

that different NH listeners with the same language background can exhibit

large perceptual differences for identical stimuli. The current study, however,

focused on the across-listener average data, thus neglecting the across-listener

perceptual variability. The proposed model has, in its current form, no means

of explaining such listener-specific effects, which may be attributable to indi-

vidual biases or supra-threshold processing deficits that were not captured by

the audiometric test.

3.4.4 Perspectives

The most common acoustic condition that has been considered in consonant

perception studies is additive stationary noise (e.g., Miller and Nicely, 1955;

Wang and Bilger, 1973; Phatak and Allen, 2007; Phatak et al., 2008; Zaar and Dau,

2015). While this condition has provided valuable insights in the cues underlying

consonant perception, it does not reflect realistic acoustic scenarios, in which

most competing sound sources are strongly modulated and reverberation is

typically present. An experimental investigation of consonant perception in

such conditions and a subsequent evaluation of the proposed model’s predictive

power for the corresponding data may therefore be a crucial next step.

The present study focused on modeling consonant perception data obtained

with NH listeners. However, consonant perception measurements may be par-

ticularly insightful when used as a tool to identify specific problems experienced

by HI listeners. To better understand the cause of these problems, a version

of the model that is conceptually capable of explaining effects of hearing im-

pairment may be useful. To that end, sensitivity, compression, and frequency

selectivity should be adjustable in the model front end. Furthermore, a model

version that simulates the effects of hearing-aid signal processing in combina-

tion with the effects of certain types of hearing impairment may be a powerful

tool for parametrizing hearing aid algorithms. A comparable model extension
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may be conceived for simulating the effects of cochlear-implant phoneme trans-

duction and adjusting the corresponding algorithms (e.g., regarding channel

selection).

The proposed model predicts consonant perception from an auditory mod-

eling perspective, i.e., using a-priori information where necessary to predict

the data. A “blind” model that bases its predictions only on the stimulus, just

like listeners give their responses solely based on the stimulus, would represent

a more elegant approach. Such a model requires a massive ASR back end that

reaches human performance, which has so far not been feasible (Meyer et al.,

2011). However, recent advances in ASR using HMMs in combination with

Deep Neural Networks (DNNs, e.g. Hinton et al., 2012; Dahl et al., 2012) suggest

that the gap between human and machine speech recognition is decreasing

substantially. When blind ASR-based models become technically feasible, the

present study may serve as a reference with respect to the front end features that

should be considered to obtain realistic predictions. Furthermore, the reported

predictive power of the assumption of a-priori knowledge about the masking

noise motivates the use of suitable source separation algorithms prior to the

speech recognition process.

3.5 Summary and conclusions

A consonant perception model was presented and evaluated with respect to

consonant recognition and consonant confusions at different levels of detail.

The model consists of an auditory modeling front end in combination with a

correlation-based template-matching back end and represents an extension of

the auditory processing model by Dau et al. (1997) towards predicting micro-

scopic speech perception data. The model was evaluated based on the extensive

CV-in-noise data from Zaar and Dau (2015), obtained with NH listeners. Overall,

a good agreement between the perceptual data and the model predictions was

demonstrated. The measured grand average consonant recognition scores as a

function of SNR were almost perfectly accounted for by the model. Furthermore,

the predicted consonant-specific recognition scores were highly correlated with

the measured ones. Even at the speech-token level, large correlations between

the predicted and the perceptual recognition scores were obtained. Regarding

consonant confusions, the model predictions showed a strong similarity with

the measured confusions at the consonant-specific level. However, the model
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tended to underestimate the extent of the main confusions in this scenario and

showed only partially satisfactory confusion predictions at the speech-token

level. It was shown in an additional entropy-based analysis that the model

generally responded slightly more randomly than the listener panel did, which

explains the observed shortcomings.

Overall, the large predictive power of the proposed model suggests that

adaptive processes in the auditory preprocessing in combination with a cross-

correlation based template-matching back end functionally account for some

of the processes underlying consonant perception in normal-hearing listeners.

The modeling framework may serve as a normal-hearing baseline for future

microscopic models of speech perception that can account for effects of hearing-

impairment and hearing-aid signal processing on phoneme perception.
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4
Predicting effects of hearing-instrument

signal processing on consonant
perceptionc

Abstract

This study investigates the influence of hearing-aid (HA) and

cochlear-implant (CI) processing on consonant perception in

normal-hearing (NH) listeners. Measured data were compared to

predictions obtained with a speech perception model [Zaar and Dau

(2016). J. Acoust. Soc. Am., under review] that combines an auditory

processing front end with a correlation-based template matching

back end. In terms of HA processing, effects of strong nonlinear

frequency compression and impulse-noise suppression were mea-

sured in 10 NH listeners using consonant-vowel stimuli. Regarding

CI processing, the consonant perception data from DiNino et al.

[(2016). J. Acoust. Soc. Am., under review]were considered, which

were obtained with noise-vocoded vowel-consonant-vowel stimuli

in 12 NH listeners. The inputs to the model were the same stimuli

as were used in the corresponding experiments. The model predic-

tions obtained for the two data sets showed a large agreement with

the perceptual data both in terms of consonant recognition and con-

fusions, demonstrating the model’s sensitivity to supra-threshold

effects of hearing-instrument signal processing on consonant per-

ception. The results could be useful for the evaluation of hearing-

instrument processing strategies, particularly when combined with

simulations of individual hearing impairment.

c This chapter is based on Zaar et al. (2016).
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4.1 Introduction

Speech perception is commonly tested by assessing the percentage of correctly

identified words or sentences in the presence of some acoustical interference

or degradation, such as additive noise and/or reverberation (cf. Hagerman,

1982; Nilsson et al., 1994; Wagener et al., 2003; Nielsen and Dau, 2009; Nielsen

and Dau, 2011). While such speech tests provide some useful “macroscopic”

information about the effects of different acoustic conditions on intelligibility,

the typically used speech reception threshold measure (SRT; representing the

signal-to-noise ratio at which 50% intelligibility is obtained) is rather coarse as it

reflects responses averaged across many speech tokens. Furthermore, the listen-

ers can “restore” missing acoustic information using semantic predictability and

lexical information (e.g., Miller and Licklider, 1950; Warren, 1970; Bashford et al.,

1992; Kashino, 2006), such that linguistic processing ability may strongly influ-

ence the listeners’ performance. Moreover, the frequency importance function

for the intelligibility of sentences is strongly dominated by the low-frequency

speech content (Pavlovic, 1987), such that macroscopic speech intelligibility

tests are not very sensitive to effects in the mid and high frequency ranges (e.g.,

due to high-frequency masking noise, filtering, or nonlinear speech process-

ing). Therefore, such tests seem to be suboptimal for investigating effects of

hearing impairment (which is typically most pronounced at high frequencies)

and hearing-instrument signal processing on speech perception.

Instead, it can be insightful to examine the perception of individual

phonemes, sometimes referred to as a “microscopic” approach of studying

speech perception. Various studies have focused on the perception of conso-

nants embedded in nonsense syllables in normal-hearing (NH) listeners (e.g.,

Miller and Nicely, 1955; Wang and Bilger, 1973; Phatak and Allen, 2007; Phatak

et al., 2008; Zaar and Dau, 2015), e.g. in the form of consonant-vowel combi-

nations (CVs like /ba/, /ta/, etc.), typically presented in steady-state noise at

various signal-to-noise ratios (SNRs). In such tests, the contribution of high-

level restoration effects is eliminated due to the nonsense nature of the stimuli

and the importance of the critical high-frequency speech cues is taken into

account as many consonant cues contain high-frequency energy (cf. Li et al.,

2010; Li et al., 2012). Furthermore, not only the correct consonant recognition

can be evaluated, but also consonant confusions, i.e., the type of error that

occurred.
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Several studies have investigated the effects of hearing impairment on con-

sonant perception (e.g., Phatak et al., 2009; Trevino and Allen, 2013). Scheidiger

and Allen (2013) studied the influence of different amplification schemes on

consonant perception in hearing-impaired (HI) listeners and demonstrated that

consonant perception tests may be more informative for hearing-aid (HA) fitting

than pure-tone audiometry. Schmitt et al. (2016) presented a consonant percep-

tion test specifically designed for high-frequency HA fitting, which determines

(i) the audibility thresholds of high-pass filtered representations of /s/ and /S/

and (ii) the recognition thresholds of these consonants in a vowel-consonant-

vowel (VCV) context (i.e., /asa, aSa/). Testing HI listeners with and without HAs,

they demonstrated that the test was sensitive to effects of high-frequency ampli-

fication as well as to effects of nonlinear frequency compression (NLFC). NLFC

(Simpson et al., 2005) is designed to restore high-frequency acoustic informa-

tion in listeners with pronounced high-frequency hearing loss by compressing

the high-frequency signal content and shifting it to lower frequencies, as HAs

typically cannot provide sufficient gain at frequencies above 5 kHz (Kimlinger

et al., 2015). Glista et al. (2009) showed that NLFC can substantially improve

high-frequency consonant recognition scores in listeners with a high-frequency

hearing loss. However, NLFC with “too strong” settings can result in a drastic

reduction of consonant recognition, as demonstrated by Schmitt et al. (2016).

This is consistent with the strongly frequency dependent acoustic cues that lead

to different consonant percepts (cf. Li et al., 2010; Li et al., 2012), as frequency-

compressed high-frequency consonants may perceptually “morph” into other

consonants that exhibit a temporally similar cue in a lower frequency region.

For example, /s/ and /S/ are represented by frication noise at very high and

slightly lower frequencies, respectively, such that a too strong NLFC leads to /s/

being perceived as /S/. However, such perceptual morphs may disappear after

an acclimatization period due to re-learning of the modified consonant cues

(cf. Wolfe et al., 2011). Consonant perception depends not only on the spectral

characteristics of the signal but also on its temporal properties. Temporal signal

modifications due to the highly nonlinear processing schemes typically applied

in HAs (e.g., impulse-noise suppression, INS) may thus also affect consonant

perception.

An alternative compensation strategy is represented by cochlear implant

(CI) processing, applied in more severe cases of hearing impairment. CIs yield

great improvements in terms of speech intelligibility by transmitting individual
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frequency bands of a signal directly to different places in the cochlea using an

implanted electrode array. However, CIs are limited with respect to spectral

resolution, as the number of electrodes in an implanted array is limited and

channel interactions typically occur (White et al., 1984; Stickney et al., 2006).

Furthermore, spectral resolution may be further degraded due to poor electrode-

neuron interfaces – defined by regions of poor neural survival or large distance

between the CI electrodes and the auditory neurons (for review see Bierer, 2010).

DiNino et al. (2016) investigated the effect of CI processing with poor electrode-

neuron interfaces on the perception of consonants and vowels in NH listeners

using VCV and consonant-vowel-consonant (CVC) syllables, respectively, noise-

vocoded to simulate CI processing. A reference CI simulation condition using all

available channels was considered along with conditions where low-, middle-,

and high-frequency channels were either set to zero (“Zero”) simulating neural

dead regions or re-distributed to neighboring channels (“Split”) simulating

poor electrode positioning. While listeners exhibited considerable perceptual

differences across the considered frequency regions (but not across the Zero

and Split conditions) in the vowel perception test, the consonant perception test

showed less variability across frequency regions, as all CI processing conditions

induced largely similar effects on consonant perception.

To better understand how various aspects of HA and CI processing affect con-

sonant perception, computational models of speech perception may serve as

valuable tools. If such a model can account for the effects of specific HA/CI pro-

cessing strategies on consonant perception, it may provide useful information

about the auditory cues that contribute to the recognition of a specific conso-

nant or its confusion with another consonant. Several approaches for modeling

consonant perception in NH listeners (Cooke, 2006; Jürgens and Brand, 2009)

and in HI listeners (Holube and Kollmeier, 1996; Jürgens et al., 2014; Jepsen

et al., 2014) have been proposed. While the mentioned models were shown to

account for consonant recognition scores in masking noise (or in quiet at low

signal levels), they did not account well for the consonant confusions, i.e., the

predicted errors were different from the listeners’ errors. However, effects of

the described hearing-instrument signal processing approaches on consonant

recognition are induced by specific strong confusions (cf. Schmitt et al., 2016;

DiNino et al., 2016), which result from consonant-cue morphs/ambiguities

due to the applied signal processing. In contrast to masking-noise conditions,

the consonant cues are in such conditions not masked but rather changed; a
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model that can account for such effects therefore needs to be sensitive not only

to the presence of a consonant cue, but also to its perceptual similarity with

other consonant cues. Recently, Zaar and Dau (2016) proposed a consonant

perception model that appears to provide such sensitivity. It combines an audi-

tory model (Dau et al., 1996; Dau et al., 1997) that includes adaptive processes

and modulation-frequency selective processing with a temporally dynamic

correlation-based template-matching back end. The model was evaluated on

the extensive data set by Zaar and Dau (2015), obtained in NH listeners with

CVs presented in white noise at various SNRs. The model was shown to account

well for consonant recognition even on the level of individual speech tokens.

Moreover, a good agreement of the model predictions with the perceptual con-

sonant confusions was demonstrated, albeit with some underestimation of the

perceptual confusions’ extent.

To evaluate the potential of the modeling approach of Zaar and Dau (2016)

for predicting and exploring the effects of different hearing-instrument pro-

cessing strategies on consonant perception, the present study investigated the

model’s predictive power in several HA and CI processing conditions. In par-

ticular, an experimental investigation of the effects of NLFC and INS on NH

listeners’ consonant perception was conducted using speech material from

Schmitt et al. (2016). Strong settings were selected for the considered algo-

rithms and no training was provided to the NH listeners to exclude effects of

acclimatization. To test the model, these experimental data, which represent

effects of HA processing on consonant perception, were used along with the

consonant perception data from DiNino et al. (2016), representing effects of

CI processing on consonant perception. Model predictions were obtained for

the two data sets by feeding the respective stimuli to the consonant perception

model of Zaar and Dau (2016). The model performance was evaluated by means

of confusion matrix (CM) comparisons, as well as on the basis of correlation

analyses of the perceptual and predicted consonant recognition and confusion

scores.
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4.2 Method

4.2.1 Experiment 1: Effects of HA signal processing

Stimuli and experimental conditions

The audio material was taken from the speech material recorded by Schmitt

et al. (2016) and consisted of the VCVs /aba, aga, ada, apa, aka, ata, asa,

aSa, afa, atsa/1, spoken by a female native German speaker. The speaker was

trained to speak all VCVs with similar speed and pitch. Schmitt et al. (2016) used

two versions of /asa/ and /aSa/, respectively, filtered to have different spectral

peaks: /S/ exhibited a spectral peak at 4.6 kHz and was spectrally shaped to

show spectral peaks at 3 kHz and 5 kHz, resulting in /aSa3/ and /aSa5/. /s/

exhibited a spectral peak at 7.2 kHz and was spectrally shaped to show spectral

peaks at 6 kHz and 9 kHz, resulting in /asa6/ and /asa9/. For evaluating effects

of impulse-noise suppression on consonant perception, the stimuli need to

start with the consonant. Thus, the initial vowels of the considered twelve VCV

tokens /aba, aga, ada, apa, aka, ata, asa6, asa9, aSa3, aSa5, afa, atsa/ were

manually removed to obtain the CVs /ba, ga, da, pa, ka, ta, sa6, sa9, Sa3, Sa5,

fa, tsa/.

Five conditions were considered: unaided, default, NLFC, INS, and

NLFC&INS. The unaided condition was a natural listening situation without

HA processing. For the other four conditions, Phonak Naida V90-RIC HAs were

employed, assuming a moderate to severe hearing loss with 55 dB hearing level

(HL) at frequencies of 1 kHz and below, 65 dB HL at 2 kHz, 75 dB HL at 4 kHz,

and 80 dB HL at 8 kHz. The default condition was defined as the default HA

settings suggested by the fitting software. In the NLFC condition, the strongest

possible setting of the provided nonlinear frequency compression algorithm

(Phonak SoundRecover) was selected, such that the frequency content in the

range between 1.5 and 10 kHz was compressed by a factor of 4 to the range

between 1.5 and 2.41 kHz. In the INS condition, the strongest possible setting

of the provided impulse-noise suppression (Phonak SoundRelax) was selected.

In the NLFC&INS condition, NLFC and INS were combined using the settings

described above for the NLFC condition and the INS condition, respectively.

For all HA settings, omni-directional microphone directivity was selected.

1 Only the subset /ada, aha, ama, aka, asa, aSa, afa/ of the recorded VCVs were eventually

used in Schmitt et al. (2016). The present study used a different subset.
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One sound file with all CVs was obtained by concatenating the CVs with

500-ms pauses between them. Steady-state speech-shaped noise (SSN) with a

long-term average spectrum of female speech was added at an effective SNR of 8

dB (in the speech-containing portions). 10 seconds of noise alone preceded the

first CV. The mixture of CVs and noise was played back from a loudspeaker, po-

sitioned at a distance of 1.5 m and 0°azimuth relative to a KEMAR dummy head

in a sound-attenuating room. The speech level at the position of the dummy

head was set to 70 dBA. The signals were recorded at a sampling rate of 48 kHz

at the position of the dummy head’s left tympanic membrane either without

HA (unaided condition) or with HA using the condition-specific HA setting.

The recordings were equalized to compensate for the applied amplification

(half-gain rule) and cut into individual CV stimuli with 350 ms of noise at the

beginning and 50 ms of noise at the end, using 50-ms raised-cosine ramps for

fade in/out.

Listening test

Ten adult NH native German listeners (mean age: 29.5 years; standard deviation:

3.6 years) were tested. The listeners were seated in a sound-insulated booth

in front of a computer screen and binaurally presented with the diotic stimuli

via Sennheiser HD 650 headphones at 60 dB sound pressure level (SPL). They

were asked to select the consonants they heard on a graphical user interface

(GUI), which displayed the considered response alternatives /b, g, d, p, k,

t, s, S, f, ts/ in the corresponding German spelling (b, g, d, p, k, t, s, sch, f,

z). Each of the 60 stimuli (12 CVs in five conditions) was presented 8 times to

each listener, amounting to a total of 480 stimulus presentations per listener.

The order of presentation was randomized across CVs and conditions. After

the listener had made a decision, the next stimulus was played after a pause

of 500 ms. The experiment duration was about 25 minutes per listener. No

training or feedback was provided to the listeners. As some stimuli sounded

rather ambiguous, listeners were instructed to select the response alternative

that most closely resembled what they heard. The frequencies of responses

obtained for each stimulus were summed across listeners and divided by the

overall number of presentations (80; 8 presentations × 10 listeners) to obtain

the proportions of responses.
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4.2.2 Experiment 2: Effects of CI signal processing

DiNino et al. (2016) considered sixteen VCVs, consisting of consonants em-

bedded in an /aCa/ context (/p/, “apa”; /t/, “ata”; /k/, “aka”; /b/, “aba”; /d/,

“ada”; /g/, ”aga“; /f/, ”afa“; /T/, “atha”; /s/, “asa”; /S/, ”asha“; /v/, ”ava“; /z/,

”aza“; /dZ/, “aja”; /m/, “ama”; /n/, “ana”; /l/, “ala”). All VCVs were naturally

spoken by a male talker (native speaker of American English). Vocoder process-

ing was applied to the stimuli to simulate CI processing in combination with

regions of poor neural survival. The processing was designed to simulate the

fidelity 120 processing strategy with the same frequency band allocations as

Advanced Bionics devices and realized in Matlab using CI simulation software

developed by Litvak et al. (2007). 15 vocoder bands with logarithmic spacing in

the frequency range between 250 Hz and 8.7 kHz and a slope of 30 dB/octave

were considered for the simulations. The subband envelopes of the VCVs were

extracted, lowpass-filtered at 68 Hz, and used to modulate noise bands with the

same center frequencies. As a control condition, the VCVs were processed using

all vocoder bands (AllChannels). For the other six conditions, the spectral infor-

mation in three frequency regions (Apical / 421 – 876 Hz; Middle / 877 – 1826

Hz; Basal / 1827 – 3808 Hz) was degraded by either (i) setting the correspond-

ing channels to zero (Zero) or (ii) setting them to zero and adding half of the

envelope energy from the zeroed channels to the neighboring lower-frequency

channels and the other half to adjacent higher-frequency channels (Split). The

noise bands were summed and the resulting vocoded stimuli were stored at a

sampling rate of 17.4 kHz.

Twelve adult NH listeners with a mean age of 25.2 years participated in the

study of DiNino et al. (2016). All listeners were native speakers of American

English. All 112 VCV stimuli (15 VCVs × 7 conditions) were presented 3 times

in random order to each listener at 60 dBA via a loudspeaker positioned one

meter from the subject at 0°azimuth in a sound-insulated booth. Listeners

were asked to select the consonant they heard on a computer screen. Two such

experimental blocks were run, such that 6 responses per listener were obtained

for each stimulus. Prior to the test run, listeners completed a practice run with

feedback using the stimuli in the AllChannels condition only. The frequencies

of responses were summed across listeners and divided by the overall number

of stimulus presentations (72; 6 presentations × 12 listeners) to obtain the

proportions of responses.
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4.2.3 Model simulations

Model description

The consonant perception model of Zaar and Dau (2016) was considered for

predicting the perceptual data obtained with the HA-processed CVs as well as

with the CI-processed VCVs. Figure 4.1 shows the model, which combines the

auditory model front end of Dau et al. (1996; 1997) with a temporally dynamic

correlation-based back end. The auditory model consists of (i) a bank of 15

fourth-order gammatone filters with center frequencies logarithmically spaced

between 315 Hz and 8 kHz, (ii) an envelope extraction stage (realized by half-

wave rectification and lowpass filtering at 1 kHz), (iii) a chain of five adaptation

loops (designed to mimic adaptive properties of the auditory periphery), and

(iv) a bank of 4 modulation filters, implemented as a 2-Hz lowpass filter in

parallel with three second-order bandpass filters with a Q-factor of 1 and center

frequencies of 4, 8, and 16 Hz, respectively. For a given noisy speech signal, the

temporal pattern of the noise alone (after the preprocessing stages) is subtracted

from the corresponding temporal pattern of the noisy speech. The resulting

model representations of the test signal (Rt e s t ) and of a set of templates (Rt1
, Rt2

,

..., RtN
) are then aligned in time using a dynamic time warping (DTW) algorithm

(Sakoe and Chiba, 1978). Finally, the cross-correlation coefficients between the

time-aligned test-signal representation (bRt e s t ) and the time-aligned template

representations (bRt1
, bRt2

, ..., bRtN
) are calculated and, after adding a constant-

variance internal noise to limit the model’s resolution, converted to response

percentages.

Simulation procedure

To predict the data from experiment 1, the recorded HA-processed CVs that were

used as experimental stimuli were fed to the model. Portions of the respective

dummy-head recordings that contained only noise where considered as “noise

alone” signals in the model (depending on the condition of the considered stim-

ulus). The CV recordings obtained in the unaided condition were considered as

templates since they had not been passed through a HA but still contained the

effects of the noise, the room, and the KEMAR dummy head on the CV speech

tokens. 9 templates were generated from each noisy CV recording by using 9

randomly selected samples of the noise alone, such that the template-matching

procedure could be iterated 9 times. After obtaining the correlation coefficients
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Figure 4.1: Scheme of the consonant perception model (reprint from Zaar and Dau, 2016). For
the test signal and a set of templates, the noisy speech and the noise alone were passed separately
through the auditory model, consisting of a gammatone filterbank, an envelope extraction stage,
a chain of adaptation loops, and a modulation filterbank. The difference between the temporal
patterns of the noisy speech and the noise alone was obtained. The resulting representations
of the test signal and the templates were time-aligned using a dynamic time warping (DTW)
algorithm. Finally, the cross-correlation coefficients between the test signal and each template
were calculated and, after addition of a constant-variance internal noise, converted to percent.

between each test signal and all templates, the internal noise was added and

the model response for each iteration was defined as the template showing the

largest correlation with the test signal. As proposed in Zaar and Dau (2016), the

model was calibrated by adjusting the variance of the internal noise based on

the average consonant recognition scores obtained in the considered condi-

tions. Here, a variance ofσ2
i n t ,1 = 0.15 was found to be optimal, which is larger

than the variance of 0.05 used in Zaar and Dau (2016). This larger internal noise

was necessary to account for the higher difficulty that the listeners experienced

due to the HA signal processing conditions considered here (as compared to the

additive white noise conditions considered in Zaar and Dau, 2016). However,

the internal noise was held constant across the considered conditions. For each

test signal, the numbers of occurrences of the model responses were divided by

their sum to obtain the modeled proportions of responses.

The data from experiment 2, collected by DiNino et al. (2016), were pre-

dicted in a similar fashion, using the vocoded VCVs in the considered vocoder

conditions as test signals and the unprocessed VCVs as templates. The model’s

gammatone filterbank was modified to comprise 20 filters with center frequen-

cies logarithmically spaced between 100 Hz and 8 kHz to take the entire spectral

content of the vocoded signals into account, which showed increasing energy

above 100 Hz. This low-frequency extension was particularly relevant to cover
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the re-distributed channels in the ApicalSplit condition. In contrast to experi-

ment 1, the experimental stimuli contained no additive noise. Therefore, the

temporal patterns of the stimuli and the templates were here directly considered

in the model back end, as no “noise alone” pattern could be obtained. Nine iter-

ations of the model simulation were run using newly generated noise-vocoded

stimuli in each iteration. As before, internal noise was added and the model

response for each iteration was defined as the template showing the largest

correlation with the test signal. An internal-noise variance of σ2
i n t ,2 = 0.071

was found to be optimal based on the average recognition scores obtained in

the considered conditions, which is in the same range as the variance of 0.05

used in Zaar and Dau (2016) and reflects the relatively low difficulty of the task

(cf. Sec. 4.3.2). The internal noise was held constant across the considered

conditions of experiment 2. For each VCV in each condition, the numbers of

occurrences of the model responses were divided by their sum to obtain the

modeled proportions of responses.

4.3 Results and analysis

4.3.1 Effects of HA signal processing

The grand average consonant recognition scores obtained in the five exper-

imental conditions considered in experiment 1 are shown in Table 4.1. The

recognition was at ceiling for the unaided condition (96%), the default HA con-

dition (94%), and the INS condition (92%). In contrast, largely reduced recog-

nition scores were observed in the conditions with NLFC, namely NLFC (55%)

and NLFC&INS (56%). The large standard deviations across consonants (36%

and 34%, respectively) indicate that the perception of specific consonants was

strongly affected by the HA processing while other consonants remained per-

ceptually unaffected. As only the results obtained in the NLFC and NLFC&INS

conditions showed substantial perceptual effects of the applied HA processing,

the remainder of this section focuses solely on these two conditions.

On average, the model predicted a slightly larger recognition score (59%)

than observed in the listeners (55%) for the NLFC condition, whereas it predicted

a slightly lower recognition score (51%) than observed in the listeners (56%)

for the NLFC&INS condition. To inspect the data more closely in terms of the

stimulus-specific recognition and confusion scores, Fig. 4.2 shows the measured



82 4. Predicting effects of hearing-instrument signal processing

Table 4.1: Grand average consonant recognition scores measured in experiment 1 for each
condition along with the standard deviations across stimuli.

Condition % correct Std in %

Unaided 95.9 8.1

Default 93.7 7.3

NLFC 55.3 36.2

INS 92.3 10.8

NLFC&INS 56.2 34.3

and predicted confusion matrices (CMs) obtained in the NLFC and NLFC&INS

conditions. The vertical axes indicate the 12 presented consonants (including

the different realizations considered for /s/ and /S/, cf. Sec. 4.2.1), while the

horizontal axes represent the 10 consonants provided as response alternatives.

The perceptual data (filled gray circles) and the predictions (open red circles) are

depicted as circles of different sizes that correspond to the percentage categories

shown in the figure’s legend.

In the NLFC condition (left panel), the listeners exhibited distinct consonant

confusions. Most notably, the gray filled circles indicate that /d/ was confused

with /b/, /t/ was confused with /k/, /s6, s9/ were confused with /S/, /S3, S5/

were confused with /f/, and /ts/ was confused with /S, f/. The recognition

scores for the mentioned stimuli were thus reduced, with particularly low scores

for /s6, s9, ts/. The model provided convincing predictions of the stimulus-

specific recognition scores, as indicated by the good agreement of the red and

gray circles on the “diagonal” of the CM (which has two “steps” as two represen-

tations of /s, S/ were considered as stimuli). Furthermore, the model predicted

some of the confusions remarkably well (particularly for /d, s6, s9, ts/), al-

though the extent of the confusions was partly underestimated (consistent with

the observations in Zaar and Dau, 2016). However, some distinct confusions

were not accounted for by the model (/t/ confused with /k/) or predicted to

a lesser extent such that they are not visible in Fig 4.2. For example, /S3, S5/

were confused with /f/, but the predicted response probabilities for /f/ were

just below 7%. Moreover, the model predicted some additional confusions that

were not observed in the perceptual data, in particular /ts/ confused with /t/.

The perceptual data obtained in the NLFC&INS condition (right panel of

Fig. 4.2) were largely comparable to the data obtained in the NLFC condition
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(left panel). However, some clear differences can be observed (gray circles), as in

the NLFC&INS condition /k/ was confused with /p, f/ and the confusion of /t/

with /k/ observed in the NLFC condition disappeared. Furthermore, /ts/ was

not recognized at all in the NLFC condition, but was recognized to some extent

in the NLFC&INS condition. The model predictions (red circles) captured these

perceptual changes between the NLFC and the NLFC&INS condition well, apart

from the confusion of /k/ with /f/, which was not accounted for by the model.
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Figure 4.2: Measured and predicted confusion matrices obtained in experiment 1 with CVs
processed with NLFC (left panel) NLFC&INS (right panel). The presented consonants are shown
on the vertical axis and the response alternatives on the horizontal axis. The filled gray circles
represent the perceptual data while the open red circles show the model predictions. The size of
the circles indicates the proportions of responses according to the five categories provided in the
legend.

To evaluate the significance of the agreement between the measured and

the predicted stimulus-specific consonant recognition scores (on-diagonal el-

ements of the CMs), a correlation analysis was conducted. Table 4.2 summa-

rizes the results, which revealed that the measured and predicted recognition

scores were significantly (p < 0.05) correlated across stimuli for both the NLFC

(r = 0.56) and the NLFC&INS (r = 0.67) condition.

To also quantify the agreement between the measured and predicted confu-

sions, a correlation analysis of the consonant confusions was performed. For

each stimulus, the correlation between the erroneous part of the measured and

predicted response patterns (off-diagonal elements of the CMs) was obtained

across response alternatives. This analysis was only performed for the stimuli

that showed an error of Pe > 20% in the perceptual data. Table 4.3 shows the



84 4. Predicting effects of hearing-instrument signal processing

Table 4.2: Pearson’s correlation coefficients across stimuli between measured and predicted
consonant recognition scores obtained in the NLFC and NLFC&INS conditions of experiment 1
along with the corresponding p -values. p -values indicating significant correlation (p < 0.05) are
given in bold font.

Condition % Pearson’s r p -value

NLFC 0.5588 0.0295

NLFC&INS 0.6651 0.0091

results of the confusion correlation analysis, which revealed that the confusions

were positively correlated for all considered stimuli, with most correlations

being significant. In the NLFC condition, large correlations (r > 0.88) were

obtained for /d, s6, s9, S3, S5/ but not for /p, t, ts/, i.e., the confusions were

highly correlated for 5 out of the 8 stimuli with Pe > 20%. In the NLFC&INS

condition, large correlations (r > 0.62) were obtained for /k, s6, s9, S3, S5/

but not for /d, ts/, indicating highly correlated confusion patterns for 5 out

of the 7 stimuli with Pe > 20%. This is consistent with the observations made

based on the CMs in Fig. 4.2, apart from the large confusion correlations found

in the two conditions for /S3, S5/, for which the model predicted confusions

below 7%, which are thus not displayed in Fig. 4.2. The patterns of predicted

confusions were in these cases merely scaled down but qualitatively similar to

the measured ones, resulting in large confusion correlations.

4.3.2 Effects of CI signal processing

Table 4.4 shows the grand average measured and predicted consonant recog-

nition scores obtained in the seven experimental conditions of experiment 2

along with the standard deviations across stimuli. As reported by DiNino et al.

(2016), the measured recognition scores, including the AllChannels condition,

were below ceiling and showed little variability across conditions (73% ± 5%)

and a large variability across stimuli (with standard deviations of about 30%).

The predicted recognition scores exhibited a similar behavior, albeit with a

somewhat smaller variability across stimuli (with standard deviations of about

18.5%).

Figure 4.3 shows the measured (filled gray circles) and predicted (open red

circles) CMs obtained in the AllChannels control condition. The main measured

confusions were /g/ with /d/, /p/ with /t/, /k/ with /t/, and /th/ with /v/,
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Table 4.3: Pearson’s correlation coefficients across response alternatives between measured and
predicted consonant confusion patterns obtained in the NLFC and NLFC&INS conditions of
experiment 1 along with the corresponding p -values. p -values indicating significant correlation
(p < 0.05) are given in bold font. The confusion correlation was only obtained for stimuli with a
measured error of Pe > 20%.

NLFC NLFC&INS

Consonant r p r p

/b/ – – – –

/g/ – – – –

/d/ 0.9676 0.0000 0.2478 0.2601

/p/ 0.1561 0.3442 – –

/k/ – – 0.6239 0.0363

/t/ 0.1181 0.3811 – –

/s6/ 0.9365 0.0001 0.9314 0.0001

/s9/ 0.9662 0.0000 0.9671 0.0000

/S3/ 0.8891 0.0007 0.6490 0.0293

/S5/ 0.8829 0.0008 0.7779 0.0068

/f/ – – – –

/ts/ 0.2473 0.2606 0.0538 0.4454

Table 4.4: Grand average consonant recognition scores measured and predicted for each condi-
tion of experiment 2 along with the standard deviations across stimuli.

Perceptual data Model predictions

Condition % correct Std in % % correct Std in %

AllChannels 77.9 28.9 74.8 15.9

ApicalZero 70.1 29.9 74.3 18.7

ApicalSplit 73.7 29.1 71.3 21.0

MiddleZero 70.7 32.7 71.8 21.1

MiddleSplit 73.1 32.6 72.3 19.0

BasalZero 69.5 30.9 72.2 15.8

BasalSplit 74.0 25.1 74.8 18.3
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which resulted in low recognition scores for these stimuli. The main confusions

were well accounted for but slightly underestimated by the model, except for

/th/ confused with /v/, where the model predicted a perfect recognition of

/th/. Thus, the predicted stimulus-specific recognition scores (along the CM’s

diagonal) showed a similar trend as their measured counterparts, except for the

recognition score for /th/. However, the model also predicted some confusions

that were not represented in the data. These “false alarms” were typically made

within the consonant categories voiced stops (/b, g, d/), unvoiced stops (/p, k,

t/), fricatives (/f, v, th, s, z, sh, j/), and nasals (/m, n/).
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Figure 4.3: Measured and predicted confusion matrices obtained in the AllChannels condition of
experiment 2. The data is presented in a similar manner as in Fig. 4.2.

Figure 4.4 shows the measured and predicted CMs obtained in the condition

with the overall best fitting (MiddleSplit, left panel) and least fitting predictions
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(BasalZero, right panel), in terms of the recognition score correlation across

stimuli (cf. Table 4.5). The main confusions observed in the MiddleSplit condi-

tion (left panel, filled gray circles) were the same as the ones measured in the

AllChannels condition, namely /g/with /d/, /p/with /t/, /k/with /t/, and /th/

with /v/. The model predictions were also very similar to the AllChannels condi-

tion, capturing the main measured confusions except for /th/ confused with /v/.

Accordingly, the predicted stimulus-specific recognition scores showed a simi-

lar trend as the measured ones, again except for the /th/, for which the model

predicted a too high recognition score. The data measured in the BasalZero

condition (right panel) also followed the same main trends. However, an addi-

tional large perceptual confusion of /sh/with /s/ can be observed along with

a reduction in the recognition score for /sh/. This additional confusion was

correctly predicted by the model.
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Figure 4.4: Measured and predicted confusion matrices obtained in the MiddleSplit (left panel)
and BasalZero (right panel) conditions of experiment 2. The data is presented in a similar manner
as in Fig. 4.2 and 4.3.

To evaluate the significance of the agreement between the measured and

the predicted stimulus-specific consonant recognition scores, a correlation

analysis was conducted. Table 4.5 summarizes the results, which revealed

that the measured and predicted recognition scores (on-diagonal elements of

the CMs) were significantly (p < 0.05) correlated across stimuli for all but the

AllChannels and BasalZero conditions. As the results obtained for /th/, which

showed a strong confusion with /v/ and a correspondingly low recognition score

in all conditions, seemed to be strongly biased by the low phoneme frequency
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Table 4.5: Pearson’s correlation coefficients across stimuli between measured and predicted
consonant recognition scores obtained in each condition of experiment 2 along with the corre-
sponding p -values. p -values indicating significant correlation (p < 0.05) are given in bold font.
The values in parentheses represent the analysis results obtained when omitting the recognition
score for /th/.

Condition % Pearson’s r p -value

AllChannels 0.4249 (0.6373) 0.0505 (0.0053)

ApicalZero 0.5233 (0.7453) 0.0187 (0.0007)

ApicalSplit 0.4509 (0.7055) 0.0398 (0.0016)

MiddleZero 0.5967 (0.7897) 0.0073 (0.0002)

MiddleSplit 0.6120 (0.7532) 0.0059 (0.0006)

BasalZero 0.3087 (0.4303) 0.1223 (0.0547)

BasalSplit 0.4314 (0.6628) 0.0476 (0.0066)

of /th/ in the English language, an additional analysis was conducted omitting

the /th/ recognition scores. The analysis results without /th/ are presented in

parentheses in Table 4.5 and indicate significant recognition score correlations

for all conditions, apart from the BasalZero condition, for which a p -value

slightly greater than 0.05 was obtained.

A correlation analysis of the consonant confusions was performed to also

quantify the relation between the measured and the predicted confusions using

only the erroneous part of the response patterns (off-diagonal elements of the

CMs). As in Sec. 4.3.1, this analysis was conducted only for the stimuli that

showed a perceptual error of Pe > 20%. Table 4.6 summarizes the results, which

revealed that the confusion correlations for the considered stimuli were very

large (mostly above r = 0.8) and significant (p < 0.05) for the majority of the

considered stimuli. However, as observed in the CMs (Fig. 4.3 and 4.4), the

/th/ confusions were not well predicted by the model (presumably because

they originated from a phoneme-frequency effect rather than from the signal

characteristics) and the measured and predicted confusions obtained for /b,

d/ in the two Apical conditions and for /j/ in the BasalZero condition showed

either weak correlations or none at all.
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Table 4.6: Pearson’s correlation coefficients across response alternatives between measured and
predicted consonant confusion patterns obtained in each condition of experiment 2. Correlation
coefficients indicating significant correlation (p < 0.05) are given in bold font. The confusion
correlation was only obtained for stimuli with a measured error of Pe > 20%.

AllChannels Apical Middle Basal

Consonant Zero Split Zero Split Zero Split

/b/ – 0.0006 -0.0360 – 0.9645 – –

/g/ 0.9151 0.8733 0.9013 0.8810 0.9310 0.9525 0.8565

/d/ – 0.2116 0.3831 – – – 0.5133

/p/ 0.9622 0.9313 0.9825 0.9736 0.9361 0.9328 0.8711

/k/ 0.8967 0.7110 0.8196 0.7883 0.8178 0.8631 0.8416

/t/ – – – – – – –

/f/ – – – – – – –

/v/ – – – – – – –

/th/ 0.0604 -0.1052 -0.0302 0.3798 -0.0526 0.0814 0.0182

/s/ – – – – – – –

/z/ – – – – – – –

/sh/ – – – – – 0.9510 0.9595

/j/ – – – – – 0.1086 –

/m/ – – – 0.4965 0.6813 – –

/n/ – 0.8277 0.8055 0.7611 – 0.9025 0.8063

/l/ – – – – – – –

4.4 Discussion

4.4.1 Relation to other studies

The detrimental effects of NLFC on consonant perception observed in experi-

ment 1 are consistent with the results reported by Schmitt et al. (2016) for HI

listeners provided with “too strong” NLFC. The present study, which used a

modified version of the speech material from Schmitt et al. (2016), showed sim-

ilarly strong detrimental effects of NLFC on the recognition of the consonants

/s6/ and /s9/ (see their Fig. 7). This loss of recognition was shown here to

result from a strong confusion of /s/ with /S/, as also discussed in Schmitt et al.

(2016). These findings do not contradict studies showing large improvements

of high-frequency consonant perception with NLFC in HI listeners (e.g., Glista

et al., 2009), as (i) NH listeners were tested in the present study such that no

benefit was expected, (ii) strong NLFC settings were used, and (iii) effects of

increasing performance/acclimatization over time (cf. Wolfe et al., 2011) were
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not considered.

The results from experiment 1 revealed that consonant confusions induced

by strong NLFC only occurred within the categories voiced stops, unvoiced

stops, and fricatives. Li et al. (2010; 2012) demonstrated that the consonant

cues within each of these categories exhibit a similar temporal structure but

differ with respect to their spectral energy distributions. The observed effects

can therefore be assumed to be caused by spectral changes, resulting from a

too strong frequency compression applied to the high-frequency consonant

cues. The only substantial confusion that did not fall within the above men-

tioned categories (/k/ confused with /f/) resulted from combining NLFC with

INS, which suppresses sharp onsets and thus produces nonlinear changes over

time. The CI processing applied in experiment 2 (DiNino et al., 2016) induced

confusions within the categories voiced stops, unvoiced stops, fricatives, and

nasals. According to Li et al. (2010; 2012), this again indicates a main perceptual

effect of the spectral changes caused by the CI processing.

The present study suggests that the considered model is not limited to condi-

tions of stationary noise but also accounts to a large extent for highly nonlinear

signal modifications, implying a versatility that has not been reported so far.

The prediction performance was found to be comparable to that reported by

Zaar and Dau (2016) for CVs in stationary masking noise in that (i) the predicted

stimulus-specific recognition scores were, overall, strongly correlated with the

measured recognition scores, (ii) the consonant confusions were mostly well ac-

counted for by the model even though the extent of the confusions was slightly

underestimated, and (iii) the model predicted some additional confusions incor-

rectly (“false alarms”), which mostly fell within perceptually plausible confusion

groups. In contrast to Zaar and Dau (2016), effects of masking played a negligi-

ble role in the present study as the variability in the perceptual data was mainly

induced by changes in the consonant cues of the processed stimuli, resulting in

strong confusions. Thus, the results of the present study suggest that the model

is sensitive to modifications of consonant cues and the resulting perceptual

changes/ambiguities.

4.4.2 Limitations of the approach

The model tended to slightly underestimate the extent of the measured con-

sonant confusions and partly predicted additional confusions that were not

reflected in the perceptual data. This resulted most likely from a bias induced
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by similarities/dissimilarities in the vowel portions of the CV/VCV stimuli and

templates, which are only partly related to the consonant percept. However,

a separation of the signals into consonant and vowel portions is not feasible,

particularly for speech tokens containing voiced consonants, which rely on

formant transitions in the adjacent portions of the accompanying vowels.

Furthermore, the model does not take any linguistic processing into account,

which can play a certain role in the perceptual results despite the nonsense

nature of the stimuli. For example, the consistent perceptual morph of /th/ to

/v/ in experiment 2 presumably2 resulted from a perceptual bias induced by

the large phoneme frequency of /v/ and the low phoneme frequency of /th/ in

the English language. This was not accounted for by the model, which is based

solely on the similarity of the signals.

4.4.3 Perspectives

An important extension of the model would be to incorporate aspects of hear-

ing impairment, such as elevated audiometric thresholds, reduced frequency

selectivity, loss of compression and other supra-threshold deficits (cf. Jürgens

et al., 2014; Jepsen et al., 2014). The results of the present study suggest that, if

a version of the model that can account for consonant perception in unaided

HI listeners was established, the effects of hearing-instrument compensation

strategies might be well-represented in the model predictions. Thus, the model

could provide guidance regarding HA fitting, e.g., by suggesting specific fitting

parameters based on a listener’s auditory profile. Furthermore, it might become

feasible to predict the long-term effects (including acclimatization) of specific

HA or CI processing strategies on consonant perception by applying the respec-

tive signal processing not only to the stimuli, but also to the templates (instead

of using unprocessed speech tokens as templates).

4.5 Summary and conlusion

The present study evaluated the predictive power of the model of Zaar and

Dau (2016) regarding effects of HA and CI signal processing on consonant

2 This assumption is based on informal listenining. The perception of the authors matched the

confusions observed in the data for all stimuli except the /atha/ stimuli, which seemed well

recognizable.
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perception. Experiment 1 considered consonant perception in NH listeners

after HA processing in terms of nonlinear frequency compression and impulse-

noise suppression using CVs. Experiment 2 considered consonant perception

in NH listeners after CI processing with different simulations of poor electrode-

neuron interfaces using VCVs. The model was shown to account for most

perceptual effects observed in the data from experiment 1. In particular, the

stimulus-specific predicted recognition scores were significantly correlated

with the measured ones, as well as most of the stimulus-specific confusion

patterns. Furthermore, the model accounted to a large extent for the data

from experiment 2, i.e., for the effects of the CI signal processing on consonant

perception. Specifically, the simulated stimulus-specific recognition scores were

significantly correlated with the measured ones in most conditions. Moreover,

the vast majority of the stimulus-specific predicted confusion patterns was

highly significantly correlated with the perceptual data.

The results indicate that the large predictive power of the model, previously

demonstrated for consonant recognition and confusions obtained with CVs

in stationary noise (Zaar and Dau, 2016), also extends to supra-threshold ef-

fects of hearing-instrument signal processing on consonant perception. This

suggests a large potential of the model for evaluating and adjusting such pro-

cessing schemes, in particular when extended to account for individual hearing

impairment.
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5
Overall discussion

5.1 Summary of main results

This thesis described an extensive experimental investigation of some of the

factors that influence consonant-in-noise perception in NH listeners as well

as the development and evaluation of a computational model of consonant

perception. The experimental investigation, described in Chapter 2, was con-

ducted to clarify the level of detail and the methods required for measuring

and analyzing consonant perception data. While representing a valuable con-

tribution in itself, the results of this investigation were also essential for the

development and evaluation of the model framework. The model framework

proposed in this thesis was designed as an extension of the auditory processing

model of Dau et al. (1997) towards predicting consonant perception by means

of a temporally dynamic template-matching process, maintaining the crucial

aspects of the original model’s decision stage. The proposed model was evalu-

ated based on the experimental data from Chapter 2 (CVs in stationary noise)

as well as based on experimental data obtained in conditions of hearing-aid

and cochlear-implant signal processing (Chapter 4).

Chapter 2 (Zaar and Dau, 2015) investigated the role of various sources of

variability in consonant perception in steady-state masking noise. The investi-

gation was motivated by previous studies (Phatak et al., 2008; Singh and Allen,

2012; Toscano and Allen, 2014) that demonstrated large perceptual differences

for different speech tokens of the same type, spoken by different talkers. How-

ever, a systematic analysis of the factors that influence consonant perception

had so far not been undertaken. Two categories of perceptual variability were

considered: (i) source-induced variability, which comprises perceptual differ-

ences resulting from acoustical differences in stimuli of the same phonetic

identity (caused by different speech tokens or different masking-noise wave-

forms) and (ii) receiver-related variability, which refers to perceptual differences

across listeners and within listeners. The data were analyzed by means of a

93
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perceptual distance measure (cf. Scheidiger and Allen, 2013), which was shown

to be related to (and more straightforward than) the commonly used entropy of

responses (cf. Miller and Nicely, 1955; Phatak et al., 2008).

Consistent with Phatak et al. (2008), Singh and Allen (2012), and Toscano

and Allen (2014), a large perceptual effect of across-talker articulatory differ-

ences was demonstrated, which has been neglected in earlier studies (Miller

and Nicely, 1955; Wang and Bilger, 1973). Additionally, the study showed that

different utterances spoken by the same talker induced equally large perceptual

differences. Furthermore, even a slight temporal shift in the waveform of the

steady-state masking noise was found to produce a significant perceptual effect.

Regarding the receiver-related variability, it was demonstrated that the percep-

tual differences across the NH listeners, obtained with identical stimuli, were

large (in the range of the effect induced by different speech tokens). In contrast,

the perceptual differences measured in individual listeners in test and retest

(“within-listener variability”, reflecting the uncertainty of individual listeners)

were small, indicating a large reproducibility of the responses on a listener-by-

listener basis. This within-listener variability was found to depend inversely on

the SNR, i.e., the “internal noise” (listener uncertainty) was proportional to the

“external noise” (acoustic noise).

The source-induced perceptual effects, caused by differences in the speech

tokens and even slight differences in the masking noise, suggest that consonant

perception strongly depends on very fine details in the stimuli, which has so

far not been sufficiently taken into account in related studies. The receiver-

related effects indicate that not only the exact waveform of the stimulus, but

also the individual listener plays a major role in consonant perception, even

when considering NH listeners with the same language background. It is con-

cluded that the complex interaction between source and receiver revealed here

should either be averaged out by considering many representations of each

factor (speech tokens, noise waveforms, and listeners), or measured in detail

by employing a well-controlled set of stimuli (consisting of a limited amount of

speech tokens and noise waveforms) and evaluating the results in individual

listeners. Given the sensitivity of listeners to fine details in the stimuli, the latter

may represent a valuable approach for auditory profiling and investigating ef-

fects of hearing-instrument processing (as demonstrated in Chapter 4 as well

as by Schmitt et al., 2016 and DiNino et al., 2016).

Chapter 3 (Zaar and Dau, 2016) proposed a computational model of micro-
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scopic speech perception, which is based on the auditory processing model of

Dau et al. (1997) and combines a front end that represents peripheral auditory

processing with a temporally dynamic correlation-based template-matching

decision stage. The front end consists of a frequency-selective process, an enve-

lope extraction stage, a chain of adaptation loops (performing envelope-onset

enhancement), and a modulation-frequency selective process. Using a-priori

knowledge about the noisy stimulus and the noise alone, the decision stage

temporally aligns the stimulus and the templates using DTW and defines the

model response as the template that shows the maximum correlation with

the stimulus. Motivated by the findings from Chapter 2, a constant-variance

“internal-noise” process was applied that globally calibrates the model. While

the model front end is similar to that of a related model by Jürgens and Brand

(2009), the decision stage differs considerably and represents a rather straightfor-

ward extension of the original model’s decision stage (Dau et al., 1997) towards

predicting consonant perception.

The proposed model was evaluated using the experimental data and stimuli

from Chapter 2. Motivated by the experimental findings, the model perfor-

mance was analyzed for different levels of detail, down to the level of individ-

ual combinations of speech and noise tokens. However, as no audiometric

differences had been measured in the listeners, the described across-listener

perceptual variability could not be simulated and the data were instead aver-

aged across listeners. The model showed highly accurate predictions of the

grand average recognition scores (as a function of SNR), and also accounted well

for the consonant-specific recognition scores and even for the speech-token

specific recognition scores. In terms of consonant confusions, the model pre-

dictions showed a substantial similarity with the measured confusions at the

consonant-specific level, while the confusion predictions were less convincing

for some of the stimuli at the token-specific level. Nonetheless, the predictive

power of the proposed model exceeded the performance of the related mod-

els by Jürgens and Brand (2009) and Cooke (2006) substantially, at least as far

as a comparison based on the different sets of data is feasible. While largely

accurate recognition score predictions were demonstrated for these related

models, the proposed model’s recognition score predictions generalized to a

larger range of SNRs and to the level of individual speech tokens. Moreover,

the proposed model’s confusions were the same as, or perceptually related to,

the perceptual confusions, while the related models (Cooke, 2006; Jürgens and
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Brand, 2009) did not account well for confusions. This indicates that the model

is not only sensitive to the presence of the consonant cues (recognition), but

also to their similarities with other consonant cues that may arise from noise

masking, resulting in perceptual confusions. The fact that the model made

similar errors as the listeners might represent a crucial step towards predicting

effects of severe speech signal modifications on consonant perception (e.g.,

due to hearing-instrument signal processing), as opposed to effects of additive

masking-noise.

Chapter 4 (Zaar and Dau, 2016) evaluated the predictive power of the pro-

posed model with respect to effects of HA and CI signal processing on conso-

nant perception. The perceptual effects of strongly parametrized nonlinear

frequency compression (NLFC) and impulse-noise suppression (INS) on con-

sonant perception were measured in NH listeners. The experimental results

showed the expected detrimental effects on consonant recognition for strong

NLFC as well as for NLFC combined with INS, whereas INS alone and a de-

fault hearing-aid setting yielded recognition at ceiling. The loss of consonant

recognition was found to result from strong confusions of specific consonants

with other consonants (e.g. /s/ with /S/), some of which substantially exceeded

the corresponding recognition score (i.e., some consonants perceptually “mor-

phed” into others). This is consistent with the results from Schmitt et al. (2016)

obtained in HI listeners provided with “too strong” NLFC; the results were fur-

thermore in agreement with the findings from Li et al. (2010; 2012) regarding

the spectro-temporal consonant cue regions.

The data obtained in the conditions with NLFC and the corresponding

stimuli were considered in the model framework. Additionally, effects of CI

processing on consonant perception, measured with noise-vocoded VCVs in

NH listeners by DiNino et al. (2016), were simulated based on the corresponding

stimuli. The model was demonstrated to yield remarkably accurate predictions

for the two data sets, both in terms of consonant recognition and consonant

confusions. As noise masking played a negligible role in the considered exper-

imental stimuli, the predictive power of the model in these conditions arises

mainly from its ability to predict consonant confusions. Thus, the proposed

model is not limited to conditions of additive stationary noise (as considered

in Chapter 3) but also accounts to a large extent for highly nonlinear signal

modifications.
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5.2 The role of the model’s decision stage

The model proposed in this thesis was partly inspired by a related approach of

Jürgens and Brand (2009), which extended the same auditory processing model

(Dau et al., 1997) as used in the present thesis by modifying various components

in its decision stage. The auditory processing front ends of the two models

are thus essentially identical and the reasons for the larger predictive power1

of the proposed model must be connected to the model’s decision stage. The

model front end was chosen because of the extensive previous modeling efforts

(not reported here) and the large predictive power of the original model of Dau

et al. (1997). Three fundamental differences in the decision-making process are

discussed here.

First, Jürgens and Brand (2009) directly fed the IRs of the noisy speech tokens

to the back end whereas the present study followed the original model from

Dau et al. (1997) in that the output of the front end was the difference between

the IR of the noisy speech and the IR of the noise alone, which is furthermore

related to the concept of the SNRenv applied in the sEPSM model (Jørgensen

and Dau, 2011; Jørgensen et al., 2013). Additionally, the measured perceptual

effect of slight differences in the noise waveforms (Chapter 2) indicates that the

noise waveform should explicitly be taken into account. Furthermore, recent

findings from animal studies (e.g. Mesgarani et al., 2014) suggest the existence

of a de-noising mechanism at higher stages of auditory processing. The use of

a-priori knowledge about the noise may be interpreted as a simplistic way of

simulating such a mechanism. In the considered conditions with white masking

noise, the assumption of perfect a-priori knowledge about the noise (and thus

ideal streaming) was necessary to correctly predict the perceptual robustness

of high-frequency cues with respect to noise masking. In contrast, Jürgens and

Brand (2009) could partly predict the robustness of high-frequency cues without

this assumption, which was presumably due to the differences in the considered

noise spectra (white vs speech-shaped).

Second, the model’s decision was based on the maximum cross-correlation

(as in Dau et al., 1997; see also Gallun and Souza, 2008) of the time-aligned IRs

1 It should be taken into account that the proposed model was evaluated on CVs in white noise

while the related model of Jürgens and Brand (2009) was tested with VCVs in speech-shaped

noise, such that differences in the predictive power may also arise from differences in the

considered stimuli and data.
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(via DTW) of the test signal and the templates, as opposed to the minimum

distance used by Jürgens and Brand (2009). The cross-correlation is insensitive

to level differences, i.e., it solely describes covariation between the test-signal

and template activation patterns obtained in the auditory model front end. This

may be more closely related to the perceptual decision-making process than a

distance measure, which is by definition sensitive to level differences and may

thus result in prediction biases. A strongly biased behavior of a distance-based

decision stage was observed in earlier versions of the proposed model as well

as in the study of Jürgens and Brand (2009). The correlation-based back end

alleviated this problem to a large extent and, thus, yielded realistic predictions

in terms of consonant recognition and confusion scores.

Third, a constant-variance internal noise was added in the model’s decision

stage, which represents the listeners’ uncertainty (cf. Dau et al., 1997) and was

also reflected in the experimental results obtained in Chapter 2 (“within-listener

distance”). This provided a realistic amount of uncertainty at medium to large

SNRs, where the predicted recognition scores otherwise exceeded the measured

ones. A similar trend was also reported by Jürgens and Brand (2009), who did not

include uncertainty in the decision stage. The findings from Chapter 2 suggested

to use internal-noise that increases with decreasing SNR (i.e., along with the

effect of the “external” noise). However, from a modeling perspective, this

assumption is only valid if the test-signal SNR is always large and the external-

noise induced uncertainty is thus solely represented by the internal-noise term.

As the predictions were obtained with test signals at all SNRs considered in the

experiment, the constant-variance internal noise, which globally calibrates the

model, was sufficient.

5.3 Limitations of the considered approaches

Regarding the experimental investigation of sources of variability in consonant

perception described in Chapter 2, the considered potential influencing factors

by no means represent any “complete picture”. To keep the experiment duration

in a feasible range, several parameters that are known to play a perceptual role

were fixed to solely focus on specific sources of variability. Specifically, the

vowel (/i/), the type of consonant-vowel combination (CV) and the spectral

shape of the noise (white) were fixed. The same holds for the choice of response

alternatives, the response method, and the instructions given to the test subjects.
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The influence of these parameters, which also represent sources of variability,

was thus neglected. Furthermore, the experimental results were based on a set

of 90 speech tokens, spoken by two talkers, and presented to two different panels

of eight listeners. The results may therefore be biased by the choice of speech

tokens, talkers, and listeners. Moreover, the sources of variability investigated

here represent categories and, thus, only provide indications of the relative

contributions of these categories (e.g., across-talker articulatory differences)

to consonant perception. Which specific properties of the stimuli caused the

observed perceptual effects remains an open question, which may be addressed

in further investigations and compared to related studies on consonant cues

(e.g., Li et al., 2010; Li et al., 2012; Christiansen et al., 2007). Furthermore, the

model framework presented in Chapter 3, which connects the perceptual and

the acoustic domain, may serve as a tool to gain a better understanding of the

contribution of specific signal characteristics to robust phoneme recognition.

The model framework has – despite its large predictive power in the consid-

ered conditions – several systematic limitations. For example, the model could

not account for the large perceptual differences across NH listeners shown in

Chapter 2, as they did not show any audiometric differences. These listener-

specific effects may be attributable to individual biases or supra-threshold

processing deficits that were not captured by the audiometric test. Further-

more, even if there were audiometric differences, the model could not account

for them since audibility thresholds were not included so far. Thus, the model

is also bound to fail in the case of partly or fully inaudible stimuli due to low

presentation levels or hearing impairment. This could be overcome by adding

threshold-simulating noise (cf. Jürgens and Brand, 2009; Jürgens et al., 2014)

or by excluding the frequency bands below threshold from further processing

(cf. Jørgensen and Dau, 2011). Finally, the model showed a tendency to slightly

underestimate the extent of the measured consonant confusions and partly

predicted additional confusions that were not reflected in the perceptual data.

This resulted most likely from a bias induced by similarities/dissimilarities in

the vowel portions of the CV/VCV stimuli and templates, which are only partly

related to the consonant percept.
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5.4 Perspectives

The experimental investigation of sources of perceptual variability (Chapter 2)

was conducted with NH listeners using CVs presented in additive white noise.

However, the applied methodology may easily be adapted to quantify the ef-

fects of other influencing factors. For example, effects of different accompa-

nying vowels, other types of nonsense syllables (e.g., VCVs, CVCs), and other

acoustic conditions (e.g., fluctuating additive noise, speech interferers, rever-

beration, hearing-instrument processing) could be considered. Furthermore,

the perceptual-distance based experimental method is also suitable for analyz-

ing vowel perception. DiNino et al. (2016) used the perceptual distance along

with other analysis methods to evaluate effects of CI processing on consonant

and vowel perception and demonstrated that it was more informative than the

sequential information analysis (SINFA) proposed by Wang and Bilger (1973).

Apart from the above mentioned stimulus-related (“source-related”) factors, it

could be insightful to also focus on receiver-related effects in terms of individual

hearing impairment. To that end, an experimental investigation with HI listen-

ers that uses the same stimuli as the study described in Chapter 2 may reveal

differences between the contributions of the considered factors to consonant

perception in HI vs NH listeners. This could provide insights with respect to

the main problems HI listeners face in terms of speech perception and how to

compensate for them.

Regarding the model framework, many further investigations and applica-

tions are conceivable. For example, it should be clarified whether the predictive

power of the model extends to acoustic conditions that are more realistic than

stationary noise (e.g., fluctuating noise, speech interferers, reverberation). Fur-

thermore, the model has only been tested on consonant perception data but

could, in principle, also be used to predict vowel perception data. This could be

useful particularly with respect to evaluating CI processing strategies, as vowel

perception tests are considered more informative than consonant perception

tests in this field.

Consonant perception measurements have been shown to be particularly

insightful when used as a tool to identify specific problems experienced by HI

listeners with hearing aids (Scheidiger and Allen, 2013; Schmitt et al., 2016) or

without hearing aids (Phatak et al., 2009; Trevino and Allen, 2013). A crucial

next step would therefore be to incorporate aspects of hearing impairment,
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such as elevated audiometric thresholds, reduced frequency selectivity, loss of

compression and other supra-threshold deficits (cf. Jürgens et al., 2014; Jepsen et

al., 2014). If a version of the model that can account for consonant perception in

unaided HI listeners were established, the results from Chapter 4 suggest that the

effects of hearing-instrument compensation strategies might be well accounted

for by the model. Such a “hearing-impaired” model could be informative for HA

fitting, for example by suggesting specific fitting parameters based on a listener’s

auditory profile. In addition, such a model may be able to predict long-term

effects of acclimatization for HA or CI processing strategies by using processed

instead of unprocessed templates, representing the listener’ adaptation to the

provided processing.

The proposed model predicts consonant perception using a-priori informa-

tion about the stimuli to predict the data. In contrast, the listeners do not need

to know the exact signal to perceive a given consonant. In modeling terms, this

would correspond to a much more elegant “blind” modeling approach that does

not presume any a-priori information. While NH listeners can deal remarkably

well with the large natural variability of speech utterances and robustly assign

them to specific phonetic categories, blind automatic speech recognizers ex-

hibit a much poorer performance, particularly in the presence of acoustical

interference (cf. Meyer et al., 2011). However, as automatic speech recognition

approaches are currently improving rapidly using HMMs in combination with

deep neural networks (e.g. Hinton et al., 2012; Dahl et al., 2012), the gap between

human and machine speech recognition seems to be decreasing substantially.

When (and if) blind automatic speech recognizers reach human recognition

performance, a perceptually adapted blind model may become feasible, using

an auditory-inspired processing model as a front end and a state-of-the-art

speech recognition system as a back end.
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The end.



To be continued. . .



The human auditory system is well-adapted to extracting target speech sounds in

adverse acoustic conditions. Furthermore, high-level cognitive processing allows

us to make sense of what we hear, even if the acoustic information is severely

degraded or sparse. Therefore, commonly used macroscopic speech intelligibility

tests that typically use sentences as stimuli measure a combination of (i) effects of

the salience of the perceived speech and (ii) effects related to linguistic processing

(e.g., using context information). This thesis presents an alternative approach

reflecting a microscopic measure of speech perception that is solely related to the

salience of the perceived speech. Here, the perception of individual consonants is

investigated using nonsense syllables like /ta, ba/ as stimuli and the responses are

evaluated in terms of consonant recognition and confusions. This approach allows

to investigate the effects of acoustical transmission channels (e.g., rooms, mobile

phones), as well as effects of hearing impairment and hearing-instrument signal

processing on the fundamental speech sounds. The factors that are perceptually

relevant for consonant-in-noise perception are analyzed, such as differences in the

stimuli and differences in the normal-hearing listeners. Moreover, a computational

model of microscopic speech perception is proposed that consists of a model

of the auditory periphery and a template-matching based decision stage. The

model is shown to account well for effects of masking noise as well as effects of

hearing-instrument signal processing on consonant recognition and confusions.

The experimental results of this thesis have implications for the design of consonant

perception experiments. Furthermore, the proposed model framework could be

useful for the evaluation of hearing-instrument processing strategies, particularly

when combined with simulations of individual hearing impairment.
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