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Abstract

The intelligibility of speech is a measure of how well speech is understood in a
given situation. Developing models to predict intelligibility can help develop a
better understanding of the essential “features” of speech, how those features
are extracted by the auditory system, and how they are combined and used to
create understanding. This dissertation expands on a model named the speech-
based envelope power spectrum model (sEPSM), which uses the signal-to-noise
ratio in the envelope power domain (SNRenv) as the decision metric. The sEPSM
was analyzed and compared to several other models that either use different
front-ends or different decision metrics, such as the audio SNR. The goal was
to tease apart the essential components of intelligibility models in a range of
conditions known to be challenging.

One condition considered speech that was distorted by a phase jitter process,
which destroys its spectral integrity. It was shown that the sEPSM could account
for the deleterious effects of phase jitter if an across-channel process was in-
cluded in the analysis stage, which measures the variability of the envelope
power across audio frequencies. In another condition of nonlinear distortion,
noise reduction via spectral subtraction, it was shown that across-channel pro-
cessing was not essential.

Furthermore, a quantitative model was developed in an attempt to predict
the speech intelligibility measured in conditions where listeners are known
to benefit from using both ears, compared to using either ear alone, such as
in a noisy “cocktail party”. The model represents a binaural extension of the
sEPSM, denoted as B-sEPSM. It consists of realizations of the sEPSM for the
monaural pathways, combined with an equalization–cancellation (EC) process
to model an across-ear noise reduction mechanism. The sEPSM process also
operates at the output of the EC process, such that all pathways are directly
comparable. The B-sEPSM was shown to account for intelligibility as a function
of the number of maskers, the azimuth of the maskers, the room properties
(anechoic or reverberant), the masker types (stationary noise, fluctuating noise,
and time-reversed speech), and the interaural time differences of the target and
maskers.

Finally, simulation results showed that binaural processing was not always
necessary in spatial conditions, and that the SNRenv metric could capture as-
pects of masking that were not considered by models that used the audio SNR as
the decision metric. However, none of the models considered could account for
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the intelligibility in conditions with so-called “informational masking”, because
they did not take into account confusions in the decision-making process expe-
rienced by the listeners. A possible method for estimating such confusions was
proposed, based on a “distance metric” between the envelope power spectrum
representation of the speech estimate and of the noise.

Overall, the results of this thesis support the hypothesis that the SNRenv is a
powerful metric for intelligibility prediction. Furthermore, the B-sEPSM could
be used to investigate the impact on intelligibility of different binaural noise
reduction techniques, such as beam-forming, and of various binaural hearing
aid compression strategies.



Resumé

Taleforståeligheden er et mål for, hvor godt tale forstås i en given situation.
Ved at udvikle modeller, der kan forudsige taleforståeligheden, kan der opnås
en bedre forståelse for de essentielle ”features” i talen, hvordan det auditive
system udtrækker disse features, samt hvordan de kombineres og benyttes til at
skabe forståelse for tale. Denne afhandling udvider en model, kaldet den tale-
baserede modulationseffekt spektrum model (sEPSM), der bruger signal-til-støj
modulationseffekt forholdet (SNRenv) som beslutningsparameter. sEPSM blev
analyseret og sammenlignet med flere andre modeller, der enten benyttede
forskellige front-ends eller forskellige beslutningsparametre, såsom signal-til-
støj forholdet i audiodomænet (audio SNR). Målet var at adskille de essentielle
komponenter i taleforståelighedsmodellerne i en række miljøer, der er kendt
for at være vanskelige.

En betingelse betragtede tale forvrænget af en fase-jitter proces, der øde-
lægger talesignalets spektrale struktur. Det blev vist, at sEPSM kan forklare
den skadelige effekt af fase-jitter, såfremt en proces blev inkluderet i analyse
stadiet, der måler variationen af modulationseffekten på tværs af de auditive
frekvenskanaler. I en anden betingelse med ikke-lineær forvrængning, spektral
subtraktion støj reduktion, blev det vist at behandlingen på tværs af kanaler
ikke var essentiel.

Endvidere blev en kvantitativ model udviklet i et forsøg på at forudsige tale-
forståeligheden i miljøer, hvor forsøgspersonen kan drage nytte af to øre fremfor
et øre, såsom en støjfyldt “cocktail fest”. Modellen repræsenterer en binaural
udvidelse af sEPSM, kaldet B-sEPSM. Den består af realiseringer af den monau-
rale sEPSM model, kombineret med en “equalization-cancellation” (EC) proces,
der modellerer på-tværs-af-øret støjreduktion mekanismen. sEPSM processen
opererer også ved udgangen af EC processen, således at alle signalveje er direkte
kompatible. Det blev vist, at B-sEPSM kunne forklare taleforståeligheden som
en funktion af antal støjkilder, azimut vinklen af støjkilderne, egenskaberne af
rummet (lyddødt eller med efterklang), støjkildetypen (stationær støjkilde, fluk-
tuerende støjkilde og temporalt inverteret tale) og den interaurale tidsforskel
mellem kilden og støjkilderne.

Slutteligt viste resultaterne af en række simuleringer, at den binaurale be-
handling ikke altid var nødvendig i rummelige miljøer og at SNRenv parameteren
kunne fange aspekter af maskering, der ikke var fanget af modeller, der benyt-
tede audio SNR som beslutningsparameter. Ingen af de betragtede modeller
kunne forudsige taleforståeligheden i miljøer med såkaldt “informationel ma-
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skering”, fordi de ikke tog højde for forvirringer i den beslutningstagende proces,
der blev oplevet af forsøgspersonerne. En mulig metode til at estimere sådanne
forvirringer blev foreslået, baseret på en “distance-parameter” mellem modula-
tionseffekt spektrum repræsentationen af taleestimatet og af støjen.

Alt i alt, bakker resultaterne i denne afhandling op om hypotesen, at SNRenv

er et kraftfuldt mål til at forudsige taleforståelighed. Endvidere kan B-sEPSM
benyttes til at undersøge, hvorledes taleforståeligheden påvirkes af forskellige
binaurale støj reduktions-teknikker, såsom “beamforming”, samt forskellige
binaurale kompressionsstrategier, som ofte anvendes i høreapparater.



Resumé

L’intelligibilité de la parole est une mesure de sa compréhension dans une
situation donnée. Les modèles de prédiction de l’intelligibilité permettent de
mieux comprendre quelles sont les propriétés essentielles des signaux de la
parole, comment ces propriétés sont extraites par le système auditif, et comment
elles sont combinées, utilisés et comprises. Cette dissertation est basée sur
le“modèle multi-résolution de spectre de puissance d’envelope basé sur parole”
(multi-resolution envelope power spectrum model, sEPSM). Le sEPSM utilise le
rapport signal-sur-bruit dans le domaine de la puissance d’envelope (SNRenv)
comme métrique de décision. Le sEPSM est analysé et comparé à d’autres
modèles d’intelligibilité qui utilisent différents préprocesseurs ou différentes
métriques de décision, telle que le rapport signal-sur-bruit dans le domaine
audio (S/B). Le but est d’identifier les éléments essentiels de ces modèles pour
une sélection de conditions exigeantes.

Dans une de ces conditions, la parole est déformée par un processus de
gigue de phase qui détruit l’intégrité spectrale du signal. Il est démontré que le
sEPSM peut expliquer l’effet négatif sur l’intelligibilité du processus de gigue de
phase en incluant une mesure de la variabilité de la puissance d’envelope en
fonction des fréquences audio. Dans une autre condition avec une distortion
non-linéaire induite par une réduction de bruit via soustraction spectrale, il est
démontré que le processus trans-fréquenciel n’est pas essentiel.

De plus, un modèle quantitatif est développé pour tenter de prédire l’in-
telligibilité de la parole mesurée en écoute binaurale et monaurale. Le modèle
binaural, appelé le B-sEPSM, consiste en un exemplaire du sEPSM pour chaque
voie monaurale, combiné avec un processus d’égalisation–cancellation (EC)
pour modéliser le démasquage binaural. Le sEPSM est aussi appliqué à la sortie
du processus EC, de sorte que les trois sont soient directement comparables.
Il est démontré que le B-sEPSM peut prédire l’intelligibilité en fonction du
nombre de sources de bruit, de l’azimuth des sources, des propriété de la pièce
(anéchoïque ou réverbérante), du type de bruit (bruit stationnaire, bruit modulé
en amplitude, ou parole inversée temporellement), et de la différence de délai
interaural entre la cible et les sources de bruit.

Finalement, les résultats d’autres simulations démontrent qu’un proces-
sus binaural n’est pas toujours nécessaire dans des conditions où la cible et
les sources de bruit sont séparés spatialement, et que le SNRenv peut capter
certains aspects du masquage qui ne sont pas captés par les modèles qui uti-
lise le S/B audio comme métrique de décision. Toutefois, aucun des modèles
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considérés ne peut expliquer l’intelligibilité mesurée dans des conditions où le
“masquage informationnel” est présent, parce qu’ils ne prennent pas en compte
les confusions subites par les auditeurs dans leur procédé de prise de décision.
Une méthode pour estimer ces confusions, basée sur une mesure de “distance”
entre le spectre de puissance d’envelope d’une estimation de la parole et du
bruit, est suggérée.

Dans l’ensemble, les résultats de cette dissertation supportent l’hypothèse
que le SNRenv est une métrique fiable pour la prédiction de l’intelligibilité de
la parole. De plus, le B-sEPSM peut être utilisé pour investiguer l’effet de tech-
niques binaurales de réduction du bruit et de différentes stratégies de compres-
sion binaurales dans les appareils auditifs.
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1
General introduction

“People don’t talk like this, theytalklikethis. Syllables, words, sen-

tences run together like a watercolor left in the rain. To understand

what anyone is saying to us we must separate these noises into words

and the words into sentences so that we might in our turn issue a

stream of mixed sounds in response. If what we say is suitably apt

and amusing, the listener will show his delight by emitting a series of

uncontrolled high-pitched noises, accompanied by sharp intakes of

breath of the sort normally associated with a seizure or heart failure.

And by these means we converse. Talking, when you think about it,

is a very strange business indeed.” — Bill Bryson1

1.1 Motivation and background

Research in human speech communication often studies speech sounds as

a function of their intelligibility in different conditions. In this case, speech

intelligibility is a measure of how well a speech sound is understood by a listener.

For some tasks, using human listeners to test intelligibility can be costly or im-

possible. In these cases, computational models of speech intelligibility can be

used as design aids that attempt to predict human speech understanding. For

example, they can be used as validation tools when designing signal processing

algorithms—validating an algorithm against a model is both cheaper and faster

than running an experiment with listeners. They are also used in room design,

where they allow acousticians and architects to predict what intelligibility will

be in the real room, given a computer model of the room. Models are an essen-

tial part of the scientific method. They are used to validate hypotheses about

the functioning of the auditory system, to represent complex processes, and

to generate ideas of how the hearing system actually performs certain actions

1 From The Mother Tongue: English and How It Got That Way (1991), William Morrow Paper-
backs.
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2 1. Introduction

(Dau, 2008). For example, Jeffress (1948) used a model to suggest that acous-

tic timing differences between binaural signals could be captured using delay

lines in the neural auditory pathway. Signals coming from both ears would

branch out along paths of different lengths and meet at an array of neurons.

Only the neurons where both signals arrived at the same time would fire, which

therefore maps the interaural delay along one dimension of neurons. Later psy-

chophysical and physiological work, summarized by Joris et al. (1998), showed

that neurons in the auditory brainstem actually performed in a similar way as

suggested by Jeffress. In this case, real-life systems were identified after a model

suggested their existence. The models developed and evaluated in this thesis

are built as research tools. They aim to analyze and validate hypotheses about

the functioning of the hearing system. Speech intelligibility models evolved

over time, both in complexity and in accuracy. An overview of this evolution is

presented here, as well as a framework with which to reason about the structure

of the models.

1.2 Speech intelligibility frameworks

Intelligibility models can be used to predict speech performance at different

levels of precision. Models that predict confusions are labelled as “microscopic”

intelligibility models. For example, the models of Zaar and Dau (2015) or of

Cooke (2006) attempt to predict consonant confusions. In contrast, the models

considered in this thesis are qualified as “macroscopic”. They attempt to predict

human performance in more general terms, usually as a proportion of correctly

understood words or sentences.

In order to make their prediction, models evaluate features extracted from

the input signals. Figure 1.1 shows the basic structure of the intelligibility models

considered in this thesis. Input signals are processed by a “front-end”, or “pre-

processing”, which extracts a set of “features” from the input signals, and yields

an internal representation. This internal representation is then analyzed by

a “back-end” which is often split between a “decision metric” that evaluates

the intelligibility of the processed signals, and a conversion to intelligibility. In

many cases, this conversion takes the form of a psychometric function-like

mapping of the model output to intelligibility.

The decision metric dictates the inputs required by the model. In some

rare cases, such as in Falk et al. (2010), the model requires only access to the



1.2 Speech intelligibility frameworks 3

Input
signals

Front-
end

Internal
representation

Back-
end

Intelligibility

Figure 1.1: Structure of a general speech intelligibility model. Rectangular nodes represent input
and output signals and circular nodes represent processes.

processed speech signal as input, in which case it is said to be “non-intrusive”.

In most cases, the models are “intrusive” and the decision metric requires two

different inputs to make a comparison. The pairs of inputs can be the clean

speech and the masker alone (S & N ), the clean speech and the noisy speech (S

& (S +N )), or the noisy speech and the masker alone ((S +N ) & N ). Models that

require speech and masker separately typically use a metric based on audibility,

measured as the signal-to-noise ratio (SNR). The SNR is a metric designed

to quantify the amount of masking produced by one signal against another

(Fletcher, 1923). The masking effect captured by the SNR is typically described

as energetic masking (EM), i.e., when the neural response produced by a noisy

speech signal is nearly indistinguishable from the response of the masker alone

(Moore, 2012). French and Steinberg (1947) formalized the idea of using the

audio SNR as the decision metric under a model named the articulation index

(AI). The AI is calculated as the (weighted) SNR at the output of a filterbank

mimicking the frequency selectivity of the peripheral auditory system. This

approach was very successful in predicting the intelligibility of band-limited

speech (Kryter, 1962) and was instrumental in the development of the telephone

system. The AI was later extended as the speech intelligibility index (SII; ANSI,

1997), which introduced additional parameters to account for different types

of speech materials, as well as updated weights for the relative importance of

various frequencies to speech intelligibility.

Although SNR-based models were very successful, they failed in reverberant

conditions, e.g., in a quiet church where the SNR is positive but speech un-

derstanding is nonetheless impaired. To address this limitation, Houtgast and

Steeneken (1973a) suggested a metric named the modulation transfer function

(MTF), which requires both the clean and the noisy signal inputs. The MTF

evaluates the reduction in modulation depth of a probe signal (or of speech,

Payton and Braida, 1999) after processing, at the output of a modulation filter-

bank. The MTF concept required the addition of a dimension beyond the audio
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spectrum. It was used in the speech transmission index (STI; Steeneken and

Houtgast, 1980; IEC, 2003) framework, where the reduction in the modulation

depth is converted to an equivalent SNR; the idea being that reverberation fills

the gaps in the probe signal in the same way stationary noise does. Elhilali et al.

(2003) proposed a model based on the same MTF back-end but replaced the

temporal modulation front-end with a model that represents the spectral and

temporal modulations in the auditory system (Chi et al., 1999). Their spectro-

temporal modulation index (STMI) model captures these modulations using

two-dimensional filters (spectro-temporal receptive fields, STRF) that have the

form of a Gabor function. The STMI model was shown to account for the intelli-

gibility of speech corrupted by a phase jitter process, as well as by linear phase

shifts, and reverberation. The STI and STMI models are analyzed and discussed

further in Chap. 2.

Jørgensen and Dau (2011) introduced the speech-based envelope power

spectrum model (sEPSM) framework, based on the work of Dubbelboer and

Houtgast (2008) and Ewert and Dau (2000), who suggested the concept of SNR

in the modulation domain. The sEPSM captures the SNR in the envelope power

domain (SNRenv) at the output of a modulation filterbank. The SNRenv metric

assumes that an estimate of the speech-alone modulations, Ŝ , can be made

based on the modulation spectrum of the noisy speech, S +N , and the noise

alone, N , i.e., Ŝ = (S +N )−N . The sEPSM was shown to account for the intelligi-

bility of speech mixed with speech-shaped noise (SSN) as well as for the effects

of reverberation and of noise reduction via spectral subtraction, unlike the SII

and STI (Dubbelboer and Houtgast, 2007; Hilkhuysen et al., 2014). However, the

sEPSM fails in conditions where the spectral integrity of the speech is compro-

mised, such as in the case of a phase jitter process (Chabot-Leclerc et al., 2014,

Chap. 2). In a series of studies, Stone et al. demonstrated that noises typically

considered as “steady”, such as SSN or white noise, provide more modulation

masking (MM) than EM (Stone et al., 2011; Stone et al., 2012; Stone and Moore,

2014). This demonstration highlights the relevance of the SNRenv metric for

intelligibility prediction, which considers MM rather than EM. Additionally,

Stone et al. (2012) showed that masking release produced by fluctuations of the

masker’s amplitude reflects a release from MM rather than a release from EM.

Aspects of EM and MM are covered in Chap. 3 and Chap. 4.

Although all the models mentioned above perform well in the conditions in

which they were validated, none of them can account for the masking release
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(MR) due to fluctuations in the masker. In the case of the STI, the model is

limited by the fact that all modulation information must come from the probe

signal. In the case of the sEPSM, a modulated masker would yield a smaller

SNRenv and thus a lower intelligibility. AI-based models fail to capture the gaps

present in fluctuating maskers which provide “glimpses” to the listener. The

approach taken in all modeling frameworks has been to introduce a higher

temporal sensitivity by applying each model’s metric on a short-time basis.

Rhebergen and Versfeld (2005) proposed the extended SII (ESII), and Jørgensen

et al. (2013) proposed the multi-resolution sEPSM (mr-sEPSM). Both models

share the feature that the duration of the short-term window is not fixed. In

the ESII, the duration of the windows depends on the center frequency of the

peripheral filters and ranges from 35 ms for the filter centered at 150 Hz to

9.4 ms for the filter centered at 8 kHz. In the mr-sEPSM, the duration of the

windows depends on the center frequency of the modulation filters and is equal

to the inverse of the modulation channel’s center frequency.

The AI, SII, STI, STMI, and sEPSM mentioned above all use energy, either

in the audio or in the modulation domain, as part of their decision metric. In

contrast, there is another class of models that considers the similarity between

a test signal and a reference signal (often clean speech) as their decision metric.

Kates and Arehart (2005) proposed an extension of the SII, the CSII, which

replaces the SNR calculation with a calculation of the long-term coherence

between the clean speech and the noisy speech. The CSII could account for

the effect of additive noise, peak clipping, and center clipping. The model of

Christiansen et al. (2010) calculates a cross-correlation operation at the output

of a model of auditory preprocessing (Dau et al., 1997a) in 20 ms windows. Their

model could account for the intelligibility of time-frequency weighted noisy

speech, i.e., ideal binary mask (IBM) processing, as well as noise vocoding. Taal

et al. (2011) proposed the short-time objective intelligibility measure (STOI)

to account for the intelligibility of IBM processing. STOI also considers the

cross-correlation between the clean and degraded speech, but at the output of

a discrete Fourier transform (DFT) front-end and using longer time windows

of about 400 ms. Although the CSII, STOI, and the model of Christiansen et al.

(2010) account well for different types of non-linear processing, they fail to

account for reverberation or have never been tested in this condition.
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1.3 Binaural models of speech intelligibility

All intelligibility models mentioned above only considered monaural processing.

However, listening with two ears can have an effect as large as 13 dB in some

conditions (Marrone et al., 2008; Bronkhorst, 2000). The source of this advantage

is typically split into two components, one denoted as a “better-ear” (BE) and

an other denoted as “binaural unmasking” (BU). The BE concept assumes

that the hearing systems can select only the signal at the ear with the most

favorable SNR in a given situation. This advantageous SNR is characterized by

the interaural level difference (ILD) between the ears caused by the shadow cast

by the head. However, a binaural advantage can also be observed in conditions

without ILDs (Licklider, 1948), in which case the benefit is attributed to the BU

process and its use of the interaural time differences (ITDs) to “cancel” some

of the noise (Durlach, 1963). A prominent example of the existence of the BU

process in speech intelligibility is the 6 dB binaural intelligibility level difference

(BILD; Levitt and Rabiner, 1967a; Johansson and Arlinger, 2002) measured

in a condition where speech is presented out of phase between the two ears

together with an in-phase noise masker, compared to the condition where both

signals are presented in phase. A similar and even larger effect, of up to 15 dB,

is observed when the target is a tone, in which case the difference is denoted

as binaural masking level difference (BMLD; Licklider, 1948; Durlach, 1963).

In other words, the BE process is a selection process, whereas the BU process

involves an interaction between the two ear signals and is sometimes denoted

as “pure” binaural processing. Even though multiple experiments (Bronkhorst

and Plomp, 1988; Culling et al., 2004; Lavandier and Culling, 2010; Best et al.,

2013) have demonstrated the presence and supported the explanation of those

two mechanism, there is no clear explanation as whether both of them are

continually in use, or if one of the two is necessary or dominant in a given

condition (See Chap. 4).

Binaural intelligibility models typically consist of a combination of a monau-

ral model and a model used to predict BMLDs. Beutelmann and Brand (2006),

for example, proposed a model that combines the SII with the equalization–

cancellation (EC) model of Durlach (1963) that was later simplified and extended

in Beutelmann et al. (2010). The extended model, the binaural speech intelligi-

bility model (BSIM), provided an analytical expression to predict intelligibility

and was shown to account for the intelligibility obtained with interferers pre-
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sented in a reverberant environment and at different azimuths. Lavandier and

Culling (2010), in contrast, considered the SII and an analytical prediction of

the BMLD (Culling et al., 2005), in which case the predicted BMLD is added

to the BE benefit. Their model could account for the intelligibility of speech

mixed with noise in a reverberant environment for different target and masker

locations. Wan et al. (2010) proposed the steady-state EC (SSEC) model. It is very

similar to the model of Beutelmann et al. (2010), but differs in the fact that the

efficiency of the EC process is limited by a temporal and level jitter, rather than

by the addition of a Gaussian noise. The SSEC could account for intelligibility

in anechoic conditions for different masker types, different number of maskers,

and for different spatial location of maskers (Hawley et al., 2004; Marrone et al.,

2008). Van Wijngaarden and Drullman (2008) proposed a binaural extension

of the STI which included binaural interactions in the form of interaural cross

correlation (Jeffress, 1948).

Similarly to monaural models, binaural models have been extended to pre-

dict the intelligibility in conditions with one or multiple fluctuating maskers. In

the short-time BSIM (stBSIM; Beutelmann et al., 2010), the (long-time) BSIM

is applied in 20 ms windows, and in the short-time EC model (STEC; Wan et

al., 2014), the model of Wan et al. (2010) is also applied in 20 ms windows. In

this thesis, a binaural extension of the mr-sEPSM is proposed (Chap. 4), which

incorporates the EC model of Durlach (1963), as used in the STEC (Wan et al.,

2014) to account for binaural intelligibility benefits.

1.4 Overview of the thesis

In this thesis, several models are compared according to the modeling frame-

work described in Fig. 1.1, with the aim of identifying the contributions of

the different front-ends, back-ends, and of short- vs. long-term processing to

speech intelligibility prediction. This thesis is composed of four chapters, some

of which are based on already published manuscripts, as indicated in each

chapter.

Chapter 2 analyzes the role of across-channel processing and of the deci-

sion metric for speech intelligibility prediction. Predictions by the sEPSM are

compared to two modified versions of the sEPSM, as well as to the spectro-

temporal modulation index (STMI) model by Elhilali et al. (2003), which uses

the MTF as the decision metric. One version uses a similar two-dimensional
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modulation filtering stage as the STMI and keeps the SNRenv as the decision

metric. The second version keeps the one-dimensional modulation filtering

of the original sEPSM, but introduces an across (peripheral) audio-frequency

mechanism, inspired by models of comodulation masking release (CMR; Dau

et al., 2013; Piechowiak et al., 2007). The models are evaluated using data mea-

sured in conditions where speech is presented against speech-shaped noise

(SSN) and further processed by either reverberation, noise reduction via spectral

subtraction, or a phase jitter process.

In Chapter 3, the SRT data measured by Westermann and Buchholz (2015a)

are used to study the role of binaural processing, the decision metric and short-

vs. long-term processing in a condition where spatial release from masking is

created by moving a masker, on axis, away from a listener. Predictions by the

(long-term) sEPSM and by the mr-sEPSM (Jørgensen et al., 2013), which both use

the SNRenv metric, are compared to predictions by the binaural model of Jelfs

et al. (2011) (a reimplementation of the model of Lavandier and Culling, 2010),

the binaural speech intelligibility model (BSIM; Beutelmann et al., 2010), and

the (short-time) ESII (Rhebergen et al., 2005), all three of which use audibility

as the decision metric.

Chapter 4 introduces a binaural extension of the mr-sEPSM, named the

B-sEPSM. The “better-ear” process is modeled as two realizations of the mr-

sEPSM and the binaural unmasking consists of an EC process as suggested by

Wan et al. (2014). A selection mechanism then selects the best of the BE and BU

SNRenv in the multi-resolution time-scale. The model is evaluated against three

experiments from the literature that systematically investigate intelligibility as

a function of the number of maskers, the azimuth of the maskers, the room

properties (anechoic and reverberant), the masker types, and the ITD of the

target and masker.

Chapter 5 further tests the binaural model presented in Chap. 4 using data

measured by Lőcsei et al. (2015). The model is tested in ITD-only conditions

with masker types that produce different amounts of energetic, modulation,

and so-called “informational masking”. This chapter investigates the possibility

of estimating the confusions that cause parts of the informational masking

using the multi-resolution internal representations in the mr-sEPSM.

Finally, Chapter 6 summarizes the main findings and discusses the limita-

tions and perspectives of the proposed modeling approaches.



2
The role of auditory spectro-temporal
modulation filtering and the decision

metric for speech intelligibility
predictiona

Abstract

Speech intelligibility models typically consist of a preprocessing

part that transforms stimuli into some internal (auditory) represen-

tation and a decision metric that relates the internal representation

to speech intelligibility. The present study analyzed the role of

modulation filtering in the preprocessing of different speech intelli-

gibility models by comparing predictions from models that either

assume a spectro-temporal (i.e., two-dimensional) or a temporal-

only (i.e., one-dimensional) modulation filterbank. Furthermore,

the role of the decision metric for speech intelligibility was investi-

gated by comparing predictions from models based on the signal-

to-noise envelope power ratio, SNRenv, and the modulation transfer

function, MTF. The models were evaluated in conditions of noisy

speech (1) subjected to reverberation, (2) distorted by phase jitter,

or (3) processed by noise reduction via spectral subtraction. The

results suggested that a decision metric based on the SNRenv may

provide a more general basis for predicting speech intelligibility

than a metric based on the MTF. Moreover, the one-dimensional

modulation filtering process was found to be sufficient to account

for the data when combined with a measure of across (audio) fre-

quency variability at the output of the auditory preprocessing. A

complex spectro-temporal modulation filterbank might therefore

a This chapter is based on Chabot-Leclerc et al. (2014).

9
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not be required for speech intelligibility prediction.

2.1 Introduction

Early models of speech intelligibility, such as the articulation index (AI; French

and Steinberg, 1947), consider the effects of energetic masking as the main

factor influencing the intelligibility of speech presented in background noise.

The decision metric employed by the AI, i.e., the measure used to quantify the

effects of the transmission channel on speech intelligibility, mainly considers

the audibility of the speech, quantified by a weighted average of the signal-to-

noise ratios (SNRs) measured in frequency bands covering the speech spec-

trum.The AI has been demonstrated to account well for conditions with static

interferers, like additive noise (French and Steinberg, 1947), and for conditions

with spectrally filtered speech (Kryter, 1962). However, it fails in conditions with

temporal distortions, such as reverberation, because it does not consider the

modifications to the temporal envelope of the (speech) signal.

In contrast, the speech transmission index (STI; Houtgast et al., 1980; Steeneken

and Houtgast, 1980; IEC, 2003) considers the integrity of the temporal envelope

fluctuations of a reference signal in the decision metric, quantified by the mod-

ulation transfer function (MTF), which was included in a revised version of the

AI, the speech intelligibility index (SII; Pavlovic, 1987; ANSI, 1997). The MTF

measures the reduction of the envelope fluctuations of a target reference signal

as the ratio between the modulation magnitude spectrum of the processed

reference signal and that of the clean reference signal, for a number of audio

frequencies. The MTF therefore captures the effects of the distortions on the

envelope of the reference signal, and leads the STI to account for speech intelli-

gibility in reverberant conditions as well as when the speech is presented in a

stationary background noise (Houtgast et al., 1980; Steeneken and Houtgast,

1980; Houtgast and Steeneken, 1985). However, the STI fails in conditions with

nonlinear processing, such as envelope compression (Rhebergen and Versfeld,

2005), phase jitter, phase shifts (Elhilali et al., 2003), or spectral subtraction

(Ludvigsen et al., 1993; Dubbelboer and Houtgast, 2007).

To overcome this limitation, Payton and Braida (1999) as well as Goldsworthy

and Greenberg (2004) introduced modifications of the STI, generally referred

to as speech-based speech transmission index (sSTI) methods. The main dif-

ference from the original STI method is that speech is used as the reference
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signal rather than a modulated wideband noise, and that the integrity of the

temporal envelope is quantified by other metrics than the MTF. Although the

sSTI methods seemed promising, they have never been evaluated with quanti-

tative comparisons between measured and predicted speech intelligibility data.

Moreover, Dubbelboer and Houtgast (2008) proposed that, in the case of noise

reduction via spectral subtraction, the MTF-concept was inherently limited be-

cause it compares the clean reference signal to the processed signal and thereby

neglects the effects of the intrinsic modulations in the noise itself on speech

intelligibility. Jørgensen and Dau (2011) supported this view by showing that

the inherent modulations in the noise-alone envelope can, in some conditions,

be enhanced to a larger degree by the spectral subtraction process than the

modulations in the noisy speech, which decreases intelligibility.

An alternative approach was taken by Elhilali et al. (2003), who predicted

intelligibility based on the spectro-temporal modulation index (STMI). The

STMI measures the integrity of the spectral and temporal modulation energy of

a signal, inspired by neural responses to spectro-temporally varying stimuli in

the auditory cortex of ferrets (Depireux et al., 2001; Kowalski et al., 1996). This

concept thus differs from the STI, which considers the energy of the modula-

tions only in the temporal domain. The STMI considers a two-dimensional

(2D) (spectro-temporal) MTF as the decision metric, effectively assuming a

spectro-temporal modulation bandpass filterbank. Elhilali et al. (2003) defined

two versions of the STMI. One version used a spectro-temporally modulated

noise as the reference signal, denoted as a ripple, analogous to the temporally

modulated noise in the case of the STI. The second version used clean speech as

the reference signal, as in the sSTI methods. The ripple-based and speech-based

STMI, respectively denoted as STMIR and STMIT, were shown to be consistent

with the STI in conditions with additive noise and reverberation. Furthermore,

both STMI versions could account for the nonlinear distortion effects due to

phase jittering and phase shifts, to which the STI is insensitive. The key compo-

nent in the STMI to account for the phase distortions was assumed to be the

processing across the frequency axis, i.e., the evaluation of the integrity of the

spectral modulations in the speech signal. However, since the STMI is still based

on the MTF concept, it should have the same limitations as the STI when noisy

speech is processed by spectral subtraction, because the MTF does not capture

the effect of the processing on the intrinsic noise modulations (Dubbelboer and

Houtgast, 2008).
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Recently, Jørgensen and Dau (2011) proposed the signal-to-noise enve-

lope power ratio (SNRenv) as an alternative decision metric, inspired by the

work of Dubbelboer and Houtgast (2007). Instead of measuring the reduc-

tion of the clean speech envelope modulation power, as done by the MTF, the

SNRenv estimates the ratio of speech and noise envelope modulation power.

The SNRenv was implemented in the speech-based envelope power spectrum

model (sEPSM) and is estimated at the output of a temporal modulation filter-

bank. The SNRenv was shown to be consistent with the STI in conditions with

additive noise and reverberation, while also accounting for the effect of spectral

subtraction. The key component allowing the SNRenv to account for spectral

subtraction is the consideration of the intrinsic modulations of the noise (alone).

The power of these modulations is typically increased as a consequence of the

noise reduction processing which leads to a masking effect on speech in the

modulation domain. This effect is neglected in the MTF concept. However,

the sEPSM can be expected to fail in conditions with distortions that affect the

spectral structure of the signal (e.g., the spectral peaks representing the speech

formants) since the model does not assume any explicit across-frequency pro-

cessing besides simple information integration.

Thus, conceptually, the STMI and the sEPSM introduced different modifica-

tions to the STI: The STMI introduced an across-frequency mechanism via a

spectro-temporal modulation filterbank that seems important for the prediction

of phase jitter effects, but kept the MTF-based decision metric. The sEPSM

introduced another decision metric, based on the SNRenv, which seems impor-

tant for the prediction of effects of spectral subtraction, but kept the analysis of

only temporal modulations while neglecting across-frequency effects of a given

distortion on the modulation pattern of the stimuli.

The present study investigated if the combination of the two models would

provide a more general, and thus more powerful, modeling framework for pre-

dicting speech intelligibility. Two model realizations were considered, both

based on the sEPSM structure from Jørgensen and Dau (2011) and thus em-

ploying the SNRenv metric. One realization replaced the temporal modulation

filterbank by a two-dimensional spectro-temporal modulation filterbank, as

in the STMI, denoted in the following as “2D-sEPSM.” The other realization

kept the purely temporal [one-dimensional (1D)]modulation filterbank and

introduced a mechanism that measured the variance of the outputs of this

modulation filterbank across peripheral channels, denoted in the following as
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“sEPSMX.” In this model, the contribution to intelligibility from a given modu-

lation channel was assumed to be proportional to the amount of the variance

across peripheral channels for that particular modulation channel. Such a

mechanism was inspired by models of co-modulation masking release (CMR;

e.g., van de Par and Kohlrausch, 1998; Piechowiak et al., 2007; Dau et al., 2013).

CMR refers to the greater detectability of a tone centered in a narrow band noise,

surrounded by one or more flanking noise bands with co-modulated waveforms,

compared to the same situation with uncorrelated flanking noise bands. The

addition of a tone in the co-modulated noise bands introduces a decorrelation

of the waveforms across frequency, which has been suggested to be a cue for

detection (van de Par and Kohlrausch, 1998). An across-channel decorrelation

corresponds to an increase in the variation across frequency bands. However,

in contrast to the synthetic stimuli considered in CMR experiments, natural

speech contains a highly variable pattern of spectro-temporal fluctuations in an

auditory spectrogram-like representation, reflected by a large across-channel

variance. Distortions that would decrease the across-frequency variance would

thus reflect a degradation of the speech representation.

The two models were evaluated in conditions of reverberation, spectral

subtraction, and phase jitter processing and compared to predictions obtained

with the STMIT (Elhilali et al., 2003) and the original sEPSM (Jørgensen and Dau,

2011).

2.2 Model descriptions

Figure 2.1 shows a sketch of the overall structure of the model(s) considered in

the present study. The first three stages represent the auditory “preprocessing,”

consisting of a gammatone filterbank, an envelope extraction process, and a

modulation filtering process, which are specific to each of the two model real-

izations. An absolute sensitivity threshold is included in both models, such that

only peripheral filters with output energy above the normal hearing threshold

are considered. The two final stages indicated in Fig. 2.1 represent the decision

module, consisting of the SNRenv calculation and an “ideal observer,” as defined

in Jørgensen and Dau (2011).
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Figure 2.1: Block diagram of the overall structure of the modeling framework. The model consists
of a gammatone bandpass filterbank followed by envelope extraction via the Hilbert transform,
producing the “auditory spectrogram” of the incoming signal. The modulation filtering differs in
the two considered model versions, the 2D-sEPSM and the (1D-) sEPSMX. The SNRenv is calculated
from the envelope power spectra at the output of either the two-dimension modulation filtering
(2D-sEPSM) or the 1D modulation filtering (sEPSMX). The resulting values are combined across
modulation filters and audio filters. The overall SNRenv is converted to a percentage of correctly
recognized speech items using an ideal observer process.

2.2.1 Model 1: 2D envelope power spectrum model (2D-sEPSM)

In the 2D-sEPSM, the acoustic signal is filtered using a bandpass filterbank

consisting of 128 fourth-order gammatone filters equally spaced on a logarith-

mic scale between 90Hz and 3.5kHz (24 filters/octave over a 5.3 octave range).

The envelope of the output of each gammatone filter is extracted using the

Hilbert transform, low-pass filtered using a first-order Butterworth filter with a

cutoff frequency of 150 Hz (Ewert and Dau, 2000; Kohlrausch et al., 2000), and

short-term averaged in blocks of 8 ms to form an “auditory spectrogram”-like

representation.a Next, the joint spectral and temporal modulation content is ex-

a Short-term averaging is used as a single operation to low-pass filter and down-sample the
signal to reduce computation time. The resulting sampling rate of 125 Hz is sufficiently large
to not affect the highest temporal modulation filter centered at 32 Hz.
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Figure 2.2: Illustration of the spectro-temporal modulation filtering of the auditory spectrogram.
The first column shows an auditory spectrogram. The center column shows two examples of
spectro-temporal modulation filters tuned to different temporal modulation frequencies, spectral
modulation frequencies, and directions. The third column represents the output of the filtering
of the auditory spectro-temporal by the respective spectro-temporal modulation filter.

tracted from the auditory spectrogram using a bank of spectrally and temporally

selective modulation filters (Chi et al., 1999). The outputs of this processing, the

filtered spectro-temporal envelopes, have the four dimensions of time, cochlear

frequency, temporal modulation frequency, and spectral modulation frequency.

Figure 2.2 shows two examples of spectro-temporal modulation filters with

their respective filtered auditory spectrograms. The 2D modulation filters are

third-octave wide, octave-spaced, and tuned (Q = 1) to a range of temporal

modulations frequencies (ω) between 2 and 32 Hz and spectral modulations

frequencies (Ω) between 0.25 and 8 cycles/octave. The impulse responses of the

2D modulation filters have the form of a Gabor function. Detailed information

on the 2D filtering stage can be found in Chi et al. (1999) and Chi et al. (2005).

In the decision device, the long-term envelope power of the filtered spectro-

temporal envelope is calculated as the varianceb across time, leaving a three-

dimensional internal representation of the noisy speech mixture, Tmix( f ,ω,Ω),

b The variance across time is a measure of the “ac-coupled” power, i.e., the power related to the
fluctuations around the mean amplitude. The power of signals with finite energy is expressed
as the mean-squared operation, which is mathematically different from the variance. However,
in the special case of bandpass filters, as in the modulation bandpass filterbank, the output
signals have zero mean, which means that the variance and the mean-squared operations are
identical.
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and of the noise alone, N ( f ,ω,Ω).c The internal representation is then normal-

ized with the squared time-average of the auditory spectrogram to assert that

the envelope power is independent of overall stimulus level. The SNRenv can

thereafter be expressed as

SNRenv =
Tmix−N

N
. (2.1)

It is assumed that the envelope power of the mixture does not exceed the

envelope power of the clean speech, as performed in the STMIT,

Tmix =min(Tmix, Tclean), (2.2)

and that the envelope power of the noise is never larger than the envelope power

of the mixture:

N =min(N , Tmix). (2.3)

The lower limits of Tmix and N are represented by a small positive value ε re-

flecting an internal noise threshold and correspond to the internal noise term

indicated in Fig. 2.1:

Tmix =max(Tmix,ε)

N =max(N ,ε),
(2.4)

which prevents the numerator of Eq. (2.1) to be zero when Tmix =N . εwas set

to −40 dB.d

2.2.2 Model 2: 1D envelope power spectrum model with variance weight-

ing across frequency (sEPSMX)

The sEPSMX assumes 22 gammatone filters with 1/3-octave spacing of the center

frequencies, covering the range from 63 Hz to 8 kHz, as in the original sEPSM.

The envelope of the output of each gammatone filter is extracted via the Hilbert

c The spectro-temporal envelope power spectra, T and N , are considered equivalent to the
temporal envelope power spectrum of the noisy speech, Penv,S+N and of the noise alone, Penv,N ,
as defined in Jørgensen and Dau (2011). It is assumed that the SNRenv concept is applicable
to envelope power spectra, indistinguishably of the number of dimensions.

d This threshold corresponds to the value of −20 dB in the original model of Jørgensen and Dau
(2011) that considered only temporal modulation channels. The assumption that the internal
noise is independent in all (spectral and temporal) modulation channels considered in the
2D-sEPSM leads to the lower value of ε.
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transform and low-pass filtered using a first-order Butterworth filter with a

cutoff frequency of 150 Hz (Kohlrausch et al., 2000). The envelope is analyzed

by a filterbank consisting of a third-order low-pass filter in parallel with six

overlapping second-order bandpass filters. The cutoff frequency of the low-

pass filter is 1 Hz and the bandpass filters have center frequencies from 2 to 64 Hz

with octave spacing and a constant Q -factor of 1. Thus, for the sEPSMX, the

filtered temporal envelope is a three-dimensional function of time, audio-filter

center frequency, and modulation-filter center frequency.

The long-term envelope power, Penv, is calculated from the temporal output

of each modulation filter as the variance of the filter output across time. The

SNRenv is then calculated from the normalized envelope power of the noisy

speech, Penv,S+N , and the noise alone, Penv,N ,

SNRenv =
Penv,S+N −Penv,N

Penv,N
, (2.5)

where the normalization factor was the squared time-average of the unfiltered

envelopes of the respective stimuli. Similar to the 2D-sEPSM, the model’s sen-

sitivity is limited and the envelope powers below −20 dB are set to −20 dB

(Jørgensen and Dau, 2011). This sensitivity is expressed as ε in Eq. (2.4) and

corresponds to the internal noise indicated in Fig. 2.1.

2.2.3 Transformation from SNRenv to probability of being correct

In both models, the SNRenv contributions from all G modulation filters and L

audio filters are integrated according to

SNRenv =





G
∑

g=1

L
∑

l=1

(SNRenv,g ,l )
2





1/2

. (2.6)

In the case of the sEPSMX, the SNRenv contribution from the modulation filter

g is weighted as follows:

SNRenv,g ,l = [σ
2
g ]
β ·SNRenv,g ,l , (2.7)

whereσ2
g represents the across-channel variance for modulation filter g , evalu-

ated across all 22 audio filters, andβ is a free parameter with a value determined

by an optimal fit of the model predictions to the conditions with phase jitter. The
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Figure 2.3: Illustration of the calculation of the across-channel variance of the envelope power
for a given time frame. Each cell represents the normalized envelope power, P ∗env,g ,l , of the noisy
speech at the output of a temporal modulation filter g , and audio filter, l . The across-channel
variance,σ2

g , for a given modulation filter center frequency corresponds to the variance across
rows for a given column of the matrix.

value ofσ2
g was based on several computational steps: First, the long-term enve-

lope power of the noisy speech mixture, Penv,g ,l , was computed at the output of

modulation-filter g and audio-filter l and normalized with a factor proportional

to the bandwidth in hertz of the audio filter. The proportionality factor was the

root-mean-square level of the noisy speech mixture. The normalization ensured

thatσ2
g did not reflect differences in the overall level across peripheral channels

that might arise due to greater energy contained in the audio filters with larger

bandwidths. Finally, the variance (σ2
g ) of the normalized P ∗env,g ,l was computed

across the 22 peripheral filters. Figure 2.3 illustrates the across-channel variance

computation using a matrix representation; each row corresponds to a different

audio channel and each column represents a modulation channel. In each cell

of the matrix, the indices g and l of P ∗env,g ,l represent the center frequencies

of the filters. The across-channel variance is calculated across rows in a given

column.

For both models, the overall combined SNRenv is converted to a sensitivity

index, d ′, of an “ideal observer” using the relation:

d ′ = k (SNRenv)
q , (2.8)
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where k and q are parameters independent of the experimental condition. d ′

is converted to a percentage of correct responses using an m-alternative forced

choice (mAFC) decision model (Green and Swets, 1988) combined with an

unequal-variance Gaussian model. The ideal observer is assumed to compare

the input speech item with m stored alternatives and select the item, xS , that

yields the largest similarity. The m −1 remaining items are assumed to be noise,

one of which, xN ,max, has the largest similarity with the input speech item. The

value of xS is a random variable with a mean of d ′ and varianceσ2
S . Similarly,

the value of xN ,max is a random variable with mean µN and varianceσ2
N . The

selected item is considered correct if the value of xS is larger than xN ,max. The

corresponding probability of being correct is estimated from the difference

distributions of xS and xN ,max:

Pcorrect(d
′) =Φ

 

d ′−µN
q

σ2
S +σ

2
N

!

, (2.9)

where Φ designates the cumulative normal distribution. The values ofσN and

µN are determined by the number of response alternatives, m . For the open-set

paradigm used in the present study the value of m reflects the number of words

in a normal listener’s active vocabulary, here set to 8000 inspired by Müsch and

Buus (2001). σS is inversely proportional to the slope of the ideal observer’s

psychometric function, and reflects different degrees of redundancy in different

speech materials. The value of σS is a free parameter determined by fitting

model predictions to speech intelligibility data in conditions with a stationary

speech-shaped noise (see Jørgensen and Dau, 2011).

2.3 Method

2.3.1 Speech and noise material

The target speech was Danish sentences from the Conversation Language Un-

derstanding Evaluation (CLUE) test, consisting of unique meaningful five-word

sentences (Nielsen and Dau, 2009). The CLUE test is similar to the hearing in

noise test (HINT; Nilsson et al., 1994). For all test materials, the sentences were

mixed with speech-shaped stationary noise (SSN). The noise was created to

match the long-term frequency spectrum of the sentence material. The sen-

tence sound files were randomly concatenated and saved as initial noise file.
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The files were then randomized in a new order and added to the noise file. The

final noise was the results of 150 superpositions.

2.3.2 Stimuli and experimental conditions

Three conditions of processed noisy speech were considered: Reverberant

speech, speech processed by spectral subtraction, which is a form of (single

microphone) noise reduction used often in hearing aids and mobile phones,

and speech subjected to a phase-jitter distortion, which is a distortion that can

be found in telephone channels and is caused by the fluctuations of the power

supply voltage (Lee and Messerschmitt, 1994; Bellamy, 2000). In all conditions,

sentences were mixed with the stationary speech-shaped noise at a given SNR

before processing. In the phase jitter condition, the measured data presented

here were collected in the present study. The data in the phase-jitter condition

are represented as percent correct because of their non-monotonic shape as

a function of the phase jitter parameter. In the reverberation and spectral

subtraction conditions, data were taken from Jørgensen and Dau (2011). The

data in the reverberation and spectral subtraction conditions are represented

as speech reception thresholds (SRTs), representing the SNR corresponding to

50% intelligibility.

Reverberation

The noisy sentences were convolved with impulse responses corresponding to

particular reverberation times. The impulse responses were created using the

ODEON room acoustic software version 10 (Christensen, 2009). The simulated

room was shaped like a rectangular auditorium with maximal dimensions of 28×
16×10 m (length-width-height). The source and the receiver were horizontally

aligned with a fixed distance of 5 m, and placed approximately in the center of

the room. All surfaces had the same absorption coefficient, which was adjusted

individually across frequency such that the room had similar reverberation

times (T30) in the octave bands from 63 to 8000 Hz. Four different values of

absorption were considered, such that the impulse responses corresponded to

four different values of T30: 0.4, 0.7, 1.3, and 2.3 s. The corresponding acoustic

clarity (C50), defined as the ratio of the energy of the first 50 ms of the impulse

response to the energy of the remaining part, was 0.6, −2.9, −6.6, and −8.0 dB,

respectively.
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Spectral subtraction

Sentences were mixed with noise and processed by a spectral subtraction al-

gorithm as described in Jørgensen and Dau (2011), which was similar to that

presented by Berouti et al. (1979). An estimate of the noise power spectrum was

multiplied with an over-subtraction factor, κ, and subtracted from the power

spectrum of the noisy speech in 24-ms time frames with 50% overlap. The esti-

mate of the noise power spectrum was calculated as the mean value of the noise

power spectral density. After subtraction, negative values of the noisy speech

spectrum were set to zero. Finally, the spectrum was combined with the phase

of the original noisy speech and transformed back to the time domain using an

overlap-add method. The details on the algorithm can be found in Jørgensen

and Dau (2011). Six different over-subtraction factors were considered: 0, 0.5, 1,

2, 4 and 8, where κ= 0 corresponded to the reference condition with no spectral

subtraction.

Phase jitter

Noisy speech distorted by phase-jitter was obtained by multiplying noisy speech

with an SNR of 5 dB, s (t ), with a cosine function with a random phase, as

described in Elhilali et al. (2003):

r (t ) =R {s (t )e jΘ(t )}= s (t )cos(Θ(t )), (2.10)

where Θ(t ) is a random process uniformly distributed over [0,2πα](0≤α≤ 1),

and α is the parameter controlling the amount of jitter. The α-values used

covered the range 0 to 1 in steps of 0.125. For α= 0.5 and 1, the signal becomes

a temporally modulated white noise because each signal sample is multiplied

by a random value in the interval −1 to 1. The value of 5 dB SNR was chosen

such that noisy unprocessed speech had an intelligibility of 100% (Nielsen and

Dau, 2009, Fig. 7).

2.3.3 Apparatus and procedure

For the conditions with phase jitter, the stimuli were stored digitally at a sam-

pling frequency of 44.1 kHz and presented diotically through a pair of calibrated

Sennheiser HD580 headphones (Wedemark, Germany) driven by a high-quality

soundcard in a double-walled sound-attenuating booth. The setups was cali-
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brated using the SSN signal measured with a 1/2 inch microphone and a Brüel &

Kjær artificial ear of type 4152 (Nærum, Denmark). The speech had a constant

sound pressure level of 65 dB and noise was added to achieve the desired SNR

before further processing. Each sentence was presented once with the noise

starting 1 s before and ending 600 ms after the sentence; the noise was ramped

on and off using 400 ms cosine ramps. Eighteen ten-sentence lists were pre-

sented to each listener: Two lists were used for each α value and two sentences

per list for each SNR, resulting in 100 data points per condition per listener (2

lists × 10 sentences × 5 words). The lists and SNRs were presented in random

order. The training consisted of three lists using α-values of 0, 0.25, and 0.5,

presented in a random order. The listeners were asked to repeat the sentence

heard and were allowed to guess. No feedback was provided.

2.3.4 Listeners

Measurements were obtained with five normal-hearing listeners (four men, one

woman), aged from 21 to 27 years. Their pure-tone thresholds were of 20 dB

hearing level or better in the frequency range 0.25 to 8 kHz. All of them were

native Danish speakers and students at the Technical University of Denmark.

They were paid for their participation.

2.3.5 Model setup and parameters

Predictions were generated using 150 sentences from the CLUE material. The

sentences were down-sampled to 8192 Hz for the 2D-sEPSM and to 22050 Hz

for the sEPSMX to reduce computation time. The duration of the noise samples

was matched to the duration of each sentence and mixed at five SNRs, ranging

from−9 to 9 dB in 3 dB steps, except in the phase jitter condition where the SNR

was 5 dB only. In all cases, the processing (reverberation, spectral subtraction,

or phase jitter process) was applied to both the noisy speech and the noise

alone. The percentage of correct responses was obtained for each sentence

and for each combination of SNR and distortion parameter (T30, κ or α). The

final predictions were calculated as the average across all 150 sentences at a

given combination of SNR and distortion parameter. A predicted psychometric

function was obtained by connecting predicted responses with straight lines,

and the SRT for a specific condition was obtained as the SNR corresponding to

50% intelligibility.



2.4 Results 23

For the sEPSMX, the values of the parameters k and β were adjusted to

minimize the root-mean-square error (RMSE) between the prediction and the

measured SRT in the reference condition (speech-shaped noise only), and be-

tween the prediction and the data in the condition with phase jitter when α

is 1.e The values of m , q , and σS were taken from Jørgensen and Dau (2011).

For the 2D-sEPSM, the parameters k and q were adjusted in the same way. All

parameters were then kept fixed in all other experimental conditions and the

values are given in Table 2.1.

Table 2.1: Calibrated values of the parameters k , q , β , and of the constants σs , m of the ideal
observer for the CLUE speech material.

Model k q σs m β

2D-sEPSM 0.70 0.28 0.6 8000 −
sEPSMX 0.79 0.5 0.6 8000 0.28
sEPSM 1.1 0.5 0.6 8000 −

2.4 Results

2.4.1 Reverberant speech

Figure 2.4 shows the obtained SRTs as a function of the reverberation time. The

open squares represent the measured data from Jørgensen and Dau (2011).

The mean SRT in the reference condition without reverberation (T30 = 0) was

obtained at an SNR of −3.5 dB. The vertical bars denote one standard deviation

of the listeners’ SRT. The measured SRT increased with increasing reverberation

time, reflecting a decrease in intelligibility, because of the increasing low-pass

effect of reverberation on the temporal modulations (Houtgast and Steeneken,

1985). These data are consistent with Duquesnoy and Plomp (1980). The differ-

ent filled symbols represent model predictions. The filled black squares show

the results obtained with the 2D-sEPSM and the black triangles represent the

e The sEPSMX introduced the across-channel weighting, which included the parameter β , in
the model’s integration stage to account for the effect of phase jitter on the across-channel
structure of the signals. While the weighting coefficient itself is determined from the stimuli as
the variance of the envelope power across filters, the value of β had to be determined globally
by comparing predictions to the data in a condition of phase jitter. Thus, the parameters
k and β were adjusted to obtain the best fit to the reference condition, i.e., with SSN only,
and to the condition where the phase jitter parameter equaled 1, i.e., where the speech was
completely corrupted by the phase jitter process.
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Figure 2.4: SRTs as a function of the reverberation time, T30. The open squares represent a replot
of the data in Jørgensen and Dau (2011), with the vertical bars indicating one standard deviation.
The filled symbols show predictions obtained with the different models. The black squares and
the black triangles indicate predictions obtained with the 2D-sEPSM and the sEPSMX, respectively.
In addition, for comparison, the gray triangles show predictions obtained with the original sEPSM
without an across-channel process (Jørgensen and Dau, 2011). The gray filled circles represent
the predictions obtained with the STMIT (Elhilali et al., 2003). The STMIT prediction did not
reach 50% intelligibility when the reverberation time was 1.3 and 2.3 s, therefore the SRT could
not be calculated and is not shown.

predictions obtained with the sEPSMX. The Pearson correlation coefficient

between the 2D-sEPSM predictions (filled squares) and the measured data was

0.99 and the RMSE was 2.2 dB. In the case of the sEPSMX (black triangles), the

Pearson coefficient was 0.98 and the RMSE amounted to 1.2 dB. For comparison,

the predictions obtained with the original sEPSM (without any across-frequency

process) from Jørgensen and Dau (2011) are also shown, indicated by the filled

gray triangles. Furthermore, predictions using the STMIT based on Elhilali et al.

(2003) are shown as the gray filled circles. Table 2.2 shows the summary of the

RMSE and Pearson correlation coefficients in the three conditions for all models

presented. All models could account for the increase of SRT with increasing

reverberation. However, the 2D-sEPSM generally underestimated the effect of

reverberation by about 2 to 3 dB while the sEPSMX overestimates it by a similar

amount for the largest T30.

2.4.2 Spectral subtraction

Figure 2.5 shows the results for the condition with spectral subtraction. SRTs are

shown as a function of the over-subtraction factor κ. The measured SRTs, replot-
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Table 2.2: Summary of the Pearson correlation coefficients (ρ) and RMSEs between the data
and the predictions for the four models presented here, and for the three types of processing
applied to noisy speech. The correlation coefficient and RMSE are unavailable for the STMIT

in the reverberation condition because no SRT can be calculated for T30 larger than 0.7 s. The
correlation coefficient for the sEPSM in the phase jitter condition cannot be calculated.

Reverberation Phase jitter Spectral subtraction
Model ρ/RMSE ρ/RMSE ρ/RMSE

2D-sEPSM 0.99/2.2 dB 0.95/24.5% 0.93/1.4 dB
sEPSMX 0.98/1.2 dB 0.99/7.2% 0.99/0.3 dB
sEPSM 0.99/0.7 dB NA/65.5% 0.99/0.5 dB
STMIT NA/NA 0.94/19.6% −0.94/3.6 dB

ted from Jørgensen and Dau (2011), increased with increasing over-subtraction

factor. The predicted SRTs obtained with the 2D-sEPSM (black filled squares)

and those using the sEPSMX (black triangles) also increased with κ. The Pearson

correlation coefficient between the data and the 2D-sEPSM was 0.93 and the

RMSE was 1.4 dB. The sEPSMX predictions had a correlation with the data of

0.99 and a RMSE of 0.4 dB. For comparison, the predictions using the original

sEPSM were replotted from Jørgensen and Dau (2011) and are indicated by the

gray triangles. Furthermore, the gray filled circles show the predictions obtained

with the STMIT. This model predicted a decrease of SRT, i.e., increasing speech

intelligibility with increasing κ, in contrast to the measured data.

2.4.3 Phase jitter

The open symbols in Fig. 2.6 show the measured speech intelligibility data col-

lected in the present study, expressed as the percentage of correct words as a

function of the phase jitter parameter, α, at a fixed SNR of 5 dB. The vertical bars

represent one standard deviation. The intelligibility score showed a characteris-

tic trend as a function of α, with 100% intelligibility for α close to 0, a steep drop

of intelligibility down to 0% for α= 0.5, followed by a local maximum of about

45% for α= 0.75 and, finally, 0% intelligibility for α= 1. This trend in the data is

consistent with the data presented in Elhilali et al. (2003), although their results

did not show a local maximum for α= 0.75, most likely because the α-values

used were different from the ones used in the present study. The percentage of

correctly understood words drops to zero when α is 0.5 or 1 because for those

values, the phase jitter process is equivalent to multiplying the speech signal

with white noise, yielding speech-modulated white noise. A two-way analysis



26 2. Spectro-temporal modulations and the decision metric

0 0.5 1 2 4 8

−7

−5

−3

−1

1

3

Over−subtraction factor (κ)

S
R

T
 [

d
B

 S
N

R
]

 

 
Data

2D−sEPSM

sEPSM
x

sEPSM

STMI
T

Figure 2.5: SRTs as a function of the over-subtraction factorκ in conditions of spectral subtraction.
The open squares represent measured data from Jørgensen and Dau (2011), with the vertical
bars indicating one standard deviation. The filled black squares show the predictions obtained
with the 2D-sEPSM and the upward triangles represent the results using the sEPSMX. For direct
comparison, the filled gray downward triangles show predictions with the original sEPSM (re-
plotted from Jørgensen and Dau (2011)). The filled gray circles show predictions obtained with
the STMIT as proposed by Elhilali et al. (2003).

of variance (ANOVA) of the data showed a significant effect of α (F8,44 = 228.7,

p < 0.001) but no significant difference between listeners (F4,252 = 3.3, p = 0.023).

A post-hoc test with Bonferroni correction and with 95% confidence intervals

showed that intelligibility percentages α = 0.375 and α = 0.75 were different

from all other values. Two data points are significantly different from each other

if they are labeled by different letters indicated the figure.

The filled symbols represent predictions obtained with the different models.

The 2D-sEPSM accounted for the main characteristics in the data, with 100%

intelligibility below α= 0.25, minima at α= 0.5 and 1, and a local maximum at

α= 0.75. However, the predicted intelligibility scores never reached values below

39%. The Pearson correlation coefficient between the data and the 2D-sEPSM

was 0.95 and the RMSE was 24.5%. The predictions obtained with the sEPSMX

followed the data more closely than the 2D-sEPSM, with minima of about 1.5%

correct responses for α= 0.5 and 1 and a local maximum of 35% for α= 0.75.

The correlation between the sEPSMX predictions and the data wasρ = 0.99, with

an RMSE value of 7%. The original sEPSM (downward triangles) without across-

channel processing was insensitive to the effects of the phase jitter (similar to

the STI as demonstrated in Elhilali et al. (2003)), thus predicting constant speech

intelligibility independent of α, in strong contrast to the data. The predictions
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Figure 2.6: Word intelligibility as a function of the phase-jitter parameter α, for a fixed SNR of
5 dB. The open symbols indicate average measured data collected in the present study. Vertical
bars show one standard deviation of the average listeners’ percentage of word intelligibility. The
filled symbols show predictions obtained with the different models. 2D-sEPSM predictions are
shown as filled black squares; sEPSMX predictions are indicated as filled black triangles. For
comparison, predictions obtained with the original sEPSM without across-channel processing
are shown as gray triangles. Predictions from the STMIT are represented as filled gray circles.
Data points that differ significantly from each other are labeled by different letters above the
figure (2-way ANOVA, Bonferroni post-hoc correction, 95% confidence interval).

obtained with the STMIT showed the correct trend, but the dynamic range of

intelligibility values was smaller than in the measured data, with values between

12% and 85%. Overall, the results suggest that all models except the original

sEPSM could account for the main effects on speech intelligibility caused by

the phase jitter distortion.

2.5 Discussion

2.5.1 The role of the decision metric

All considered models could account for the main effect of reverberation on the

intelligibility of noisy speech, with correlation coefficients of 0.99, 0.98, and 0.98,

for the 2D-sEPSM, sEPSMX and sEPSM, respectively. The MTF-based STMIT

showed the correct trend of a decrease in intelligibility with increasing reverber-

ation time, although an SRT could not be obtained for reverberation times above

0.7 s. In contrast, only the models considering the decision metric based on the

SNRenv could account for the detrimental effect of spectral subtraction, with

correlation coefficients of 0.93, 0.99, and 0.99 for the 2D-sEPSM, the sEPSMX and
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the sEPSM, respectively. The MTF-like metric of the STMIT could not account

for the spectral subtraction data, exhibiting a correlation coefficient of −0.93,

possibly because it does not consider the effects of the nonlinear processing on

the noise modulations alone. This is consistent with the results from Jørgensen

and Dau (2011). The two new models presented here, the 2D-sEPSM and the

sEPSMX, employed the SNRenv metric but applied it to two different internal

representations (a three-dimensional versus a two-dimensional representation

of the modulation power), and provided reasonable results across the three

different conditions considered in the present study, with average correlation

coefficients across all conditions of 0.95 and 0.99, for the 2D-sEPSM and the

sEPSMX, respectively. This suggests that the SNRenv is a powerful metric for

speech intelligibility prediction that is robust with respect to specific assump-

tions made in the auditory preprocessing; the details of the implementation

of the envelope extraction, [e.g. with or without a lateral inhibitory network

(LIN) (Elhilali et al., 2003)], the particular shape of the peripheral filters, and the

number of modulation dimensions, did not affect the predictions in a crucial

way.

2.5.2 The role of across-frequency modulation processing

In the case of the phase-jitter distortion, which mainly affects the spectral struc-

ture of the speech, the results demonstrated that the original sEPSM (Jørgensen

and Dau, 2011) fails. The results obtained with the two new models considered

here, the 2D-sEPSM and the sEPSMX, showed that the failure of the original

sEPSM was caused by the lack of an across (audio-) frequency mechanism. The

across-frequency process in the 2D-sEPSM is reflected in the spectro-temporal

modulation filtering stage because it evaluates the joint modulation, i.e., the

combined modulations across time and audio frequency. Such a stage, inspired

by physiology, has been proposed as the basis for extracting relevant informa-

tion in various modeling tasks, such as speech segregation (Mesgarani et al.,

2006) and discrimination of natural sounds (Woolley et al., 2005), and as a fea-

ture extraction mechanism for speech recognition (Kleinschmidt, 2002; Nemala

et al., 2013). However, the “2D” modulation filtering does not assume any infor-

mation reduction in the processing and may represent a rather complex internal

representation of the stimuli for modeling speech perception. The sEPSMX,

in contrast, applies a temporal-only modulation-filtering process (as in the

original sEPSM), also motivated by physiological data in the auditory brainstem
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and cortex in cats (Langner and Schreiner, 1988; Schreiner and Urbas, 1988),

recent imaging studies in humans (Xiang et al., 2013), as well as computational

modeling results from behavioral signal detection and modulation masking

studies in humans (e.g., Dau et al., 1997a; Dau et al., 1997b; Verhey et al., 1999;

Derleth and Dau, 2000; Jepsen et al., 2008). The approach to measure the vari-

ation of modulation activity across frequency after the preprocessing in the

model is also consistent with recent concepts in computational auditory scene

analysis (Elhilali et al., 2009a), comodulation masking release (CMR; Piechowiak

et al., 2007; Dau et al., 2013) and sound texture synthesis (e.g., McDermott and

Simoncelli, 2011). Using the across-channel variance as the measure of coher-

ent across-frequency activity has been a pragmatic choice in the present study.

Other across-channel operations, such as those based on cross-correlation

or the temporal coherence of the temporal envelope of neighboring channels

(Richards, 1987; Par and Kohlrausch, 1998), may represent alternative measures.

The sEPSMX performed slightly better than the 2D-sEPSM in the conditions

considered in the present study. The sEPSMX showed an average Pearson corre-

lation of 0.98 with the data across all conditions and an average RMSE of 0.79 dB

for the reverberation and spectral subtraction conditions and a RMSE of 9% for

the phase jitter condition. The 2D-sEPSM showed an average Pearson corre-

lation of 0.96 across all conditions and average RMSEs of 1.81 dB and 24.5%,

respectively, for the same conditions. Compared to the original sEPSM, both

models showed a slightly worse performance in conditions with reverberation.

However, it should be noted that the two models presented here were not opti-

mized in terms of best fits with the data in all conditions. The parameters of

the 2D-sEPSM and of the sEPSMX were optimized using the data in the phase-

jitter conditions, but all parameters were then kept constant for the conditions

with additional processing. The main focus of this study was a comparison of

two conceptual across-frequency processes in connection with different types

of decision metric for speech-intelligibility prediction. The sEPSMX appears

conceptually simpler than the 2D-sEPSM. However, more work is needed to

clarify which approach may be more powerful and plausible when applied to a

broader range of experimental conditions.

2.5.3 The role of the auditory preprocessing in the models

The similarity of the predictions obtained with the 2D-sEPSM from the present

study and the STMIT (from Elhilali et al., 2003) in the phase jitter conditions
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suggests that the sharp tuning of the auditory filters assumed in the STMI frame-

work (Elhilali et al., 2003) may not be critical for the simulation results. The

preprocessing of the STMI includes peripheral filters with a quality factor, Q ,

of 4, followed by a lateral inhibitory network (LIN), which effectively sharpens

the auditory filters to a Q -factor of 12 (Shamma et al., 1986; Wang and Shamma,

1994; Lyon and Shamma, 1996). In contrast, the preprocessing of the 2D-sEPSM

included a filterbank of fourth-order gammatone filters without any subse-

quent sharpening. Although sharper auditory filters have been suggested in

connection with certain phenomena, such as peripheral (two-tone) suppression

(e.g., Robles and Ruggero, 2001), the use of the wider gammatone filters has

been successful in various modeling studies on signal-in-noise detection (e.g.,

Jepsen et al., 2008), comodulation masking release (CMR; Moore et al., 1990;

Piechowiak et al., 2007) and speech intelligibility (e.g., Beutelmann et al., 2010;

Rennies et al., 2011). Hence, the prediction results suggest that fourth-order

gammatone filters seem adequate to account for the speech intelligibility data

at moderate stimulus levels as considered in the present and previous studies.

2.5.4 The role of the frequency weighting for predicting speech intel-

ligibility

The 2D-sEPSM and sEPSMX do not include any explicit audio or modulation

frequency weighting, consistent with the STMI and the original sEPSM. Fre-

quency weighting is only reflected by limiting the processing to “audible” audio

and modulation frequencies. This is different from the empirical weighting

of individual frequency bands that has otherwise been a common feature of

speech intelligibility prediction metrics such as the AI, SII, and STI. The general

rationale for the weighting in these metrics has been that certain frequency

regions appear to be perceptually more relevant for speech intelligibility than

other frequency regions (French and Steinberg, 1947; Kryter, 1962; Houtgast

and Steeneken, 1985; Warren et al., 2005). For example, in the case of the STI,

the weighting has been separated into two types: (1) audio-frequency weighting

of individual octave bands within the frequency range 0.125 and 8 kHz, and (2)

modulation-frequency weighting in the form of a truncation of the maximum

modulation frequency included in the MTF, typically at 16 Hz (Houtgast et al.,

1980; Houtgast and Steeneken, 1985). The reasonable agreement between the

predicted and measured intelligibility obtained with the sEPSM approaches
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suggests that an explicit frequency weighting might not be necessary to account

for the data, if the metric that is assumed to be related to speech intelligibility is

appropriate.

2.5.5 Relation to speech intelligibility prediction using short-term

correlation

An alternative approach to predicting speech intelligibility is the short-time

objective intelligibility (STOI) model (Taal et al., 2011), where the decision met-

ric is a short-term correlation coefficient between the original clean speech

envelope and the processed (noisy) speech envelope at the output of a number

of 1/3-octave bandpass filters. A key step in the STOI model is the normalization

and clipping of the processed envelope, such that effects of level differences

between the two signals are removed from the correlation coefficient. As a

result, STOI effectively measures the similarity of the modulation content from

the envelope waveforms of the two signals, whereby any reduction of the corre-

lation may be assumed to result from noise modulations or other non-speech

modulations. One benefit of the correlation-based metric is that it includes

information about the envelope phase within each audio channel, which is not

captured by the power metric used in the SNRenv. This implies that the STOI

model might be sensitive to changes in the envelope phase caused by phase

jitter distortion within individual channels, such that this model might not

require an explicit across-channel mechanism to account for phase jitter. The

within-channel change in envelope phase, as measured by the cross-correlation,

and the across-channel change in envelope power, as measured by the across

channel variance, may be two ways of capturing the same loss of speech infor-

mation. In the STOI approach, the cause for a reduced correlation between the

clean and processed envelopes is difficult to directly relate to a physical source,

since it can result from any difference between the clean and the processed

noisy signal. In contrast, with an envelope-power based metric, the physical

source that causes a reduction in the decision metric must be a change in the

envelope power of the speech, the noise or both. Moreover, the sEPSM includes

additional aspects of the human auditory processing, in the form of the percep-

tually (Ewert and Dau, 2000) and physiologically (Langner and Schreiner, 1988;

Schreiner and Urbas, 1988; Xiang et al., 2013) motivated modulation filterbank.

The modulation filterbank concept might be crucial in other conditions, such
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as reverberation, where the STOI metric has limitations (Taal et al., 2011).

2.5.6 Perspectives

The current implementations of both the 2D-sEPSM and the sEPSMX are based

on the long-term envelope power of the signals. This approach was sufficient

to provide accurate predictions in the conditions considered in the present

studied. However, the models are likely to fail in conditions with fluctuating

interferers, such as amplitude modulated noise. One approach to overcome

this limitation could be to combine the current across-channel mechanisms

with the multi-resolution version of the sEPSM proposed by Jørgensen et al.

(2013), in which the envelope power is calculated in short-term segments with

a modulation filter dependent duration. Such an approach, combined with an

across-channel process, might allow to account for conditions with stationary

and fluctuating maskers, in addition to conditions with phase jitter or noise

reduction via spectral subtraction.

Additionally, the SNRenv concept could be included as the decision metric in

a binaural hearing model that uses “better-ear” listening, such as in Lavandier

and Culling (2010), Beutelmann et al. (2010), and Rennies et al. (2011) to account

for spatial unmasking. Computing the SNRenv at the output of a purely binaural

process, such as the equalization-cancellation process used by Beutelmann

et al. (2010) and Rennies et al. (2011) would require a careful analysis of the

effects of the process on the envelope of each ear signal.

The framework could be extended towards a more realistic peripheral pro-

cessing model (e.g., Jepsen et al., 2008). For example, the model does not include

non-linear effects of cochlear processing, such as compression and suppression,

which are affected in the case of a sensorineural hearing loss. Such an extension

would thus allow investigations of the consequences of hearing impairment on

speech intelligibility in the framework of the model.
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Predicting speech release from masking
through spatial separation in distance a

Abstract

Speech intelligibility models typically consist of a preprocessing

part that transforms stimuli into some internal (auditory) represen-

tation and a decision metric that relates the internal representation

to speech intelligibility. This study investigated speech intelligibil-

ity in conditions of spatial release from masking (SRM) where the

masker is moved, on-axis, away from the target. Two binaural mod-

els, which use the conventional audio signal-to-noise ratio (SNR)

in the decision metric, and two monaural models, using a decision

metric based on the SNR in the envelope domain (SNRenv), were

considered. The predictions were compared to data from Wester-

mann and Buchholz (2015a) in conditions where the target was

located 0.5 m in front of the listener and the masker was presented

at a distance of 0.5, 2, 5 or 10 m in front of the listener. The data

showed an SRM of 10 dB when moving the masker from a distance

of 0.5 m to a distance of 10 m. The long-term monaural model based

on the SNRenv metric was able to account for most of the SRM data,

whereas the models that used the audio SNR did not predict any

SRM, even when they included an equalization–cancellation-like

process. The short-term monaural model based on the SNRenv met-

ric predicted a small SRM only in the noise-masker condition. The

results suggest that “true” binaural processing is not always cru-

cial to account for speech intelligibility in spatial conditions and

that an SNR metric in the envelope domain appears to be more ap-

propriate in conditions of on-axis spatial speech segregation than

the conventional SNR. Additionally, none of the models consid-

a This chapter is based on Chabot-Leclerc and Dau (2014).
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ered grouping cues, which seem to play an important role in the

conditions studied.

3.1 Introduction

Understanding of a speech target presented simultaneously with a masker can

be improved if the target and maskers are not co-located but separated in space.

Typically, this improvement in intelligibility has been studied as a variation of

the angle separation between the target and the masker and is known as spatial

release from masking (SRM; Kidd et al., 1998; Freyman et al., 2001; Hawley et al.,

2004). SRM is expressed as the change in speech reception threshold (SRT) when

the masker is moved from the co-located position to another position. SRM

is usually explained as consisting of two components: a monaural advantage

resulting from an increase in the signal-to-noise ratio (SNR) at one ear due to the

head shadow effect, yielding a “better ear” (BE) effect, and a binaural advantage

due to binaural unmasking (BU) caused by interaural timing differences (ITDs)

between the two ear signals (Bronkhorst and Plomp, 1988).

Models that predict intelligibility in spatial conditions tend to consist of a

combination of two components that realize a BE and a BU process. For exam-

ple, the model of Lavandier and Culling (2010) consists of two such pathways

(Lavandier and Culling, 2010). The first evaluates the BE contribution by se-

lecting the best target-to-interferer ratio (TIR) for each peripheral channel and

combining them using weights from the speech intelligibility index (SII; ANSI,

1997). The second path evaluates the BU by calculating the binaural masking

level difference (BMLD) for each frequency channel, using the interaural coher-

ence of the target, as well as the interaural phase of the target and the interferer.

The BMLDs are also combined using the SII weights. The binaural advantage

represents the sum of the BE and the BU. The model was shown to account for

SRTs (with correlations of 0.95 to 0.97) for conditions with an anechoic target

and a noise masker placed at various azimuthal angles and distances in three

different rooms. However, because the model considers anechoic targets only,

it cannot capture the effects of reverberation on intelligibility. Furthermore, it

is limited to continuous noises and can therefore not account for the changes

in intelligibility due to modulations in the maskers.

In the binaural speech intelligibility model (BSIM; Beutelmann and Brand,

2006), the BU is implemented as an equalization–cancellation process between
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the signals received at each ear, maximizing the effective TIR. The SII is then

used to evaluate the intelligibility based on the effective TIR. The BSIM could

predict intelligibility with correlations of 0.80 to 0.93 in conditions of a co-

located target and masker, and a spatially separated target and masker, in three

different rooms. A revised version of the BSIM was introduced to account for

fluctuating maskers, which could account for SRTs with a multi-talker babble

masker and a single-talker masker (Beutelmann et al., 2010). Similarly to the

model of Lavandier and Culling, the BSIM cannot account for the effect of

reverberation on the speech itself because it cannot separate the useful from

the detrimental parts of the speech.

Recently, Westermann et al. demonstrated an SRM of 10 dB in a condition

where the distance between the target was increased on-axis (Westermann and

Buchholz, 2015a). A speech masker was moved from a position co-located with

the target at 0.5 m in front of the listener to a position 10 m away from the

listener. In this particular condition, BE and BU cues were limited. Therefore,

the above-mentioned binaural models based on the audio SNR are unlikely

to be able to predict the large observed SRM in the study of Westermann and

Buchholz (2015a).

The (monaural) speech-based envelope power spectrum model (sEPSM;

Jørgensen and Dau, 2011) uses the SNR in the envelope domain (SNRenv) as

its decision metric, rather than the audio SNR. In the sEPSM framework, the

random envelope fluctuations produced by the background noise are taken into

to account when predicting speech intelligibility (Jørgensen and Dau, 2011).

The sEPSM was shown to account for changes to intelligibility due to additive

noise, reverberation, and noise reduction via spectral subtraction. An extension

of the sEPSM was proposed to account for the speech masking release due

to fluctuating maskers. The extension has been named the multi-resolution

sEPSM (mr-sEPSM) because the SNRenv is calculated in time windows of differ-

ent duration, depending on the center frequency of the modulation filters in the

processing. It is hypothesized that the mr-sEPSM might account for SRM ob-

tained in the on-axis distance condition because it uses the modulation-domain

SNRenv, rather than the audio-domain SNR, in the decision stage.

The present study investigates whether masking release due to the on-axis

spatial separation of a target and masker can be explained by modulation mask-

ing rather than by energetic masking. Predictions by the mr-sEPSM, the long-

term sEPSM, the model of Lavandier and Culling, as implemented by Jelfs et al.
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(2011), and the BSIM were compared to data from literature (Westermann and

Buchholz, 2015a).

3.2 mr-sEPSM description

The mr-sEPSM takes as its inputs the mixture of the speech and the noise, as

well as the noise alone. Each signal is processed independently. The signals

are filtered using a bandpass filterbank consisting of 22 gammatone filters with

1/3-octave spacing of the center frequencies, covering the range from 63 Hz

to 8 kHz. An absolute sensitivity threshold is included such that channels

are processed further only if their level at the output of the filtering is above

the hearing threshold of a normal-hearing listener. The temporal envelope

in each gammatone channel is extracted using the Hilbert transform and low-

pass filtered with a cutoff frequency of 150 Hz using a first-order Butterworth

filter. Each envelope is subsequently processed by a (modulation) filterbank

consisting of second-order band-pass filters, in parallel with a third-order low-

pass filter. The cutoff frequency of the low-pass filter is 1 Hz and the band-pass

filters have center frequencies from 2 to 256 Hz with octave spacing and a Q -

factor of 1. The temporal output of each modulation filter is segmented using

rectangular windows without overlap. The duration of the window corresponds

to the inverse of the center frequency of the modulation filter, e.g. the windows

at the output of the 4 Hz filter are 250 ms long. The envelope power is calculated

for each of the segments, i , peripheral channel, p , and modulation filter, n ,

yielding Penv,i (p ,n ). For each temporal segment, the SNRenv is calculated from

the envelope power of the noisy speech and of the noise alone as

SNRenv,i(p , n ) =
Penv,S+N ,i (p ,n )−Penv,N ,i (p ,n )

Penv,N ,i (p ,n )
, (3.1)

where Penv,S+N and Penv,N represent the normalized envelope power of the noisy

speech and the noise alone. For each modulation channel, the SNRenv values

are averaged across-time. The time-averaged SNRenv are combined across

modulation filters and then across gammatone filters. The combined SNRenv is

converted to the probability of correctly recognizing the speech items using in

“ideal observer” (Jørgensen and Dau, 2011). More details about the mr-sEPSM

can be found in Jørgensen et al. (2013).
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3.3 Method

Model predictions were compared to the data from Westermann and Buchholz

(2015a) obtained with the coordinate response measure (CRM; Bolia et al., 2000)

material. The CRM consists of sentences of the form “Ready [call sign] go to

[color] [number] now”, with eight call-signs, four colors (red, green, blue and

white) and eight numbers (1 through 8). Only male talkers were used, and only

the “Baron” call-sign was considered for the target. The speech maskers were

sentences of the same form, but with different male talkers. For the speech

maskers, two randomly selected sentences were used against each target. In ad-

dition to the speech masker, a speech-modulated noise was created by applying

the Hilbert envelope of the speech maskers to noise with the same long-term

spectra as the speech target.

Two conditions were studied. In experiment 1, the target was placed 0.5 m

in front of the listener and the speech maskers were placed either 0.5, 2, 5 or

10 m in front of the listener, on-axis with the target. In experiment 2, the target

was also placed 0.5 m in front of the listener, but the masker was a two-talker

speech-modulated speech-shaped noise presented from a distance of 0.5 or

10 m from the listener, on axis. The long-term spectra of the maskers were equal-

ized to match the long-term spectrum of the target for each of the measured

spatial configurations, to minimize effects that may result from differences in

the signals’ long-term spectra. Equalized anechoic maskers (either speech, or

speech-modulated speech-shaped noise) were convolved with binaural room

impulses responses (BRIRs) recorded using a B&K Head and Torso Simulator

(Westermann and Buchholz, 2015a). The room had a reverberation time of

T60 = 1.9 s at 2 kHz and a volume of approximately 1150 m3. The delay intro-

duced by the sound propagating further was removed by time-aligning the

direct sound components. The masker was kept at a root mean square (RMS)

level of 55 dB SPL and the speech was adjusted to produce the required TIR at

the listener.

3.3.1 Models setup

For the predictions, the sEPSM and mr-sEPSM parameters were calibrated to the

intelligibility data for unprocessed speech-shaped noise (SSN) with the same

long-term spectrum as the target. Data obtained with the CRM speech material

presented in SSN were taken from Brungart et al. (2001). The simulation with
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the Lavandier and Culling model were obtained using the implementation by

Jelfs et al. (2011), available in the AMToolbox (Søndergaard and Majdak, 2013).

This implementation differs from the original in that it uses the BRIRs directly

to calculate the BE and BU, rather than convolving the BRIRs with noises. The

BSIM simulations were obtained using the “BSIM demonstrator” available at

HearCom (2014).

3.4 Results

The left panel of Figure 3.1 shows the measured SRM and simulated SRM for

experiment 1, where the maskers were speech and placed at distances of 0.5, 2,

5, or 10 m from the listener. Measured SRM (open symbols) ranged from 2.4 dB,

when the masker was 2 m from the listener, to 9.8 dB, when the masker was

10 m away from the listener. The mr-sEPSM (filled upward triangles) predicted

an SRM of −1.9 dB when the maskers were at 2 and 5 m. No improvement in

intelligibility was predicted when the maskers were at 10 m. The long-term

sEPSM (filled downward triangles) predicted an SRM ranging from 1.1 dB when

the maskers were 2 m away to 7.1 dB when the maskers were at 10 m. The Jelfs

model (filled squared) predicted no SRM, independently of masker distance.

The BSIM (filled circles) predicted no SRM for the nearer maskers and an SRM

of 1.2 dB when the maskers were 10 m away.

The left panel of Figure 3.1 shows SRM when the masker was speech-modulated

SSN and only for the positions where the masker was either 0.5 or 10 m from

the listener. The data (open symbols) showed no SRM when moving the masker

away. The mr-sEPSM (filled upward triangles) predicted an SRM of 3.2 dB with

the masker 10 m away. The sEPSM (filled downward triangles) showed an SRM

of 4.5 dB when the masker was at the 10 m position. For the Jelfs et al. model

and the BSIM, the predictions were the same as for the experiment with the

speech maskers, since the models consider only the BRIRs and the long-term

spectrum of the masker, respectively.
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Figure 3.1: Measured SRMs and model SRMs as a function of the masker distance for speech
maskers (left) and SMSSN (right). Vertical bars represent one standard deviation.

3.5 Discussion

3.5.1 The role of the decision metric and the binaural processing in

the long-term models

The present study investigated whether SRM due to on-axis distance separa-

tion in speech-on-speech masking condition could be accounted for solely by

energetic masking or modulation masking (Westermann and Buchholz, 2015a).

Predictions obtained with the long-term binaural models that use the audio

SNR as the decision metric (Lavandier and Culling, 2010; Beutelmann et al.,

2010) predicted 0 to 1.2 dB of SRM, compared to the 9.8 dB observed in the

data. The two models made the exact same predictions for the noise masker

conditions as for the speech masker conditions because they are not sensitive

to the change in the nature of the masker. The data, however, did not show any

SRM when moving the noise masker. The models based on the long-term SNR

could not account for the release from masking because no increase in SNR was

created by moving the masker away.

Predictions by the sEPSM, which uses the SNRenv as its decision metric,

could account for 7.1 dB of the 9.8 dB of the spatial release in the speech masker

condition. However, the sEPSM predicted a 4.5 dB SRM in the noise condition,

in contrast to the data where no SRM was observed. The sEPSM predicted

an increase in intelligibility because the increased distance in the room has

a low-pass modulation filter effect on the maskers (Houtgast and Steeneken,
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1985). The low-pass filtering in the modulation domain of the masker effectively

increases the SNRenv for modulation frequencies above 4 Hz and for audio fre-

quencies above 1 kHz. However, the sEPSM has been shown to fail to account

for intelligibility data obtained with fluctuating maskers (Jørgensen et al., 2013).

The maskers studied in Jørgensen et al. (2013) included, among others, a conver-

sation between two people, SSN that was fully amplitude modulated by an 8-Hz

sinusoid, and the International Speech Test Signal (Holube et al., 2010). In those

conditions, the modulated maskers caused a decrease of SNRenv compared to

the steady-state SSN because they contain more modulation energy then the

SSN. Thus, predictions with the sEPSM obtained for condition with fluctuating

maskers are not consistent with the data. However, the prediction of an SRM by

the sEPSM suggests that a release from modulation masking may be involved

when the speech maskers are moved away from the target.

Binaural processing did not contribute to the prediction of intelligibility in

the spatial condition considered. In the model of Jelfs, the BE process amounted

to −0.34 dB and the BU process 0.5 dB, leading to a combined binaural advan-

tage of 0.16 dB when the maskers were 10 m away. The BE component was

limited by the equalization applied to the masker to compensate for the effect

of the room on the masker’s spectrum. The BU component was limited by the

interaural coherence of the interferer, which is negatively affected by small

direct-to-reverberant ratios. For example, at the 10 m position, the acoustic

clarity (C50), defined as the ratio of the energy of the first 50 ms to the energy of

the remaining part, was −7.62 dB.

Long-term audio SNR and binaural processing of the BRIRs could thus not

account for the SRM observed in the speech-on-speech masking condition

when the maskers were moved away from the target. The long-term SNRenv, as

implemented in the sEPSM, could account for most of the SRM, although this

model has been shown to fail in monaural conditions with fluctuating maskers.

3.5.2 The role of the decision metric in the short-term models

The mr-sEPSM, which considers the SNRenv in short time-windows, did not

predict any SRM in the speech masker condition when the masker was at 10 m,

but did predict a negative release from masking when the masker was at 2

or 5 m. In the noise condition, the mr-sEPSM incorrectly predicted a 3.2 dB

SRM when the masker was at 10 m. A possible reason for why the mr-sEPSM

did not predict a SRM in the speech-on-speech condition, is that the time
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windows used were too short. They can be as short as 3.9 ms. Similarly to what

is observed in the audio domain, reverberation fills the “gaps” present in the

masker, effectively increasing the SNRenv in some time segments (when the

target and the maskers were time-aligned in the co-located condition), but also

decreasing it in other segments (when the masker was weak or absent). The

result is an overall decrease in SNRenv. It is possible that limiting the window

length in the multi-resolution process to a longer duration would allow the

mr-sEPSM to account for part of the release from modulation masking. Other

short-term models, such as the ESII and BSIM, used longer window lengths

of 12 ms (Beutelmann et al., 2010; Rhebergen and Versfeld, 2005). However,

even if the modifications to the mr-sEPSM may improve its performance in the

speech masker conditions, it is unlikely that it would account for the entire SRM

observed in the data.

In order to demonstrate how a short-term model that uses the audio SNR

would perform in the conditions studied, simulations were performed with

the extended SII (ESII; Rhebergen and Versfeld, 2005). The ESII calculates the

audio SNR in short time-windows of different durations depending on the cen-

ter frequency of the peripheral filter. Only the speech masker condition was

used. Figure 3.2 shows that the ESII predicts a decrease in intelligibility when

the masker is moved away. The reason for this is that the masker becomes

less fluctuating when moved further away, i.e. the gaps are “filled” by the re-

verberation. Therefore, there are fewer “glimpses” where the SNR is positive

when the masker is far away than when it is co-located with the target. The

short-term extension of the BSIM would probably not predict an increase in

intelligibility either, because it uses the same metric as the SII (Beutelmann et al.,

2010). Furthermore, the equalization–cancellation process would not increase

the internal SNR, relative to the co-located condition, because the interaural

decorrelation caused by the room limits the efficiency of the EC process.

3.5.3 Energetic, modulation, and informational masking

It has been argued that most of what is considered energetic masking (EM) may,

in fact, be a form of modulation masking (MM) (Stone et al., 2012; Stone and

Moore, 2014). Following this argument and the fact that both models based on

the audio SNR failed to predict any SRM, it is difficult to argue that the increase

in intelligibility resulting from moving the masker away in the speech-masker

condition is due to a release from energetic masking. The prediction by the



42 3. Predicting release from masking through spatial separation in distance

15 12 9 6 3 0 3 6

Target-to-interferer ratio (dB)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
S

II

T0.5M0.5

T0.5M10

Figure 3.2: ESII prediction for two speech maskers when they are either co-located with the
target, at 0.5 m from the listener, or placed 10 m away, on axis.

sEPSM of an SRM of 7.1 dB supports that moving the masker away provides a

release from modulation masking. However, the prediction obtained with the

mr-sEPSM, which uses the same SNRenv metric, did not show any SRM.

It has been argued that when target and speech maskers are co-located,

higher threshold are caused by a combination of EM (and likely MM) and infor-

mational masking (IM) (Freyman et al., 2001). The two main factors contributing

to IM have been suggested to be: (1) a difficulty segregating the target from

the masker(s) and/or (2) a difficulty selecting which sound features belong to

the target in the presence of similar maskers (Ihlefeld and Shinn-Cunningham,

2008). Westermann and Buchholz argued that a release from IM when moving

the masker away was likely to be due to a reduced confusion between the target

and the maskers (Westermann and Buchholz, 2015a). The distance-related cues

that aid the segregation for the listener were not considered in the modeling

frameworks. It would be necessary to extend the models with a process that

can benefit from those distance cues by, for instance, identifying the number of

streams (Christiansen et al., 2014; Elhilali et al., 2009b). In the context of the

present study, a two-stream percept would contribute positively to the intelli-

gibility prediction because it would suppose that the model could distinguish

between the target and the masker, such as in the far-masker condition. The co-

located condition would possibly produce a one-stream percept, which would

negatively impact intelligibility. The intelligibility modeling framework could

also be augmented by a more complex front-end that can localize and separate

a target from an acoustic scene (May et al., 2012).
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3.6 Conclusions

Predictions by four intelligibility models, the mr-sEPSM, the sEPSM, the model

of Lavandier and Culling (2010) and the BSIM were compared to literature data

that showed an SRM effect when speech maskers were moved from co-located

position to a position further away. Such an SRM was not observed when the

maskers were noise. The predictions showed that the SRM in the speech-on-

speech masking condition could not be explained by changes in the audio SNR

nor by binaural processes. Part of the SRM could be explained by a release from

modulation masking but additional cues, such as grouping, seem to be required

to account for the entire effect of the SRM.
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4
Predicting binaural speech intelligibility

using the signal-to-noise ratio in the
envelope power spectrum domaina

Abstract

This study proposes a binaural extension to the multi-resolution

speech-based envelope power spectrum model (mr-sEPSM; Jør-

gensen et al., 2013). It consists of a combination of better-ear

(BE) and binaural unmasking (BU) processes, implemented as two

monaural realizations of the mr-sEPSM combined with a short-term

equalization–cancellation process, and uses the signal-to-noise ra-

tio in the envelope domain (SNRenv) as the decision metric. The

model requires only two parameters to be fitted per speech material

and does not require an explicit frequency weighting. The model

was validated against three data sets from the literature, which cov-

ered the following effects: the number of maskers, the masker types

(speech-shaped noise (SSN), speech-modulated SSN, babble, and

reversed speech), the masker(s) azimuths, reverberation on the tar-

get and masker, and the interaural time difference (ITD) of the target

and masker. The Pearson correlation coefficient between the sim-

ulated speech reception thresholds (SRTs) and the data across all

experiments was 0.91. A model version that considered only BE pro-

cessing performed similarly (correlation coefficient of 0.86) to the

complete model, suggesting that BE processing could be considered

sufficient to predict intelligibility in most realistic conditions.

a This chapter is based on Chabot-Leclerc et al. (2016).

45
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4.1 Introduction

Cherry (1953) coined the term “cocktail party problem” to describe the ability of

listeners to “recognize what one person is saying when others are speaking at the

same time”. It is known that this ability is typically improved if the listeners can

use both of their ears, relative to either ear alone, and if the target and maskers

are spatially separated. Various models have been designed to disentangle

which part of this binaural advantage can be attributed to a selection process

between left versus right ear (i.e., a “better-ear” process), a “purely” binaural

process where the signals from both ears interact, or a combination of both.

The models typically focused on a few aspects affecting speech intelligibility at a

time, such as the spatial separation of the target and the maskers, the effects of

reverberation on the target or on the maskers, the role of temporal fluctuations

in the masker, and the effects of multiple interferers. None of the models can

account for all of these aspects at once. In the current study, recent advances

in monaural intelligibility predictions are combined with binaural modeling

approaches in an attempt to provide a model that can account for all of the

aforementioned aspects.

Binaural intelligibility models usually combine a monaural model with some

form of binaural processing to capture binaural cues attributed to head shad-

ows and binaural interactions (Bronkhorst and Plomp, 1988). When a masker

is placed elsewhere than in front of the listener, the head casts an acoustical

shadow on the side opposite to the source. If the target is placed towards the ear

that is in the shadow, the target-to-interferer ratio (TIR) is improved, yielding

a better ear (BE), which helps the listener understand the target. These inter-

aural level differences are denoted as ILDs. Correspondingly, different source

azimuths produce different interaural time differences (ITDs). Binaural interac-

tions rely on the ITD between target and maskers to facilitate their segregation,

denoted as “binaural unmasking” (BU). The equalization–cancellation (EC)

theory (Durlach, 1963) suggests that binaural unmasking can be explained by

the ability of the central auditory system to “cancel” the interferers, effectively

maximizing the target-to-interferer ratio.

4.1.1 Models with independent processing of ILDs and ITDs

Binaural models that predict intelligibility in spatial conditions tend to consist

of a combination of two components that realize the BE and the BU processes.
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For example, the model of Lavandier and Culling (2010) first evaluates the BE

contributions by selecting the best long-term target-to-interferer ratio for each

peripheral channel, using stationary speech-shaped noise (SSN) convolved

with the binaural impulse responses between the listener and the sources as

the target and masker “probe signals”, and combining them using the speech

intelligibility index (SII) weights (ANSI, 1997). The BU path evaluates the binau-

ral masking level difference (BMLD) in each channel using an equation based

on the EC concept, which incorporates the ITDs of the target and masker, as

well as the interaural coherence of the masker (Culling et al., 2005). The BMLD

values are also combined using the SII weights, and then summed with the BE

to yield the overall binaural advantage (BA), relative to the colocated condition.

Their model could account for conditions with an anechoic target and a noise

masker placed at different distances and azimuths in three different rooms.

However, because the model considers anechoic targets only, it cannot capture

the effects of reverberation on the target itself because reverberation does not

strongly affect the envelopes of the convolved SSN probe signals. Furthermore,

it is limited to stationary maskers and thus cannot account for intelligibility

changes due to amplitude modulations in the maskers because the model only

considers the long-term properties of the signals.

This model of Lavandier and Culling (2010) was expanded to include head

shadow and multiple stationary maskers in anechoic (Jelfs et al., 2011) and

reverberant conditions (Lavandier et al., 2012). Those two model versions used

binaural room impulse responses (BRIRs) directly to calculate the TIRs and

BMLD values. Although those extended model implementations are compu-

tationally more efficient and have more predictive power than the previous

one, they still have the same inherent limitations, i.e., they cannot account

for any release from masking due to modulations in the maskers and cannot

describe effects of temporal smearing of the target at low direct-to-reverberant

ratios. Those are similar to the limitations of the SII, on which those models

are based; the models would predict good intelligibility at infinite SNRs but low

direct-to-reverberant ratios, which is in contrast to the reduced intelligibility

observed in such conditions.

Collin and Lavandier (2013) proposed another extension of the original

work of Lavandier and Culling (2010) to account for the effects of modulated

interferers, whereby the BE and BU calculations are performed in short-time

frames of 12 ms on the filtered signals, rather than directly on the BRIRs. The
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short-time frames are averaged over the duration of the signals, similar to the

processing in the extended speech intelligibility index (ESII; Rhebergen and

Versfeld, 2005). Collin and Lavandier used an SSN target, rather than speech,

because it was assumed that gaps in the speech would produce negative TIRs

even though they carry information that should contribute positively to the

intelligibility. Collin and Lavandier (2013) varied the masker distance as well as

its modulation depth using either stationary SSN, 1-, 2-, or 4-talker modulated

SSN. The model was demonstrated to qualitatively account for the correct trends

in the data for different masker distances and modulation depths, although

measured and simulated effects were small (from less than 1 dB to about 2 dB).

However, while the short-time approach seemed successful when predicting

intelligibility in modulated maskers, it would fail to account for the effects of

reverberation on the speech because SSN is used instead of speech for the target

signal.

4.1.2 Models combining the SII and the EC concept

In the binaural speech intelligibility model (BSIM; Beutelmann et al., 2010),

which is a revision and simplification of the original implementation (EC/SII;

Beutelmann and Brand, 2006), the BU process is implemented as a frequency-

independent equalization and cancellation (Durlach, 1963) of the long-term

signals received at each ear. The SII is then used to evaluate the intelligibility

based on the effective TIR in each frequency band. The reference SII value

corresponding to the speech reception threshold (SRT) is selected only once

for all conditions and is defined as the SII predicting 50% intelligibility for the

monaural presentation of the Oldenburg Sentence Test in noise (Wagener et

al., 1999). The BSIM could predict SRTs of normal-hearing (NH) listeners in

conditions with colocated target and stationary speech-shaped noise maskers

(SSN), as well as with spatially separated target and maskers, in anechoic condi-

tions and in three different rooms (a listening room, a classroom, and a church).

Beutelmann et al. (2010) also extended the BSIM to account for fluctuating

maskers by computing the SII after EC processing in short time windows with

an effective length of 12 ms. The extension was named short-term BSIM (stB-

SIM). The stBSIM could account for the release from masking due to modulated

maskers in anechoic conditions, but was less accurate when reverberation was

introduced; the mean differences between predicted and observed SRTs varied

between −4.1 and −2.7 dB. Furthermore, similar to the model of Lavandier and
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Culling (2010) and its extensions, the stBSIM cannot account for the effects of

reverberation on the speech itself because it cannot separate the useful from

the detrimental part of the speech.

Rennies et al. (2011) proposed several modifications of the long-term BSIM

to better account for the deleterious effect of reverberation: (1) an extension

based on the modulation transfer function, (2) a compensation factor based

on the room “definition” (a room acoustical property), and (3) a separation

of the speech signal based on the useful and detrimental parts. Extension (2)

provided the best fit of the three models in anechoic and reverberant conditions

with stationary maskers. Although the proposed modifications increased the

predictive power of the model, they also reduced its generality because the

model now required access to the room impulse response in addition to the

speech and noise signals.

Wan et al. (2010) introduced an application of the EC model of Durlach

(1963), which they later denoted as the steady-state EC model (SSEC). Their

approach is similar to that of the BSIM (Beutelmann et al., 2010) but differs in a

few important ways: the decision device based on the SII selects the best SNR

from the left ear, the right ear, or from the cancelled pathway for each frequency

channel, rather than from the cancelled pathway only; the EC process resolution

is limited by applying frequency-independent and time-varying jitters in both

amplitude and time to the output of each peripheral filter, instead of adding

uncorrelated noise to each ear signal; a different SII criterion is selected for each

combination of number of maskers, and type of maskers, rather than using a

single SII criterion. The model was evaluated for different maskers types, 1 to 3

simultaneous maskers, and different masker azimuth angles. Wan et al. (2010)

showed that the model could predict SRTs correctly when the maskers were

SSN or speech-modulated SSN, but failed when the maskers were speech or

reversed speech.

Wan et al. (2014) proposed the short-time EC model (STEC) to extend the

SSEC. In contrast to the SSEC, the equalization parameters of the EC process

are calculated in overlapping 20 ms windows and can vary as a function of

time, which improves cancellation of the dominant masker across time. The

cancelled signal is then resynthesized from the short-time windows and the SNR

is calculated from the long-term spectrum. This means that only the BU process

is applied in a short-time fashion and not the BE process. The STEC predictions

were more accurate in conditions with speech-modulated SSN; however, the



50 4. Predicting binaural speech intelligibility using the SNRenv

agreement with the data was worse than with the SSEC for reversed-speech

maskers. The STEC described the spatial release from masking occurring with

speech maskers slightly better than the SSEC did, but it still failed to account for

the large 9 dB release from masking observed in Marrone et al. (2008) when two

speech maskers are moved from being colocated with the target to being placed

at±15◦ azimuth angles. This may be due to differences in informational masking

(IM) across the conditions. The STEC still has the same inherent limitation as

the SSEC in that the model fitting has to be done for each combination of masker

type and number of maskers. Further, it has never been tested in reverberant

conditions.

4.1.3 Modulation-domain models

In contrast, Van Wijngaarden and Drullman (2008) extended the speech trans-

mission index (STI; Houtgast and Steeneken, 1973b; IEC, 2003) to consider

binaural hearing. The STI considers the integrity of the modulations of a ref-

erence signal (or speech) after processing as the decision metric, assessed by

the modulation transfer function (MTF). The MTF can capture the effects of

reverberation on speech because of the reduction in modulation in the refer-

ence signal. The binaural interaction of the binaural STI is based on interaural

cross-correlograms. Van Wijngaarden and Drullman (2008) showed that the

binaural STI extension could account for consonant-vowel-consonant (CVC)

word scores for stationary maskers presented in multiple rooms (anechoic, a

listening room, a classroom, and a large church). However, this approach is

limited because it cannot be extended to more realistic conditions where the

maskers are also modulated, since modulations are then coming from both the

target and maskers and they can no longer be distinguished.

In order to account for different amounts of target and masker modula-

tions, Jørgensen and Dau (2011) proposed the monaural speech-based enve-

lope power spectrum model (sEPSM), which considers the signal-to-noise en-

velope power ratio (SNRenv) at the output of a modulation filterbank (Ewert

and Dau, 2000) as the decision metric. In addition to conditions with additive

maskers, the sEPSM can also account for the effects of reverberation, as well

as noise reduction via spectral subtraction because it captures the increase in

the masker’s modulation power after processing. The sEPSM was extended to

account for conditions with fluctuating maskers by using a “multi-resolution”

process (Jørgensen et al., 2013). In the corresponding multi-resolution model,
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the mr-sEPSM, the SNRenv is calculated in windows of different length (akin to

the ESII of Rhebergen and Versfeld (2005)) according to the center frequency of

the modulation filters. The mr-sEPSM was validated using various fluctuating

noises, including cafe noise, two-band speech modulated noise, the interna-

tional speech test signal (ISTS; Holube et al., 2010), and a reversed talker. In

contrast to the SII and STI metrics, the SNRenv metric can account for both the

effects of reverberation on the target and the masker as well as for the release

from masking due to fluctuations in the maskers. However, the model has not

yet been applied to spatial conditions using two-ear processing. Therefore, us-

ing the mr-sEPSM framework in a binaural model could yield a model that can

account for all the aforementioned aspects of binaural speech intelligibility: the

spatial separation of the target and the maskers, the effects of reverberation on

the target and on the maskers, the role of temporal fluctuations in the masker,

and the effects of multiple interferers.

None of the models previously mentioned can account for the deleterious

effects of colocated concurrent speakers on speech intelligibility. The difference

between the measured intelligibility and intelligibility predicted using energy-

based model is often labeled as "informational masking".

4.1.4 Proposed modeling framework

Here, a model is proposed that combines concepts from different modeling

approaches. Specifically, it integrates a short-time equalization-cancellation

process (Wan et al., 2014), a temporal modulation filterbank (Dau et al., 1997a;

Ewert and Dau, 2000), the SNRenv metric (Jørgensen and Dau, 2011), and a

better-ear process in the envelope power domain. The model was evaluated

using a set of critical experimental conditions from the literature to tease apart

the contributions of the decision metric, the short-time processing, the better-

ear process, and the binaural unmasking for predicting intelligibility in spatial

conditions. Experiment 1 focused on conditions with multiple maskers in

anechoic conditions, Experiment 2 considered conditions with only a single

masker, but in a reverberant environment, and Experiment 3 investigated a

single-masker condition where only ITD but no ILD information was provided.
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Figure 4.1: Diagram of the model structure. Solid lines denote the path of the speech-plus-noise
(S +N ) mixture and the dash lines show the path of the noise alone (N ). The values α0 and τ0

represent the optimal parameters selected by the equalization process.

4.2 Model description

4.2.1 Overall model structure

Figure 4.1 shows a sketch of the model proposed in the present study, which is

an extension of the monaural mr-sEPSM (Jørgensen et al., 2013). The model

consists of realizations of the monaural mr-sEPSM for the left and right ear, and

a “central” pathway where binaural unmasking takes place using an EC process

(Wan et al., 2014). In contrast to the original mr-sEPSM, the model employs a

binaural processing stage. Binaural processing is limited by peripheral trans-

duction, which does not preserve fine-structure information at high frequencies

(Bernstein and Trahiotis, 1996). Peripheral transduction is therefore modeled

using half-wave rectification and low-pass filtering. A binaural selection stage

combines the outputs of the left, right and central pathways. The subsequent

output is then converted to intelligibility using an ideal observer concept. The

extension to the mr-sEPSM is presented below; further details and justifications

about the mr-sEPSM approach can be found in Jørgensen et al. (2013).
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4.2.2 Monaural processing stage

The inputs of the model are the noisy speech and the noise alone for each

ear. The first stage of each monaural model consists of 22 gammatone filters

covering the frequency range from 63 Hz to 8 kHz with a third-octave spacing.

The channels are processed further only if the level of the noisy speech for that

channel is above the diffuse-field threshold in quiet (ISO, 2005). The envelope

of each channel output is extracted using half-wave rectification and low-pass

filtered using a fifth-order Butterworth filter with a cut-off frequency of 770 Hz

(Breebaart et al., 2001). Jitter in amplitude and time is applied to each envelope

independently to limit the efficacy of the EC process; all jitters are zero-mean

Gaussian processes with standard deviations ofσδ = 105 µs for the time jitter

and ofσε = 0.25 (dimensionless) for the amplitude jitter (Durlach, 1963). The

resulting envelopes are further processed by a modulation filterbank consisting

of eight second-order Butterworth band-pass filters. A third-order low-pass

filter with a 1 Hz cut-off frequency is applied in parallel, which completes the

filterbank. Conceptually, this filter can be considered as the lowest frequency

band in the filterbank. Only modulation filters with center frequencies below

one-fourth of their respective peripheral-filter center frequency are used (Verhey

et al., 1999).

The output of each modulation filter, n , is segmented in non-overlapping

rectangular windows of durations inversely proportional to the center-frequency

of the respective modulation filter, e.g., the windows at the output of the 8 Hz

modulation filter are 125 ms long. The power, Penv,i (p , n ), of each segment, i , is

defined as the variance of the segment:

Penv,i (p , n ) =
1

[E (p , t )]2/2
[ei (p , n , t )− ei (p , n )]2, (4.1)

where p is the corresponding peripheral filter, E (p , t ) is the envelope at the

output of the peripheral filter, ei (p , n , t ) is the envelope at the output of the

modulation filter for the segment i , t is time, and the bar indicates the average

over time. ei is the average over a time segment, i , of varying duration according

to the center frequency of the modulation filter. E is averaged over the whole

sentence duration. The lower limit of the envelope power is set to−30 dB relative

to 100 percent amplitude modulation.

The SNRenv,i for each segment is computed from the envelope power of the
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noisy speech and the noise alone:

SNRenv,i (p , n ) =
Penv,S+N ,i (p , n )−Penv,N ,i (p , n )

Penv,N ,i (p , n )
, (4.2)

where S +N denotes the noisy speech and N denotes the noise alone.

4.2.3 Binaural processing stage

The binaural unmasking stage is implemented as described in Wan et al. (2014).

The jittered peripheral envelopes from the monaural stages are used as inputs

to the EC process. The EC processing is assumed to be independent in each

channel, and performed in short overlapping time frames. A time–frequency

unit is denoted as U (p , k ), where p again denotes the peripheral filter, and k is

the k th frame, which differs from the i th segment of the modulation-domain

multi-resolution process. Each frame, k , is 20 ms, whereas the multi-resolution

segments, i , can vary in duration. The overlap between frames is 50% (10 ms).

The equalization process in each unit selects the optimal interaural time differ-

ence (ITD), τ0, and the optimal interaural level difference (ILD), α0, using the

following equations:

τ0(p , k ) = arg max
τ

�

ρp ,k

	

, |τ|<
π

ωp
, and

α0(p , k ) =

√

√

√
FN ,L (p , k )
FN ,R (p , k )

,

(4.3)

where ρp ,k is the normalized cross-correlation function of the left and right

ears within the unit, FN ,L (p , k ) and FN ,R (p , k ) are the masker energy for the left

and right ear, respectively, and ω is the center frequency of channel p . The

unmasked output, Yp ,k (t ), for the unit U (p , k ) after cancellation is calculated

as:

Yp ,k (t ) =Wk (t )
§

1
p

α0(p , k )
EL (p , t )

�

t +
τ0(p , k )

2

�

−
Æ

α0(p , k )ER (p , t )
�

t −
τ0(p , k )

2

�ª

, (4.4)

where the subscripts L and R denote the left and right ear, respectively, and

Wk (t ) is a rectangular window function for the frame k , which can be expressed
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as:

Wk (t ) =







1, (k ∗10)ms≤ t ≤ (k ∗10) +20 ms

0, otherwise.
(4.5)

Subsequently, the binaural signal, Bp , is reconstructed for each channel by

summing over all overlapping frames:

Bp (t ) =
1

2

∑

k

Yp ,k (t ). (4.6)

The unmasked outputs for the noisy speech, BS+N ,p , and the noise alone,

BN ,p , are then used as inputs to the modulation filtering stage of the mr-sEPSM,

and, subsequently, to the SNRenv calculation. This yields BU-SNRenv(p , n , t ), a

binaurally unmasked SNRenv, for each peripheral channel, modulation channel,

and multi-resolution frame.

4.2.4 Binaural selection stage

The binaural selection device selects the best SNRenv, denoted as the “binaural

SNRenv” (B-SNRenv), between the better-ear SNRenv, (BE-SNRenv,i ) and the bin-

aurally unmasked SNRenv,i (BU-SNRenv,i ) for each multi-resolution segment

(note that the (p , n , t ) indexing has been omitted for the sake of brevity):

B-SNRenv,i =max(BE-SNRenv,i , BU-SNRenv,i ), (4.7)

where BE-SNRenv,i is the maximum between the left and right SNRenv,i for each

segment:

BE-SNRenv,i =max(SNRenv,L ,i , SNRenv,R ,i ). (4.8)

The B-SNRenv is then averaged over all segments, In , of each modulation chan-

nel:

B-SNRenv(p , n ) =
1

In

In
∑

i=1

B-SNRenv,i (p , n ), (4.9)

yielding a 9×22 array of values. The time-averaged B-SNRenv is first combined

across modulation filters:

B-SNRenv(p ) =

�

9
∑

n=1

B-SNR2
env(p , n )

�1/2

(4.10)
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and then across peripheral filters:

B-SNRenv =





22
∑

p=1

B-SNR2
env(p )





1/2

. (4.11)

4.2.5 Decision device

The overall B-SNRenv is converted to a sensitivity index, d ′, of an “ideal observer”

(Jørgensen and Dau, 2011), using the relation:

d ′ = k (B-SNRenv)
q , (4.12)

where k and q are parameters independent of the experimental conditions.

d ′ is converted to intelligibility using an m-alternative forced choice decision

model, combined with an unequal variance Gaussian model expressed as:

Pcorrect(d
′) =Φ

 

d ′−µN
q

σ2
S +σ

2
N

!

, (4.13)

where Φ denotes the cumulative normal distribution. The values ofσN and µN

are determined by the number of response alternative, m (see the Appendix

of Jørgensen and Dau (2011) for details). For open-set paradigms, m is set to

8000, which reflects the number of words in a normal listener’s vocabulary. The

value of σS is a free parameter fixed by fitting model predictions to speech

intelligibility data in a condition with a SSN masker. The percentage correct at

the output of the model is denoted as B-sEPSM.

Replacing the B-SNRenv by either BE-SNRenv or BU-SNRenv in Eqs. (4.9) to

(4.13) provides two alternative model outputs, BE-sEPSM and BU-sEPSM, where

only the better-ear or only binaural-unmasking stages are used, respectively.

4.3 Methods

4.3.1 Experiment 1: Multiple maskers in an anechoic condition

Rationale

This experiment investigated the effects of multiple spatially distributed maskers

in an anechoic condition on spatial release from masking (SRM) using the data
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of Hawley et al. (2004). They systematically measured SRTs as a function of

masker azimuth, masker type, and number of maskers using the Harvard IEEE

corpus (Rothauser et al., 1969). The interferers were either speech (not con-

sidered in the current study because of potential differences in informational

masking compared to the other conditions), reversed speech (from the same cor-

pus), speech-shaped noise (SSN), or speech-modulated speech-shaped noise

(SMSSN). All maskers were matched to the spectrum of the target sentences and

either one, two, or three maskers were presented at once. Hawley et al. showed

that SRM was larger when multiple voiced interferers were located at different

locations from the target, compared to conditions when a single voiced masker

was presented. This suggested that a short-term binaural process is critical.

Wan et al. (2010) and Wan et al. (2014) used these same data to validate their

long-term and short-term EC models.

Experimental conditions

The Loizou (2007) recording of the Harvard IEEE corpus, sampled at 25 kHz,

was used for the target material. The SSN was also taken from Loizou (2007) and

was created by filtering stationary noise to have the same long-term spectrum

as the speech material. The SMSSN was created by applying the broadband

envelope of a sentence from the speech corpus to the SSN. The envelope was

extracted by low-pass filtering the half-wave rectified speech signal with a first-

order Butterworth filter with a 40-Hz cutoff frequency (Hawley et al., 2004). The

stimuli were spatialized using the head-related transfer functions (HRTFs) of

the HMS II artificial head (HEAD acoustics GmbH, Germany) from the AUDIS

database (Blauert et al., 1998), at angles of 0, 30, 60 or 90 degrees. One to three

maskers were located in the front (0◦, 0◦, 0◦), to the side (90◦, 90◦, 90◦), distributed

on the right (30◦, 60◦, 90◦), or distributed to the left and the right (−30◦, 60◦, 90◦)

(see Table I in Hawley et al. (2004) for the full layout). The speech level was fixed

at 65 dB SPL and the masker levels were independently set to desired SNRs,

before HRTF filtering; adding maskers increased the total interferer level.

Simulations

Simulations obtained with the proposed model (B-sEPSM) were carried out

for SNRs ranging from −24 to 12 dB in 3 dB increments. The simulated SRTs

corresponded to the SNR at which the simulated intelligibility was 50 percent,
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Table 4.1: Calibrated values of the parameters k and q , and of the constants σs and m of the
ideal observer for the different experiments.

Condition k q σs m

Exp 1: Hawley et al. (2004) 0.82 0.31 0.6 8000
Exp 2: Beutelmann et al. (2010) 0.04 1.42 0.9 50
Exp 3: Lőcsei et al. (2015) 1.14 0.235 0.6 8000

using linear interpolation where necessary. The final SRT represented the av-

erage SRT for 30 randomly selected sets of target and maskers. The condition

with a single SSN masker, colocated with the target, and spatialized using the

AUDIS HRTFs was considered as the reference condition. Because word score

data were unavailable in this condition, a Gaussian psychometric function, c (x ),

with an anechoic SRT, µa , and a standard deviation,σ, was first fitted based on

the anechoic word score data of Bernstein and Grant (2009) using:

c (x ) = erfc
�−(x −µa )p

2σ

�

/2, (4.14)

where x represents the SNRs, c is the proportion correct, and erfc is the com-

plementary Gauss error function. Then, µa was replaced by the SRT measured

by Hawley et al. (2004) in the colocated condition with a single SSN masker

(−3.40 dB SNR), yielding a modified psychometric function, c ′(x ). The param-

eters of the model’s ideal observer, k and q , were adjusted to minimize the

root-mean-square error (RMSE) between the simulations obtained with the

“left ear” model and the psychometric function c ′(x ). The constantsσs and m

of the observer were fixed to 0.6 and 8000, respectively. The observer parameters

were kept constant throughout Experiment 1. Table 4.1 shows the summary of

the ideal observer parameters and constants for all three experiments.

4.3.2 Experiment 2: Single masker in reverberant conditions

Rationale

In contrast to Exp. 1, Exp. 2 considered the effects of a single masker of different

types, but in reverberant conditions, using the data of Beutelmann et al. (2010).

They measured binaural SRTs in a combination of four different rooms, three

target–masker azimuth separations, and three masker types. The speech ma-
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terial was the Oldenburg Sentence Test in noise (Wagener et al., 1999), which

consists of a closed set of meaningful five-word sentences. The rooms included

an anechoic room, a standard IEC listening room (not used in the current study),

a typical classroom (7×6.9×3.2 m3, approximately 210 m3) and a church (outer

dimensions: 63× 32× 22 m, approximately 22 000 m3). The interferers were

either stationary SSN (stationary), 20-talker babble (babble), or single-talker

modulated noise (single-talker). Beutelmann et al. (2010) found an effect of

azimuth on the SRM (a 105◦ separation yielded a larger SRM than a 45◦ separa-

tion) and this effect was largest in the anechoic condition. They also showed

that the masker type had a significant effect on the SRM and that speech intelli-

gibility was positively correlated with the modulation depth of the masker. SRM

was larger in the anechoic conditions, than in the reverberant conditions. The

masker types used by Beutelmann et al. (2010) were similar to the ones used by

Hawley et al. (2004) but the different room types are critical to validate that the

proposed model can capture the effects of reverberation on SRM.

Conditions

The SSN was the one provided with the Oldenburg Sentence Test, which was

created by a random superposition of the material’s sentences. The multi-talker

babble was the “CD101RW2” noise from the Auditec CD, created as the mixture

of 20 talkers reading different texts (Auditec, 2006). The single-talker modulated

noise was the “ICRA5” noise (Dreschler et al., 2001). All stimuli were sampled at

44.1 kHz. The noise level was fixed at 65 dB SPL and the target level was adjusted

to the desired SNRs. Both the target and masker levels were adjusted after HRTF

filtering. The stimuli were spatialized using virtual impulse responses created

with the ODEON software version 8.0 (Kongens Lyngby, Denmark; Christensen,

2005). The anechoic, the classroom and the church conditions were used. Three

spatial setups were used: 1) the target and the masker were colocated 3 m in

front of the listener, 2) the target was 3 m in front of the listener and the masker

was 2 m away, at 105◦ azimuth, and 3) the target was 6 m in front of the listener

and the masker was 4 m away, at −45◦ azimuth. In the third condition, the

listener was placed close to a wall on the right side. See Beutelmann et al. (2010)

for complete details about the listening test setup.
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Simulations

Simulations were obtained for SNRs ranging from−36 to 6 dB in 3 dB steps. The

final simulated SRT was the average SRT for 30 randomly selected target and

masker pairs. The reference psychometric function, p , was created following

Wagener and Brand (2005):

p (L , SRT, s ) = 100 ∗
1

1+e4s (SRT−L )
, (4.15)

where L represents the given SNRs, s is the slope around the 50 percent point,

and SRT is the SNR at the 50 percent points. s was set to 0.18/dB according

to Wagener and Brand (2005, their Table 4) for the OLSA material with an SSN

masker, and SRT was the median SRT in the spatialized condition measured

by Beutelmann et al. (2010) (−7.23 dB, their Fig. 6) for the same material. The

ideal observer parameters in the proposed model were fit such as to minimize

the RMSE between the “left-ear” of the model and that psychometric function.

The parameters were kept constant for all other conditions in this experiment.

The observer’s constants, σs and m , were fixed to 0.9 and 50, respectively, to

account for the increased redundancy in the speech material.

4.3.3 Experiment 3: ITD-only condition

Rationale

Experiment 3 investigated the role of the EC process using a condition where

the target and masker were lateralized to the left or to the right, using a fixed

interaural delay (ITD) of 687.5 µs (Lőcsei et al., 2015). The speech was played in

the presence of SSN that was either lateralized to the same side as the speech,

denoted as condition S11, or to the opposite side, denoted as condition S01.

Lőcsei et al. (2015) found a masking release of about 4 dB when the masker

was lateralized to the opposite side. In this condition, no better-ear benefit

can be expected because the signal at both ears is the same, except for a short

delay used for the lateralization. Therefore, the only cues available should be

interaural differences, which should be captured by the EC process.

This experiment was akin to the SπN0 condition often used as an example

of pure-tone binaural masking level difference (BMLD; see Levitt and Rabiner

(1967b), and Culling et al. (2004)). In such a condition, listeners showed a

masking release as large as 12 dB when the target tone was presented out of
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phase (π), compared to the in-phase presentation of the target (0; Levitt and

Rabiner, 1967b). Release from masking due to ITD or out-of-phase presentation

has successfully been modeled for pure-tone signals (Levitt and Rabiner, 1967b)

and for speech signals using an EC-like process (Culling et al., 2004).

Conditions

The speech material was the DAT corpus (Nielsen et al., 2014), sampled at

48 kHz and recorded with female speakers. The DAT corpus consists of unique

meaningful Danish sentences constructed as a fixed carrier sentence with two

interchangeable target words. The masker was stationary noise shaped to have

the same long-term spectrum as the speech material. The target level was fixed

at 65 dB SPL and the masker level was adjusted to the desired SNR.

Simulations

Simulations were obtained for 30 randomly selected sentences and SSN maskers,

and for SNRs from −12 to 9 dB in 3 dB steps. The signals were lateralized to the

left or right using a fixed 33 sample delay (687.5µs). The final simulated SRT was

the average across target sentences. The ideal observer’s parameters were fit to

minimize the RMSE between the “left-ear” of the model and the word-scores as

a function of SNR in the colocated, S11, condition, as measured by Lőcsei et al.

(2015). The ideal observer’s σs and m were set to 0.6 and 8000, respectively

(Jørgensen et al., 2013).

4.4 Results

4.4.1 Experiment 1: Multiple maskers in an anechoic condition

Figure 4.2 shows the simulated SRTs obtained with the proposed model (B-

sEPSM; black squares), those obtained with the better-ear only version of the

model (BE-sEPSM; dotted line) as well as the binaural-unmasking version (BU-

sEPSM; dashed line) as a function of the masker(s) angle(s). Furthermore, the

STEC predictions from Wan et al. (2014) (grey triangles) and the measured

data from Hawley et al. (2004) (open squares) are shown. The three columns

correspond to one (left), two (middle), or three maskers (right), respectively.

The upper panels show data and simulations for the stationary speech-shaped

noise maskers (SSN), the middle panels for speech-modulated SSN maskers
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(SMSSN), and the bottom panels for reversed speech. Figure 4.3 is a replot of the

data and predictions of Fig. 4.2 where the thresholds are represented in terms of

a spatial release from masking (SRM) relative to the condition where the target

and the maskers were colocated.

Overall, there was a good agreement between the B-sEPSM simulations and

the data. The Pearson correlation coefficient across all conditions was 0.91 and

the prediction RMSE was 3.0 dB. For the STEC, the correlation coefficient was

0.97 the RMSE was 1.3 dB SNR. Thus, the RMSE was larger for the B-sEPSM

than for the STEC but, unlike the STEC, the B-sEPSM was fit only once for all

conditions. In contrast, the STEC was fit to the 90◦ condition for each combi-

nation of n maskers and masker type, i.e., for each sub-figure of Fig. 4.2 (Wan

et al., 2014).

In the SSN condition (upper panels), the B-sEPSM simulations were slightly

lower than in the data but the amount of SRM was well described for all numbers

of maskers. In the SMSSN masker condition (middle panels), the B-sEPSM

correctly accounted for the masker-type dependency of the SRTs in the case of

the single masker. The B-sEPSM predicted an increase in SRTs with increasing

number of maskers, consistent with the measured data; however, the SRTs

were on average 4.76 dB larger than in the data in the condition with three

SMSSN maskers. The simulated SRM was found to be the same as in the data

with two SMSSN maskers, but was larger by about 4 dB with three maskers

when all maskers were at different locations. The B-sEPSM predicted SRTs

up to 8 dB higher in the three SMSSN maskers condition compared to the

three SSN maskers condition. This is in contrast to the data, where the SRTs

differed, on average, by only 1 dB between the SSN and SMSSN conditions when

there were multiple maskers. Thus, the addition of a second or third SMSSN

masker decreased the SNRenv more than the addition of SSN maskers. In the

reversed-speech masker condition (lower panels), the B-sEPSM simulated SRTs

were below the measure ones. However, as in the data, the simulated SRTs

increased with the number of maskers, suggesting that the B-sEPSM could

correctly account for intelligibility as a function of the number of reversed-

speech maskers.

4.4.2 Experiment 2: Single masker in reverberant conditions

Figure 4.4 shows the measured SRTs from Beutelmann et al. (2010) (open squares),

together with the B-sEPSM predictions (black squares), the simulations ob-
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Figure 4.2: Mean speech reception threshold data (open squares; Hawley et al., 2004) and pre-
dictions obtained with the proposed model (black squares; B-sEPSM) and its alternate outputs,
BE-sEPSM (dotted lines) and BU-sEPSM (dashed lines) as a function of masker(s) angle(s) for
speech-shaped noise (SSN) masker(s) (upper panels), speech-modulated SSN (SMSSN; middle
panels), and reversed speech (bottom panels). For comparison, STEC model predictions are
shown as grey triangles for reference (Wan et al., 2014). The left panels show the condition with
one masker only; the middle panels show the conditions with two maskers; and the right panels
show the conditions with three maskers.

tained with the better-ear (BE-sEPSM; dotted lines) and binaural-unmasking

(BU-sEPSM; dashed lines) versions of the model as a function of the masker

azimuth. Furthermore, the stBSIM predictions (grey bullets; replotted from

Beutelmann et al., 2010) are shown for comparison. The three columns corre-

spond to the anechoic, classroom, and church conditions, respectively. The

upper panels show data and predictions for the stationary masker, the middle

panels show the corresponding results for the babble masker, and the bottom

panels show the results obtained for the single-talker modulated noise masker.

Overall, there was a good agreement between the predictions and the data.

The B-sEPSM Pearson correlation coefficient across all conditions was 0.91

and the average prediction RMSE for the B-sEPSM was 6.5 dB. In contrast, the
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Figure 4.3: Replot of the data and predictions of Fig. 4.2 as spatial release from masking (SRM)
relative to the colocated condition.

Pearson coefficient for the stBSIM was 0.89 and the RMSE was 3.65 dB.

In the anechoic condition (left panels), the B-sEPSM produced a larger

SRM than that found in the data when the masker was stationary noise or

single-talker noise. A similar SRM as in the data was found when the maskers

were babble noise. In the classroom condition (middle column), the B-sEPSM

accurately accounted for the SRM but there was a negative offset for all masker

types. In the church condition (right column), the SRM was also correctly

accounted for by the B-sEPSM, except for a negative offset which was largest for

the single-talker babble noise. Overall, the B-sEPSM offset seemed to be partly

due to the BU-sEPSM contributions, which were consistently lower than the

BE-sEPSM contributions to the overall SNRenv. Nonetheless, the large offset

observed in the reverberant conditions for all maskers was due to the particulars



4.4 Results 65

-30

-20

-10

0

st
at

io
na

ry
SR

T
[d

B
SN

R
]

anechoic classroom
B-sEPSM BE-sEPSM BU-sEPSM stBSIM Data (Beutelmann et al., 2010)

church

-30

-20

-10

0

ba
bb

le
SR

T
[d

B
SN

R
]

-45◦ 0◦ 105◦

Masker azimuth

-30

-20

-10

0

si
ng

le
-t

al
ke

r
SR

T
[d

B
SN

R
]

-45◦ 0◦ 105◦

Masker azimuth

-45◦ 0◦ 105◦

Masker azimuth

Figure 4.4: Median speech reception thresholds data measured by Beutelmann et al. (2010), (open
squares), B-sEPSM predictions (black squares), BE-sEPSM predictions (dotted lines), BU-sEPSM
predictions (dashed lines) and stBSIM predictions (grey bullets; Beutelmann et al., 2010) as a
function of the azimuth of stationary speech-shaped noise (SSN; upper panels), babble noise
(middle panels), or a single-talker modulated noise (bottom panels).

of the intelligibility transformation for the B-sEPSM. The sEPSM framework is

sensitive to the type of SSN used in the reference condition; white-noise filtered

to have the same long-term average spectrum as speech, and SSN created by

the random superposition of speech signals yield different amounts of masking

release. A smaller offset could be obtained if the ideal observer was fit to the

B-sEPSM, rather than to the “left-ear” SNRenv, but the resulting binaural model

could not be analyzed in terms of the benefit compared to one ear alone in the

colocated condition.

Figure 4.5 is a replot of the data and predictions from Figure 4.4 as spa-

tial release from masking relative to the colocated condition. The data from

Beutelmann et al. (2010) showed that SRM decreased with increasing amounts

of reverberation, probably as the result of reduced head shadow effect which

decreases the BE benefit (Lavandier and Culling, 2010; Plomp, 1976). Reverber-



66 4. Predicting binaural speech intelligibility using the SNRenv

0

4

8

12

16

20

st
at

io
na

ry
SR

M
[d

B
SN

R
]

anechoic classroom

B-sEPSM
BE-sEPSM

BU-sEPSM
stBSIM

Data (Beutelmann
et al., 2010)

church

0

4

8

12

16

20

ba
bb

le
SR

M
[d

B
SN

R
]

-45.0 105.0

0

4

8

12

16

20

si
ng

le
-t

al
ke

r
SR

M
[d

B
SN

R
]

-45.0 105.0

Masker azimuth

-45.0 105.0

Figure 4.5: Replot of the data and predictions of Fig. 4.4 as spatial release from masking relative
to the colocated condition.

ation also decorrelates the signals that reaches both ears, which reduces the

efficacy of the EC process (Lavandier and Culling, 2007). These effects were cap-

tured by the BE-sEPSM and the BU-sEPSM outputs, respectively, and therefore,

by the B-sEPSM, for all masker types, as shown by the correctly predicted SRM

(c.f., Fig. 4.5, second and third columns).

Release from masking with a fluctuating masker, relative to a stationary

masker, was also reduced in the presence of reverberation; the SRT in the colo-

cated single-talker masker church condition was about 12 dB higher (−18.7 to

−6.95 dB SNR) than in the anechoic condition. None of the models accurately

predicted this large SRT increase; the B-sEPSM predicted an increase of 3.65 dB

and the stBSIM an increase of 6.10 dB.
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4.4.3 Experiment 3: ITD-only condition

The left panel of Fig. 4.6 shows the measured SRTs (open squares) from Lőcsei

et al. (2015), the B-sEPSM predictions (black squares), as well as the predic-

tions from the better-ear-only version of the model (BE-sEPSM; dotted line

and diamonds) and the binaural-unmasking version (BU-sEPSM; dashed line

and circles). Target and masker were colocated to the left in the S11 condition.

In the S01 condition, the target was lateralized to the left and the masker was

lateralized to the right. The right panel shows the same data and predictions

replotted as SRM relative to the S11 condition. The B-sEPSM predicted SRTs

lower then the measured ones in the S11 condition even though the model was

fitted to that condition. This can be explained by the fact that the B-sEPSM

was fit to the “left-ear” output only, rather than to the complete model output.

Consequently, there seems to be a small advantage inherent to the binaural

presentation in this condition, compared to the monaural presentation. The

B-sEPSM produced an SRM of about 2 dB, compared to the 4 dB observed in the

data. The BE-sEPSM output predicted no release from masking because there

was no BE benefit possible; the masker was identical in both ears except for the

fixed delay which is about an order of magnitude shorter than all processing

windows in the model. In contrast, the BU-sEPSM output could account for all

the SRM observed in the data.

4.5 Discussion

This study described a binaural extension of the mr-sEPSM model framework,

which combined monaural implementations of the mr-sEPSM with the EC

model implementation of Wan et al. (2014). The regular mr-sEPSM process

was applied to the envelopes at the output of the EC process, and a selection

stage selected the best SNRenv from the left-ear, the right-ear—equivalent to

better-ear processing—or the binaural unmasking pathway. The model was

validated against the data of Hawley et al. (2004), Beutelmann et al. (2010), and

of Lőcsei et al. (2015). Overall, the correlation coefficients between simulated

and measured SRTs were equal to 0.91. See Table 4.2 for a summary of all model

performances.
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Figure 4.6: The left panel shows speech reception threshold data (open squares) from Lőcsei et al.
(2015), B-sEPSM predictions (black squares), BE-sEPSM predictions (solid lines), and BU-sEPSM
predictions (dashed lines) as a function of condition. In condition S11, both target and maskers
are lateralized to the left and in S01, the target is lateralized to the left and the masker to the right.
The right panel shows the same data and predicted, replotted as spatial release from masking
relative to the S11 condition.

Table 4.2: Summary of correlation coefficients, r 2, and biases (in dB) for each model and in Exps. 1
and 2. The proposed model is the B-sEPSM and the BE-sEPSM and the BU-sEPSM are alternate
outputs which consider only the better-ear, or only the binaural unmasking, respectively. The
STEC model is from Wan et al. (2014) and the stBSIM is from Beutelmann et al. (2010). There are
not performance values for Exp. 3 because it consisted of only two data points.

Exp. 1 Exp. 2
Model r 2/Bias r 2/Bias

B-sEPSM 0.91/−0.7 0.91/−6.0
BE-sEPSM 0.83/2.8 0.91/−3.3
BU-sEPSM 0.90/0.4 0.92/−4.7

STEC 0.97/−0.3 −
stBSIM − 0.89/−2.8

4.5.1 Comparison to other modeling approaches

Both the proposed model and the STEC (Wan et al., 2014) had correlation co-

efficients above 0.9 in Exp. 1 (Hawley et al., 2004). However, the two models

differ in a few important ways. Unlike the STEC, the B-sEPSM required a single

parameter fit for the intelligibility transform for the whole experiment, rather

than once per sub-condition. In fact, the B-sEPSM, and sEPSM framework in
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general, requires a single parameter fit per speech material. In contrast, the

STEC approach was validated using a different SII criterion (SII corresponding

to 50 % intelligibility) for each type and number of maskers. The generality of

the sEPSM approach to model fitting was validated in the current study, as well

as in Jørgensen and Dau (2011) and Jørgensen et al. (2013). Given the appro-

priate reference condition, which is typically in the presence of an SSN masker,

the mr-sEPSM and its variants could account for a large range of processing

or masker types, which means that the model requires less a priori knowledge

about each condition. Another difference is that in the B-sEPSM, the BE and

BU pathways are processed using similar time-frames, i.e. all pathways use

the same multi-resolution approach to slice the time signals into segments.

This means that the B-sEPSM can account for the monaural presentation of

speech against a modulated masker because all pathways include short-term

processing of the signals, and therefore the B-sEPSM would be compatible with

the monaural mr-sEPSM. In contrast, only the BU pathway of the STEC con-

siders a short-term process; the left- and right-ear pathways are applied to the

long-term signals only. This is an important limitation of the STEC approach,

considering the ability of the auditory system to extract information from BE

glimpses, even if they shift across ears (Brungart and Iyer, 2012).

In Experiment 2, the proposed model had a similar correlation coefficient

as the stBSIM, but a slightly larger RMSE. Both the B-sEPSM and the stBSIM

required a single parameter fit to convert the output of their decision metric to

intelligibility. Unlike the B-sEPSM and the STEC, which explicitly separate the

BE from the BU processes, the stBSIM implicitly includes the BE process in its

closed-form calculation of the effective SNR (Beutelmann et al., 2010, their Eq.

12). It would be possible, however, to create a BE-only version of the stBSIM

by removing the ITD-related parameters from that equation, or conversely, to

create a BU-only version of the model by removing the ILD-related parameters.

However, this binding of the two binaural processes limits the feasibility of

modifying the processes independently, e.g., to use different time scales for the

frame processing, or to introduce different amounts of sluggishness in each

pathway (Culling and Summerfield, 1998; Culling and Mansell, 2013).

Neither the model of Lavandier and Culling (2010) nor any of its extensions

was considered in the present study (Lavandier et al., 2012; Collin and Lavandier,

2013). Of the extensions, only the one of Collin and Lavandier (2013) could

possibly account for the masking release due to fluctuating maskers used in the
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majority of conditions considered in this study, because it is the only version

that includes a short-term process. Those models are fundamentally limited

because they cannot account for the effect of reverberation on the speech itself

because they are not “signal-based”, i.e., they do not use speech signals as

targets, but rather rely on SSN as the target or on binaural room impulses. These

simplifications make those model faster to compute than the proposed model

as well as the STEC and the stBSIM, which makes them better tools for, e.g.,

acoustical room design but limits their applicability in certain scenarios.

Compared to the other models (STEC, stBSIM, Lavandier and Culling (2010),

and even the binaural STI (Van Wijngaarden and Drullman, 2008)), the B-sEPSM

avoids the need for the explicit frequency weighting from the SII. Instead, the

frequency and modulation frequency weightings are limiting the processing

to “audible” audio and modulation frequencies (Chabot-Leclerc et al., 2014).

Therefore, although the B-sEPSM includes the additional modulation-frequency

dimension to the model framework, it reduces the number of fitted parameters

required.

Overall, the modeling approach taken by the B-sEPSM, the STEC, and the

BSIM did not differ largely. All three models combined a short-term EC process

with time–frequency-specific cancellation parameters and a (short- or long-

term) BE process. The main difference lay in the decision metric used by the

B-sEPSM, namely the SNRenv rather than the audio SNR, and the fact that the

B-sEPSM included an envelope-domain audio-frequency-selective process.

4.5.2 Role of the decision metric

The SII-based models would fail in conditions with nonlinear processing, such

as noise reduction (Rhebergen et al., 2009). The stBSIM as well as the model

Collin and Lavandier (2013) are also fundamentally limited in that they cannot

account for the effects of reverberation on the speech itself, because they do not

use speech as target signal. Only the binaural STI model (Van Wijngaarden and

Drullman, 2008), which uses the modulation power reduction after processing

as the decision metric, could account for effects of modulation processing, but

this approach is also limited because it cannot account for the intelligibility

with modulated maskers. The B-sEPSM is the only binaural modeling frame-

work that could account for multiple modulated maskers, reverberation on the

target and maskers, as well as non-linear processing. Although these types of

processing were not considered in the current study, the mr-sEPSM has been
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validated in such conditions (Jørgensen and Dau, 2011; Jørgensen et al., 2013;

Chabot-Leclerc et al., 2014). No audibility-based model has been demonstrated

to account for the change of intelligibility due to amplitude compression (Rhe-

bergen et al., 2009). Although the mr-sEPSM was not shown to account for the

deleterious effect of amplitude compression on speech intelligibility, it could

account for spectral subtraction, and, also to phase jitter, given the addition of

an across-channel process (Chabot-Leclerc et al., 2014).

4.5.3 Contributions of better-ear and binaural unmasking processes

The explicit separation of the BE and BU pathways in the B-sEPSM makes it

possible to analyze their contributions separately. Moreover, the performance

of those alternate models can be an indicator of the respective importance

of the processes involved in binaural hearing. Overall, the BE- and BU-only

simulations, denoted as BE-sEPSM and BU-sEPSM, respectively, showed good

agreements between data and simulations. They are depicted as dotted and

dashed lines, respectively, in Figs. 4.2–4.6. In Exp. 1, the BE-sEPSM had an over-

all correlation coefficient of 0.83 and the BU-sEPSM a correlation coefficient of

0.90, which both compare favorably with the complete model’s correlation of

0.91 (see Table 4.2 for overview). The performances were similar in Exp. 2, with

a correlation of 0.91 for the BE-sEPSM, 0.92 for the BU-sEPSM, and 0.91 for the

complete B-sEPSM. In Exp. 3, the BE-sEPSM model failed completely to account

for the masking release due to ITDs, as expected, whereas the BU-sEPSM pre-

dicted the masking release. The performance of the BE-only model supported

the idea that better-ear glimpsing, both in time and in frequency, can account

for large parts of spatial release from masking (Brungart and Iyer, 2012; Culling

and Mansell, 2013) in realistic conditions. Glyde et al. (2013) suggested this

statement to be valid only if the maskers produced mostly energetic masking,

i.e., did not cause any confusion between the target and the maskers. This is in

contrast to conditions where informational masking may be dominant, such as

with certain speech maskers. Therefore, the good performance of the BE-sEPSM

can be attributed to the fact that the maskers considered in the present study

may have provided a similar degree of informational masking (SSN, SMSSN,

multi-talker babble, and reversed-speech).

The BU-sEPSM model performed equally well as the complete model (B-

sEPSM) overall, and could account for the entire SRM in Exp. 3. The difference

in simulated SRT between the BE-sEPSM and the BU-sEPSM can be attributed
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to the fact that both models used the same “left-ear” reference for the fitting of

the ideal observer. This discrepancy suggests that either they should be fitted

separately, or that the processes should be modified as to produce the same

SNRenv values in the same colocated condition. In Exp. 1 and 2, the BU output

“dominated” the B-sEPSM output, because its SNRenv values were larger than

that of the BE-sEPSM (which leads to lower SRTs), as it is especially clear in

Fig. 4.2. Also, the BU-sEPSM tended to predict a larger masking release than

the BE-sEPSM (c.f., Figs. 4.3 and 4.5). It is unclear if this dominance of the BU

pathway is an artifact of the modeling or if it is a property of the human binaural

system. If the lower SRT predicted by the BU-sEPSM compared to the BE-sEPSM

are modeling artifacts, then they could possibly be mitigated by the inclusion

of sluggishness to the EC process Culling and Summerfield (1998) and Culling

and Colburn (2000) or by an increase of the EC jitters, which would limit its

efficacy. Additionally, it may be that the constant short 20 ms windows of the

EC process give the BU an advantage over the monaural pathways, where the

multi-resolution approach is used. The EC window lengths could be adjusted

or limited to restrict this advantage.

Some binaural models of speech intelligibility consider binaural unmasking

as an additive process, while others do not. According to Culling and Mansell

(2013), intelligibility benefits due to ILD and ITD seem to be additive. The

modeling approach of Lavandier and Culling (2010) works under the same

assumption that the total binaural advantage is the sum of the BE advantage

and the advantage due to ITD processing (BMLD). In the model, only ILDs

are considered in the BE pathway and only ITDs are considered in the BMLD

pathway. The BSIM approach also indirectly uses this approach, where the ITD

contributions can improve the SNR beyond the “better-ear” SNR (Beutelmann

et al., 2010). In contrast, the B-sEPSM and the STEC use a selection between the

BU and BE, as if they are two separate processes and one of them can outperform

the other in a given situation. In these two models, both ILDs and ITDs are

considered in the BU pathway. Culling et al. (2004) studied the role of ILDs

and ITDs using a subset of the conditions presented by Hawley et al. (2004).

They considered the conditions with three speech or three SSN maskers, but

presented binaural signals that had only ILDs, only ITDs, or were unmodified.

They found the SRT patterns of the ITD-only and unmodified conditions to

be similar, although the ITD-only condition had smaller differences between

the spatial configurations. The ILD-only condition showed an SRM only when
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all maskers were on the right, otherwise the SRTs were the same as when all

maskers were colocated with the target. For both masker types, considering

the overall binaural advantage as the sum of the BE SRM and of the ITD SRM

would lead to a large overestimation of the SRM in the unmodified condition.

Therefore, in this condition, an “additive” binaural process is not appropriate

and a selection process, such as in the B-sEPSM and STEC, seems more suitable.

4.5.4 Informational masking

The B-sEPSM predicted the correct spatial release from masking (SRM) in Exp. 1

with reversed-speech maskers (c.f., Fig. 4.3 although simulated SRTs were lower

than the data (c.f., Fig. 4.2)). A similar difference was observed with the SSEC and

the STEC (Wan et al., 2010; Wan et al., 2014) in the same condition. However,

the models could not account for the increased thresholds observed when

target and speech, or reversed-speech maskers, were colocated (Westermann

and Buchholz, 2015b; Carlile and Corkhill, 2015). This limitation was even

more clearly illustrated by Wan et al. (2014) in the conditions of Marrone et

al. (2008), where the target was placed at 0◦ azimuth and speech or reversed-

speech maskers were either colocated with the target or symmetrically placed

around it. The models predicted SRTs lower than the data in the colocated

condition because they could not account for the increased IM. In this case,

IM is attributed to a failure in bottom-up grouping and streaming caused by

target–masker similarities (Shinn-Cunningham, 2008). This is in contrast to

the other portion of IM which can be attributed to top-down processes that

cannot select the proper stream due to object similarity and target uncertainty

(Shinn-Cunningham, 2008).

Being a purely bottom-up model, the B-sEPSM could only be sensitive

to the similarity-based IM. However, the B-sEPSM has “perfect” segregation

because of its access to the noisy mixture and to the maskers-alone signals and

therefore cannot account for any IM. This means that the B-sEPSM requires

fitting to a condition without IM, otherwise other simulated thresholds, where

IM is not dominant, will be systematically elevated (e.g., in spatially separated

conditions). On the converse, simulated SRTs in IM-dominated conditions will

be too low if the B-sEPSM is fitted to an IM-free condition, which is the “default”

approach for the mr-sEPSM framework. To account for the discrepancy between

predicted and measured SRT in IM-dominated conditions, the B-sEPSM would

require an estimate of the bottom-up confusion. Chabot-Leclerc and Dau (2014)
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showed that it was possible to capture 7 of the 10 dB of SRM observed when a

speech maskers was moved, on-axis, from 0.5 m to 10 m away from the target

in a reverberant environment (Westermann and Buchholz, 2015a) using the

long-term sEPSM. Models based on the audio SNR (e.g., SII, BSIM) did not

predict any SRM. Therefore, it seems that it is possible to capture some of

the similarity/dissimilarity in the envelope-power representation which is not

available in the audio domain. Consequently, it should be possible to evaluate

the similarity between the speech and maskers using an estimate of the clean

speech representation (Ŝ = (S+N )−N ) and the maskers-alone representation in

the envelope power domain. A simple “distance” or “contrast” estimate between

the clean speech estimate and the maskers could be a promising measure of

confusions. A more complex approach for estimating confusions would be to

pair the B-sEPSM with a streaming model (e.g., Elhilali and Shamma, 2008;

Christiansen et al., 2014) and combine their outputs considering that there are

more confusions in a one-stream percept than in a two-stream percept. It would

be particularly interesting to apply this approach to the output of the binaural

unmasking pathway considering that BE seems to be sufficient to account for

SRM when there is no IM (Glyde et al., 2013; Brungart and Iyer, 2012; Carlile

and Corkhill, 2015).

4.6 Conclusions

The B-sEPSM is a general model framework for predicting spatial release from

masking in realistic and artificial conditions. It combines an explicit combina-

tion of better-ear and binaural unmasking processes using monaural implemen-

tations of the mr-sEPSM (Jørgensen et al., 2013) and an EC process (Wan et al.,

2014). The B-sEPSM uses the SNRenv as the decision metric and was shown

to predict the SRT dependence on: the number of maskers, different masker

types (SSN, SMSSN, babble, and reversed speech), the masker(s) azimuths,

reverberation on the target and masker, and the ITD of the target and masker.
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5
Predicting masking release of lateralized

speecha

Abstract

Lőcsei et al. (2015) measured speech reception thresholds (SRTs) in

anechoic conditions where the target speech and the maskers were

lateralized using interaural time delays. The maskers were speech-

shaped noise (SSN) and reversed babble with 2, 4, or 8 talkers. For

a given interferer type, the number of maskers presented on the tar-

get’s side was varied, such that none, some, or all maskers were pre-

sented on the same side as the target. In general, SRTs did not vary

significantly when at least one masker was presented on the same

side as the target. The largest masking release (MR) was observed

when all maskers were on the opposite side of the target. The data in

the conditions containing only energetic masking and modulation

masking could be accounted for using a binaural extension of the

speech-based envelope power spectrum model (sEPSM; Jørgensen

et al., 2013), which uses a short-term equalization–cancellation

process to model binaural unmasking. In the conditions where

informational masking (IM) was involved, the predicted SRTs were

lower than the measured values because the model is blind to confu-

sions experienced by the listeners. Additional simulations suggest

that, in these conditions, it would be possible to estimate the con-

fusions, and thus the amount of IM, based on the similarity of the

target and masker representations in the envelope power domain.

a This chapter is based on Chabot-Leclerc et al. (2015).

77
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5.1 Introduction

Listeners benefit from listening with two ears compared to a single ear in com-

plex listening situations. This binaural benefit is usually explained in terms of

“better-ear” (BE) and binaural unmasking (BU) concepts. The former relies on

interaural level differences (ILDs) caused by the acoustical “shadow” cast by

the head, which creates an advantageous signal-to-noise ratio (SNR) at the ear

contra-lateral to the masker. In the latter, the interaural time differences (ITDs)

give the hearing system the ability to increase the effective SNR by “cancelling”

some of the masker signals (equalization–cancellation (EC) theory; Durlach,

1963).

The BE benefits are typically modeled in terms of audibility (Beutelmann

et al., 2010; Lavandier and Culling, 2010; Wan et al., 2014), with a decision metric

such as the speech intelligibility index (SII; ANSI, 1997). In other words, those

models consider only energetic masking (EM), where EM is defined as mask-

ing of the peripheral representation of the signal. However, Stone et al. (2012)

showed that noises that are typically considered “steady”, such as speech-shaped

noise (SSN), actually behave more as modulation maskers than as energetic

maskers, i.e., they provide “modulation masking” (MM). Yet, EM and MM may

not be sufficient to account for speech intelligibility data for some masker types,

such as speech, in which case the unaccounted-for masking is labeled as “in-

formational masking” (IM). According to Watson (2005), IM can be divided

into two categories, uncertainty and similarity. Uncertainty is explained as a

listener’s inability to identify the target, whereas similarity prevents a listener

from segregating the target and the masker. Multiple factors can reduce the sim-

ilarity between target and masker, such as spatial separation and fundamental

frequency (F0) information, and thus reduce IM (Bronkhorst, 2000).

The present study investigated the contributions of MM and IM and their in-

teractions in an ITD-only binaural condition with a variable number of maskers

(Lőcsei et al., 2015) using a binaural extension of the multi-resolution speech-

based envelope power spectrum model (mr-sEPSM; Jørgensen et al., 2013;

Chabot-Leclerc et al., 2016). The mr-sEPSM framework considers MM using the

SNR in the envelope domain (SNRenv) as the decision metric and was shown

to account well for intelligibility where IM was not the dominating factor, such

as with SSN maskers, sinusoidally modulated maskers, or multi-talker babble.

Here, the maskers under consideration were SSN and time-reversed speech
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maskers, the latter known to produce informational masking, although not as

much as regular speech (Rhebergen et al., 2005). In particular, the focus was to

analyze how well the SNRenv metric could capture the intelligibility change as

a function of the total number of maskers and the masker configuration and

what could be attributed to IM.

5.2 Model description

The structure of the proposed model is presented in Fig. 5.1.a It consists of two

monaural realizations of the mr-sEPSM (Jørgensen et al., 2013) and a binaural

unmasking pathway implemented as an EC process (Wan et al., 2014).
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Figure 5.1: Structure of the proposed model.

The model takes as input the noisy speech and the noise-alone signals for

each ear. Each signal is processed through a filterbank of 22 gammatone filters

covering the frequency range from 63 Hz to 8 kHz with a third-octave spac-

ing. The sub-band envelopes are then extracted using half-wave rectification

a The model described here is described in more details in Sec. 4.2. The only difference here is
that the ideal observer has been replaced by a simple Gaussian psychometric function.
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followed by a fifth-order Butterworth low-pass filter with a cutoff frequency

of 770 Hz (Breebaart et al., 2001). Jitter in the time and amplitude domain is

applied independently to each sub-band envelope to limit the efficacy of the

EC process; all jitters are zero-mean Gaussian processes with standard devia-

tions ofσδ = 105 µs for the temporal jitter and ofσε = 0.25 for the amplitude

jitter (Durlach, 1963). In the monaural pathways, the envelopes are further

processed by a modulation filterbank consisting of eight second-order band-

pass filters with octave spacing between 2 and 256 Hz. A third-order low-pass

filter with a 1-Hz cutoff frequency is applied in parallel to the filterbank. Only

modulation filters with center frequencies below one-fourth of their respective

peripheral-filter center frequency are used (Verhey et al., 1999). The output of

each modulation filter is then divided into non-overlapping segments of dura-

tion inversely proportional to the modulation filter’s characteristic frequency,

i.e., the output of the 4 Hz filter is divided into 250 ms segments. The power

of each segment is calculated as its variance and the lower limit of the enve-

lope power is set to −30 dB relative to 100 % modulation. The SNRenv for each

segment, i , peripheral channel, p , and modulation channel, n , is calculated as:

SNRenv,i (p , n ) =
Penv,S+N ,i (p , n )−Penv,N ,i (p , n )

Penv,N ,i (p , n )
, (5.1)

where Penv,S+N is the power of the noisy speech mixture and Penv,N is the power

of the noise alone.

The binaural unmasking stage is implemented as described in Wan et al.

(2014). The jittered envelopes at the output of the peripheral filterbank are

the inputs to the EC process, which is applied independently in each channel

as well as in short 20 ms time frames, k . For each time-frequency frame, the

equalization stage selects the optimal ITD, τ0, and ILD, α0, using the following

equations:

τ0 = arg max
τ

�

ρ
	

, |τ|<
π

ω
, and (5.2)

α0 =

√

√

√
EN ,L

EN ,R
, (5.3)

where ρ is the normalized cross-correlation function of the left and right ears

within the frame, EN ,L and EN ,R are the masker energies for the left and right

ear, respectively, andω is the center frequency of the channel of interest. Subse-
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quently, the sub-band signal, Bp , is reconstructed for each channel by summing

over all frames.

The unmasked outputs for the noisy speech and the noise alone are then

used as inputs to the modulation filtering stage of the mr-sEPSM and processed

similarly to the monaural pathways, yielding a binaurally unmasked SNRenv,

BU–SNRenv.

A selection stage then selects the best SNRenv of the left, right and binaural

pathways, yielding the complete model’s output, the B-SNRenv. The B-SNRenv

is then averaged across time, and combined optimally across modulation and

peripheral filters:

B-SNRenv =





22
∑

p=1

9
∑

n=1

B-SNR2
env(p , n )





1/2

. (5.4)

The final B-SNRenv is then converted to intelligibility using a Gaussian psycho-

metric function. The left- and right-ear pathways are combined and converted

similarly, yielding alternate model outputs for each ear.

More details about the mr-sEPSM framework and the EC process implemen-

tation can be found in Jørgensen et al. (2013) and Wan et al. (2014), respectively.

5.3 Methods

In this experiment, the speech and masker signals were lateralized individually

to the left or right using fixed 33-sample delays (687.5 µs) and the spatial dis-

tribution of maskers was systematically varied. The speech material was the

DAT corpus (Nielsen et al., 2014), sampled at 48 kHz and recorded by female

speakers. The DAT corpus consists of unique meaningful Danish sentences

built as a fixed carrier sentence with two interchangeable target words. The

maskers were either of one stationary SSN, denoted as Sx y conditions, or 2, 4, or

8 time-reversed sentences from the GRID corpus (Cooke et al., 2006), denoted

as Cx y conditions, where y is the total number of maskers and x is the number

of maskers on the same side as the target. Both the SSN and the GRID material

were shaped to have the same long-term spectrum as the target speech material.

The maskers were either all on the same side as the target (e.g., C44), half on

the same side (e.g., C24), or all on the opposite side (e.g., S04). The target level

was fixed at 65 dB SPL and the maskers were summed before their levels were
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adjusted to the desired SNR. Model predictions were calculated for 30 randomly

selected sentences and for SNRs ranging from −12 to 9 dB in 3 dB steps. The

predicted SRT was the average across target sentences. The mean and standard

deviation of the psychometric function were fitted to minimized the square

error between the “left-ear” of the model and the word-scores as a function of

SNR in the collocated condition (S11), as measured by Lőcsei et al. (2015).

5.4 Results

Figure 5.2 shows the speech reception thresholds (SRT) measured by Lőcsei

et al. (2015) (open squares), the predictions by the proposed model (B-sEPSM;

filled squares), as well as the predictions by the left- and right-ear outputs of

the B-sEPSM (left- and right-pointing triangles, respectively) for each masker

type and configuration. In the Sx 1 conditions with SSN maskers, the B-sEPSM

predicted SRTs lower than the data by 0.5 to about 3 dB, but captured the MR

when the maskers were moved to the opposite side. In the Cx 8 condition, the

B-sEPSM accurately captured the MR when 4 and then all 8 reversed-speech

maskers were lateralized to the other side. In the Cx 4 condition, the B-sEPSM

predicted a similarly progressive MR as in the Cx 8 condition, as 2 or all 4 maskers

were lateralized to the other side. This is in contrast to the data, where the SRT

was constant at about −2.5 dB when 4 or 2 of the maskers were on the same

side as the target and then there was about 5 dB of MR once all maskers were

on the other side. In the Cx 2 condition, the B-sEPSM predicted constant SRTs

of about −10 dB, irrespective of the masker arrangement. In contrast, the data

SRTs were about the same when 2 or 1 masker(s) were collocated with the target

at about −4 dB (not significant differences (p < 0.05; Lőcsei et al., 2015)) and

then decreased by 4 dB once all maskers were on the other side, similar to the

Cx 4 condition. The SRTs predicted by the left- and right-ear models (left- and

right-pointing triangles) depended only on the total number of masker and

masker type, irrespective of their configuration. The SRTs were highest in the

Cx 8 and lowest in the Cx 2 condition, consistent with the increased number of

dips in the two-masker condition. Overall, the Pearson correlation coefficient

between the B-sEPSM predictions and the data was 0.78 and the mean absolute

error was 2.24 dB.
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Figure 5.2: Measured SRTs (open squares; Lőcsei et al., 2015) and predictions by the B-sEPSM
(filled squares) and the ‘left-’ and ‘right-ear’ models (triangles) for each condition. S conditions
are with SSN maskers and C conditions are with reverse-babble maskers.

5.5 Discussion

The B-sEPSM could account well for the MR due to lateralization in the condi-

tions with the SSN masker (Sx 1 conditions) and also accurately predicted the

SRTs and MR in the Cx 8 conditions. However, the model was “too good” once

the number of maskers was small enough such that IM became the dominating

factor, i.e., in the conditions Cx 4 and Cx 2. A possible explanation framework

has been put forward by Best et al. (2013), where it was suggested that intelligi-

bility has a “lower limit” (of SRT) corresponding to the EM/MM present in the

condition. In this case, the model’s failure can be explained by the fact that it

is blind to IM, and thus predicts the lower limit of intelligibility, given EM and

MM only.

It is assumed that the mr-sEPSM framework has “perfect segregation” due

to its access to the noisy-speech mixture and the noise-alone signals. Therefore,

if most of the IM is due to confusion caused by the similarity between the tar-

get and maskers, and not to uncertainty about the target, then the B-sEPSM

is blind to those confusions (Watson, 2005). An estimate of those confusions

in the model would allow it to account for some of the IM in the listener. A

possible approach would be to use a model of streaming, such as Elhilali and

Shamma (2008) or Christiansen et al. (2014), and to combine its output with
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the intelligibility model’s output; a single-stream percept would lead to worse

intelligibility than a multi-stream percept. Although that approach might prove

powerful and possibly more realistic, it would greatly increase the complexity of

the models, to the extent that two internal representations would be required.

Figure 5.3 shows a potential similarity measure, calculated as a “modulation

distance” between the speech estimate (i.e., (S +N )−N ) and the noise-alone

representations, N , as a function of the SNR and for different masker configura-

tions. Given the three-dimensional representation of the envelope power as a

function of sub-band frequency, modulation frequency, and time frames, i , the

“modulation distance”, dmod, is calculated as the Euclidean distance between

the sub-band and modulation frequency representation (i.e., a 2D matrix) of

the speech estimate and the noise for each time frame:

dmod,i =
r

�

Penv,S+N ,i −Penv,N ,i

�2−P 2
env,N ,i (5.5)

where Penv,S+N ,i is the envelope power of the mixture, S +N , for each segment

i , and similarly for the noise, Penv,N ,i . The “distance” is then averaged across all

time frames:

dmod =
1

I

I
∑

i

dmod,i . (5.6)
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Figure 5.3: Euclidean distance between the speech estimate and the noise in the envelope power
domain, as a function of SNR. Each line represents a different condition.

In Fig. 5.3, the black lines show the distance for the Cx 2 condition, where

most IM was observed. The distance was largest in C02 condition (dashed line),
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whereas the distances for conditions C22 and C12 (solid and dotted lines) were

almost the same. This mirrors the data, where an MR was observed once all

maskers were not collocated with the target, i.e., confusions were resolved once

spatial cues were available. In contrast, the distance varied much less as a

function of masker location when MM was the dominating factor, such as in the

SSN maskers conditions (dark gray lines, Sx 1) and in the eight-reversed speech

masker conditions (light gray lines, Cx 8).

5.5.1 Application of the “modulation distance” to a monaural exper-

iment

Chapter 3 considered data from a study by Westermann and Buchholz (2015a),

where they measured SRTs as function of the distance of the maskers. The

maskers were either speech modulated SSN (SMSSN) or two talkers of the same

gender as the target. They were colocated with the target, 0.5 m away in front of

the listener, or they were moved to 2, 5 or 10 m away. The listeners experienced a

release from masking of about 10 dB when the speech maskers went from being

0.5 m away to 10 m away. The SRTs measured with the SMSSN masker were

about the same as when the speech maskers were at the 10 m position. In these

conditions, the mr-sEPSM did not predict any release from masking; neither

with speech maskers nor with the SMSSN maskers, presumably because it could

not capture the change in amount of confusion experienced when the distance

of speech maskers was changed. The “modulation distance” suggested above

was introduced in the mr-sEPSM, denoted as mr-sEPSM-D, in order to validate

the hypothesis that it could account for the change in the amount of confu-

sions. The only difference with the regular mr-sEPSM is that the time-averaged

SNRenv(p , n ) values as a function of audio frequency, p , and modulation fre-

quency, n , are weighted by the inverse of the modulation distance, dmod:

SNRenv(p , n ) =
SNRenv(p , n )

dmod
. (5.7)

Figure 5.4 replots the data shown in Chap. 3 as SRTs, rather than as values of

spatial release from masking. The left panel shows SRTs in the speech maskers

condition, and the right panel in the SMSSN masker condition. The predictions

obtained with the mr-sEPSM-D are shown as filled squares and the predictions

obtained with the regular mr-sEPSM are shown as grey triangles. The predictions

were fitted to the condition where the speech maskers were at the 10 m position,
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where IM was assumed to be at a minimum. The mr-sEPSM predicted almost

constant SRTs, independently of the masker type and position, as in Chap. 3. In

contrast, the mr-sEPSM-D could account for the large SRT difference between

the speech maskers placed at 0.5 or 10 m. The mr-sEPSM-D predicted SRTs

higher than the measured ones when the SMSSN masker was nearby and about

the same as the measured ones when it was far.
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Figure 5.4: Measured SRTs and model predictions as a function of masker distance for speech
maskers (left panel) and SMSSN maskers (right panel). The open square symbols denote the data
measured by Westermann and Buchholz (2015a), the filled squares represent the predictions
obtained with the mr-sEPSM-D, which includes the “modulation distance” metric, and the grey
circles denote predictions obtained with the mr-sEPSM. See Section 3.3 for more details about
the experimental setup.

The simulation results obtained with the mr-sEPSM-D suggest that the

modulation distance is actually proportional to the inverse of what would be

considered as confusions. In other words, an increasing modulation distance

correlates with decreasing intelligibility, at least in the monaural mr-sEPSM

framework. This is in contrast to the direction in which the modulation distance

varied at the output of the BU process of the B-sEPSM (c.f., Fig. 5.3), where an

increase in the modulation distance correlated with an increase in intelligibility.

For example, the distance was larger when the target and the maskers were

localized in different ears than when they were localized in the same one. There-

fore, it it still unclear how the modulation distance should be considered in the

B-sEPSM framwork. However, the modulation distance seems to be a reliable
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measure in that it depends on the properties of the target and the maskers, and

not only on the audio SNR or SNRenv.

5.6 Summary and conclusion

The B-sEPSM could accurately predict SRTs when the dominating factor was

modulation masking, but failed when IM became more prevalent. It seems that

similarity information between the target estimate and the maskers is available

in the multi-resolution envelope power representation and that it could be used

to account for some of the IM. However, more work is required in order to

combine this information with the binaural model predictions.
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6
Overall discussion

6.1 Summary of main results

Chapter 2 presented an analysis of the role of spectro-temporal modulation

processing for speech perception. Predictions obtained with the (long-term)

speech-based envelope power spectrum model (sEPSM; Jørgensen and Dau,

2011) were compared to predictions made by two model variants. The first,

named the 2D-sEPSM, used a spectro-temporal modulation front-end inspired

by the work of Elhilali et al. (2003). The second, named the sEPSMX, kept the

same one-dimensional pre-processing as the regular sEPSM, but included a

measure of the variability of the modulation power across audio-frequency

at the output of the modulation filterbank. This across-channel process was

inspired by models of comodulation masking release (CMR; Par and Kohlrausch,

1998; Piechowiak et al., 2007; Dau et al., 2013). All three sEPSM versions use

the SNRenv metric. The role of the decision metric was evaluated by compar-

ing the predictions obtained with the three sEPSM versions to the predictions

obtained with the spectro-temporal modulation index (STMI; Elhilali et al.,

2003), which uses a modulation transfer function (MTF) metric. A diagram of

the pre-processing and decision metric combinations and how they relate to

the different intelligibility models is shown in Fig. 6.1. Only the models that

considered an across-channel process could account for the intelligibility in the

phase jitter condition where the spectral structure of the speech was destroyed.

The sEPSMX performed as well as the 2D-sEPSM and the STMI, although it

used a simpler long-term measure of the across-channel variability. There-

fore, a complex spectro-temporal modulation filter front-end does not seem

to be necessary in the conditions considered. It was also shown that only the

models that use the SNRenv metric could account for the intelligibility of noisy

speech processed by noise reduction via spectral subtraction. The STMI, like

the speech transmission index (STI), failed because it used a MTF-based met-

ric (Ludvigsen et al., 1993; Dubbelboer and Houtgast, 2007). Both the STMI

89
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and the STI predicted an increase in intelligibility, instead of a decrease, when

spectral subtraction was applied. The MTF concept fails because it considers

the modulation energy introduced by the noise reduction scheme to be con-

tributing positively to intelligibility. In contrast, the SNRenv correctly captures

the increase in the intrinsic noise produced by the noise reduction, predict-

ing a decrease in intelligibility. The decision metric did not play a role in the

phase jitter condition. Overall, the sEPSMX was the most accurate model, with

both the largest correlation coefficient across conditions (0.99) and the smallest

root-mean-square error.

Independent channel
processing

Across-channel
processing

MTF

SNRenv

Pre-processing Decision metric

STI

sEPSM

STMI

2D-sEPSM & sEPSMX

Figure 6.1: Relationships between different types of pre-processing and decision metrics and
how they relate to different speech intelligibility models.

Chapter 3 investigated the role of the decision metric and of binaural pro-

cessing in a reverberant condition where a target was placed in front the listener

and a pair of speech maskers were either colocated with the target or moved

away, on axis (measured by Westermann and Buchholz, 2015a). The long-term

spectral coloration introduced by the increased distance was compensated for

and the SNR was set at the ears of the listener, rather than at the sources, such

that the distance perception was not conveyed through level cues. Predictions

by the long-term (monaural) sEPSM and multi-resolution sEPSM (mr-sEPSM;

Jørgensen et al., 2013), which both consider modulation masking (MM) using

the SNRenv metric, were compared to predictions obtained with the (long-term)

binaural speech intelligibility model (BSIM; Beutelmann et al., 2010) and the

binaural model of Jelfs et al. (2011) (an implementation of the model of La-

vandier and Culling (2010) that requires only binaural room impulse responses),

which both consider energetic masking (EM) using the audio SNR for their deci-
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sion metric. None of the SNR-based models predicted a release from masking,

even though Westermann and Buchholz (2015a) measured a masking release

of 10 dB in the binaural condition and 7 dB in the diotic condition (considered

to be the monaural release from masking). The long-term (monaural) sEPSM

predicted all 7 dB of monaural release from masking. The sEPSM was successful

because it captured the modulation low-pass filtering effect of the room on the

masker, which increased the SNRenv. However, the mr-sEPSM, which considers

the SNRenv in short time frames, did not predict any release from masking. It was

hypothesized that the short-term model predicted a decrease in intelligibility

when the maskers were moved away because the maskers effectively became

“more stationary” due to temporal smearing. Additional simulations using the

extended speech intelligibility index (ESII; Rhebergen and Versfeld, 2005), which

considers the SNR in short time windows, supported this hypothesis. The ESII

predicted a decrease in intelligibility when increasing the maskers’ distance,

in contrast to the data. These simulation results suggested that the increase

in EM due to temporal smearing is counteracted by a decrease in MM, which

is captured by the mr-sEPSM. However, the decrease in MM alone was not

sufficient in the mr-sEPSM to account for the release from masking observed in

the data. Therefore, it seems that additional cues that were not captured by any

of the models are required to account for the complete release from masking.

Chapter 4 introduced a binaural extension of the mr-sEPSM, denoted as

B-sEPSM. The B-sEPSM combines a monaural realization of the mr-sEPSM for

each ear, as well as a third realization following an equalization–cancellation

(EC; Wan et al., 2014) process modeling the binaural unmasking (BU) operation.

A mechanism selects the largest SNRenv from the left, right, or the BU pathways

for each audio and modulation frequency and for each time frame. Alternatively,

it is also possible to select only the SNRenv from the left and right ear pathways,

yielding a “better-ear” model (BE-sEPSM), or to only select the BU pathway

(BU-sEPSM). The B-sEPSM was validated against a wide range of conditions

from the literature. The proposed model could predict the SRT dependency

on: the number of maskers, different maskers types (speech-shaped noise

(SSN), speech-modulated SSN, multi-talker babble, and reversed speech), the

masker(s) azimuths, reverberation on the target and the masker, and the ITD

of the target and the masker. In the realistic conditions that contained both

interaural level differences (ILDs) and interaural timing differences (ITDs), the

model based only on the BE performed almost as well as the complete model,
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suggesting that BE processing might be sufficient to account for intelligibility

in conditions dominated by EM and MM (Glyde et al., 2013). The BE-sEPSM

supports the observation of the hearing system’s ability to build a “better-ear”

signal using glimpses from the left and right ears (Brungart and Iyer, 2012; Glyde

et al., 2013). The BU-only model also performed as well as the full model. This is

in disagreement with the observations that benefits from BE and BU processing

seems to be additive (Culling and Mansell, 2013), which is also the assumption

made in the model of Lavandier and Culling (2010). In contrast, the model

of Wan et al. (2014) relies mainly on the BU processing in the conditions with

fluctuating maskers, suggesting that BE and BU process are not additive but

are rather separate processes that are selected at a later stage. Therefore, the

modeling results obtained in this chapter further supported the assumptions

of Wan et al. (2014) regarding the selection of the BE and the BU components.

Finally, the proposed model did not require explicit frequency weightings and

its mechanism for conversion to intelligibility required only one calibration

per speech material, in contrast to models based on the SII or STI, such as the

short-term binaural speech intelligibility model (BSIM; Beutelmann et al., 2010)

and the short-term EC model (STEC; Wan et al., 2014).

Chapter 5 further tested the binaural model presented in Chap. 4 in an ITD-

only condition (Lőcsei et al., 2015) chosen to investigate the contributions of

BU processing in the presence of EM, MM and so-called informational masking

(IM). The maskers considered were either SSN or two, four, and eight reversed

speech maskers from another talker. The speech target was lateralized to one

side using a fixed 680µs ITD and either i) all maskers were colocated with target,

ii) some maskers were colocated with the target and some were located on

the opposite side, or iii) all maskers were on the opposite side. The B-sEPSM

predicted the correct SRTs only in the conditions with an SSN masker and in

the condition with eight reversed talkers, i.e., in the conditions where MM

was dominant. In the conditions with two or four reversed talked maskers,

the predicted SRTs were consistently lower than the measured ones because

the model was insensitive to the confusion experienced by the listeners, i.e.,

when IM was present. It was proposed to capture some of those confusions by

looking at the “distance” between the estimate of the speech representation in

the modulation domain ((S +N )−N ) and the noise-alone representation. The

magnitude of the “modulation distance” correlated with the release from IM in

conditions with a given number of maskers; the distance increased with larger
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release from masking, even though the SNRenv did not change.

6.2 Capturing aspects of informational masking in the

modulation domain

Informational masking (IM) is the general term used here to define threshold

elevations that cannot be explained in terms of energetic masking (EM) or mod-

ulation masking (MM). According to Watson (2005), IM can be considered to

represent two components. The first is a bottom-up process caused by uncer-

tainty at the signal level caused by a trial-to-trial uncertainty, such as a possible

change of target, masker, or dimension of either signal, or the presence or ab-

sence of certain stimulus features. The second is a top-down process where the

listener experiences confusions as to what the target should be because of simi-

larities between the target and the masker. The latter is typically associated with

speech recognition tasks. Shinn-Cunningham (2008) proposed a slightly differ-

ent framework to explain IM, where bottom-up object-formation is contrasted

with top-down attention. The object-formation can be hindered by similarities

between the target and the masker, which prevents primitive grouping and

streaming. The attention directs the object selection and can be impeded by

similarities between the target and the maskers and/or by the uncertainty of

the target. In both approaches, target–masker similarities are considered to

be an important component of IM. The mr-sEPSM is not expected to account

for IM, because it has no mechanism to estimate neither the target–masker

similarities nor “failures” of attention. When the mr-sEPSM was evaluated in

conditions that contain IM, it showed a consistent behavior of predicting SRTs

that were lower than the measured ones. For example, Jorgensen and Dau

(2013) tested the mr-sEPSM in conditions where speech was presented against

SSN, speech-modulated SSN (SMSSN), a different-talker (DT), a time-reversed

different talker (DT-R), and a time-reversed same-talker masker (ST-R). The

mr-sEPSM accounted for the correct SRTs in the SSN and SMSSN conditions,

but underestimated the measured SRTs by 2–3 dB in the DT conditions, and

by 12 dB in the ST talker condition, where the target–masker similarities were

large. Similar offsets were described in Chap. 4 and 5, where the mr-sEPSM

predicted lower SRTs than observed in the data, presumably due to confusions

experienced by the listener that are not considered by the model. This offset can

be explained by the fact that the ideal observer of the model is fit only once for
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a given speech material. Therefore, the model predicts only an offset between

the condition under consideration and the reference condition This approach

works well as long as the amount of IM does not change between conditions, for

example if the model is fit to a condition with SSN and used in other conditions

with SMSSN, car-cabin noise, or other maskers that do not contain IM. However,

if the model is fit to a condition without IM, it will predict lower SRTs than those

observed in the data in conditions that contain IM, because it assumes perfect

segregation and predicts the (lowest) SRT that is only limited by MM and EM.

However, the simulations obtained in Chapters 3 and 5 suggested that it

would be possible to estimate target–masker confusions in the envelope power

domain representation. Figure 6.2 shows a conceptual representation of the re-

sults obtained in Chap. 3, where two speech maskers were moved away from the

listener, on axis, in a reverberant environment. The ESII, which considers EM

in short time frames, predicted a decrease in intelligibility due to an increased

amount of masking (since the maskers became more stationary due to rever-

beration and temporal smearing). The sEPSM, which considers long-term MM,

predicted an increase in intelligibility, as in the data, because it captured the

low-pass filtering effect of the room in the modulation domain. The mr-sEPSM,

which considers MM in short time frames, predicted no change in intelligibility;

its use of the SNRenv metric counteracted the increased masking caused by

the maskers becoming more stationary. Both SNRenv-based models predicted

changes in intelligibility that were closer to the data, unlike the SNR-based

model, suggesting that they captured signal aspects that were not considered in

models that take only the audio domain into account. Therefore, it indicates

that the listeners might have experienced improved segregation between the

target and the masker because of changes in the modulation spectrum of the

masker, not because of changes in EM.

Chap. 5 attempted to quantify this improved segregation, in a condition with

multiple reversed-talker maskers. It was assumed that, although the sEPSM

framework does not have access to the clean speech alone, it is possible to

calculate an estimate of it by subtracting the noise representation from the

noisy speech representation. This operation is already done in order to calculate

the SNRenv (c.f., Eq. 2.5). Confusions were then assumed to be correlated to

the Euclidean distance between the two-dimensional envelope power (audio-

frequency–modulation-frequency), averaged over time, in a manner analogous

to the calculation of the overall SNRenv in the mr-sEPSM. It is yet unclear how
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this additional metric should be integrated in the modeling framework but the

fact the modulation distance covaries with the confusions seems promising for

future modeling work.

6.3 Possible simplification to the sEPSM framework

The ideal observer concept for intelligibility conversion was proposed by Jør-

gensen and Dau (2011) and further defined by Jørgensen et al. (2013). It is an

elegant construct that first converts the SNRenv value to a d ′, which is then trans-

formed to a proportion of correct response using an m-alternative forced-choice

model, combined with an unequal-variance Gaussian model. This conversion

requires the selection of four parameters: k and q , which are considered to be

variables set experimentally, andσs and m , which are assumed to be constants

linked to the response set size and redundancy. Although these parameters

were shown to vary in the correct directions considering their definition, e.g.,

σs is inversely proportional to the slope of the psychometric function and is

larger for speech materials with little redundancy than for highly redundant

materials, four variables are still necessary in order to perform a transformation

which could be made with a basic two-parameter psychometric function, such

as a Gaussian cumulative distribution function or a logistic function. A two-

parameter transform would have the advantage of directly providing the SNRenv

value which corresponds to the SRT for a given speech material, which would
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simplify the use of the model in an m-alternative forced-choice experiment

framework. Therefore, replacing the ideal observer with a simpler transform

would not go against the original sEPSM concept but would simplify it and it

would make the relationship between SNRenv and intelligibility more transpar-

ent. There would be a single transform from SNRenv to percentage of correct

responses, rather than two transformations, first to d ′ and then to percentage

of correct responses.

6.4 Binaural processing using the sEPSM framework

The binaural extension of the mr-sEPSM, the B-sEPSM, proposed in Chap. 4,

consists of a combination of the monaural mr-sEPSM and the EC process as

implemented by Wan et al. (2014). A selection device selects the best SNRenv

value from the left or right ear, modeling a better-ear (BE) process, or from

the binaural unmasking (BU) pathway. The rate of selection is not limited

in any way other than by the window durations used in the multi-resolution

process, and by the fixed 20 ms windows used in the EC-process stage (Wan

et al., 2014). Culling and Mansell (2013) measured spatial release from masking

(SRM) in an experiment where square-wave modulated noise maskers were

placed symmetrically on either side of a listener. The maskers were modulated

out of phase at different rates in order to test the speed at which the system

could switch back and forth between the two ears. They demonstrated that the

binaural system was very sluggish and that modulations of 5 Hz or more reduced

the BE benefit from about 6 dB to 2–3 dB. The BU process was less affected by

switching and the benefit varied between 2 and 3 dB for unmodulated signals to

modulations up to 20 Hz. Therefore, the B-sEPSM likely allows for a switching

mechanism that is too fast compared to the real system. The temporal resolution

of the binaural process could be reduced at different stages of the model using

the concept of a binaural temporal window (Kollmeier and Gilkey, 1990; Culling

and Summerfield, 1998). The rate limiting could be placed before the selection

of the cancellation parameters in the EC process (Culling and Colburn, 2000)

or after the parameter selection, suggesting a slow update of the cancellation

parameters (Yost, 1985). Moreover, it would be possible to consider different

amounts of sluggishness in the BE and the BU processes due to the structure

of the B-sEPSM. A faster process for the BE pathway than for the BU pathway

would be in line with measurements by Brungart and Iyer (2012) and by Glyde
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et al. (2013) who created BE stimuli based on glimpses in 20 ms windows and

showed that the system could take full advantage of those glimpses. In contrast,

the BU processing, based on ITD processing, seems to require much longer

windows of the order of 100 ms (Culling and Mansell, 2013).

Another area worth exploring is the selection process between the BE and

the BU contributions, which would replace the proposed “maximum” operation.

For example, there is evidence that binaural unmasking is only realized at low

instantaneous SNRs (George et al., 2012); therefore, the BU should probably

contribute to intelligibility only in those cases. The direct integration of this

process in the mr-sEPSM framework would require the calculation of an esti-

mate of the audio SNR, but could help limit the dominance of the BU pathway

in the current implementation.

Another interesting addition would be to use the cue selection mechanism

proposed by Faller and Merimaa (2004) within the B-sEPSM framework. Their

model was developed for source localization and is based on the coherence of

the left- and right-ear inputs. ITD and ILD cues are only considered if the inter-

aural coherence is above a certain threshold. Their model was shown to be able

to localize concurrent speakers in anechoic and reverberant conditions. The

inclusion of such a cue selection process in the B-sEPSM could contribute to

accounting for observations that the BU pathway contributes to informational

masking (IM) unmasking (Glyde et al., 2013). Interaural coherence informa-

tion has already been shown to a relevant feature for intelligibility modeling

(Cosentino et al., 2014).

Finally, the B-sEPSM performs the BE selection based on the SNRenv values,

rather than the audio SNR, even though the BE concept is usually defined in term

of the audio SNR, which is easier and simpler to manipulated experimentally. No

studies were found to support the assumption that considering the BE SNRenv

is equivalent to considering the BE audio SNR. Although it is possible that

the BE SNRenv follows the BE audio SNR, it would be interesting to investigate

this relationship. The tools develop by Decorsière et al. (2015) to reconstruct

signals based on their envelope representation could be used to replicate the

experiments of Glyde et al. (2013) or Brungart and Iyer (2012), whereas signals

would be created based on the BE SNRenv rather than the BE SNR.
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6.5 Perspectives

It is well known that hearing-impaired (HI) listeners suffer from a reduced

benefit from azimuth separation between target and maskers, compared to

normal-hearing (NH) listeners (Bronkhorst, 1989; Bronkhorst and Plomp, 1992;

Peissig and Kollmeier, 1997). This impairment is partially attributed to elevated

hearing thresholds at high audio frequencies, such that the HI listeners may

sometimes not have access to the signal at the ear with the most favorable

SNR (Bronkhorst, 1989). In contrast, intelligibility gains due to ITDs tend to be

close to normal in listeners with symmetric hearing losses, but are smaller if

the hearing loss is asymmetric (Bronkhorst, 1989). Several intelligibility models

(Beutelmann and Brand, 2006; Beutelmann et al., 2010) have already attempted

to account for effects of hearing impairment by considering elevated hearing

thresholds and other components. The B-sESPM, as well as the sEPSM and the

mr-sEPSM in their current forms cannot account for the higher SRTs measured

with HI listener, but can account for the reduced masking release, compared

to NH listener, in conditions with fluctuating maskers (Scheidiger et al., 2014).

The modeling of the effects of hearing impairment on speech intelligibility in

the sEPSM framework is currently an important area of research.

The B-sEPSM could be used to study the effects of aided hearing on speech

intelligibility. Because the mr-sEPSM has been shown to be able to account

for the effects of some types of non-linear processing, it could be used to in-

vestigate the impact of different binaural noise reduction techniques, such

as beam-forming. Additionally, it could be used to study the effects of syn-

chronized, or non-synchronized, wideband or multi-channel compression on

speech intelligibility (Kollmeier et al., 1993; Moore et al., 1992; Ricketts et al.,

2001).



7
Python auditory modeling toolbox

The following section describes the Python Auditory Modeling Toolbox (an unfor-

tunate name; Toolbox being a MATLAB term).

The Python Auditory Modeling Toolbox (PAMBOX) is a Python package

for auditory modeling. It is inspired by both the Auditory Modeling Toolbox

(AMToolbox), a MATLAB collection of tools and models for auditory modeling,

and scikit-learn, a Python package for machine learning, know for its great

programming interface (Buitinck et al., 2013). PAMBOX contains model stages,

such as gammatone filterbanks, envelope extraction models, and modulation

filterbanks; complete speech intelligibility models, such as the sEPSM, the

mr-sEPSM and the SII, as well as some helper functions to, for example, play

audio, fit psychometric functions, and set signal levels. Stages and models are

implemented as Python objects, which store the parameters, or attributes of a

given stage or model. With this approach (see listing 7.1), it is not necessary to

pass all parameters for each function call (see listing 7.2).

Listing 7.1: Filtering with PAMBOX. Defining the filterbank and using it are two separate step. x is

the signal to filter, order is the filter order, and center_frequencies is a sequence of center

frequencies.

fb = GammatoneFilterbank ( center_frequencies , order )

y = fb . f i l t e r ( x )

Listing 7.2: Filtering in MATLAB requires passing all parameters for call to the

gammatonefilterbank function. x is the signal to filter, order is the filter order, and

center_frequencies is a sequence of center frequencies.

y = gammatonefilterbank ( x , center_frequencies , order )

Each model stage and intelligibility model conforms to a consistent interface,

or "application programming interface" (API), such that stages and models can

easily we swapped and compared. For example, each intelligibility model has a

predictmethod that accepts the clean speech, noisy speech, and noise signals,

whereas filterbanks have a filter method.
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In addition to models and stages, PAMBOX contains a framework to create

speech intelligibility experiments. An experiment consists of:

• One or multiple speech intelligibility models;

• A speech corpus (a collection of sentences);

• A list of SNRs;

• None, or one distortion, e.g., reverberation, noise reduction, phase jitter,

etc.;

• A list of distortion parameters, e.g., reverberation times, over-subtractions

factors, etc.

The experiment framework takes care of the permutations of models, sen-

tences, SNRs, and distortion parameters. It also supports being run across

multiple computing cores as well as over a cluster to speed up computations.

Models that are not original to PAMBOX are validated against their original

implementations, where available. PAMBOX is distributed under the Modified

BSD License.

PAMBOX is currently (2016-09-23) hosted on GitHub, at http://github.
com/achabotl/pambox/ and is also accessible at http://pambox.org. The

documentation can be read at http://pambox.readthedocs.io or direcly

on the PAMBOX repository (http://github.com/achabotl/pambox/docs).

http://github.com/achabotl/pambox/
http://github.com/achabotl/pambox/
http://pambox.org
http://pambox.readthedocs.io
http://github.com/achabotl/pambox/docs
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The end.



To be continued. . .



Developing models to predict intelligibility can help develop a better understanding

of the essential “features” of speech, how those features are extracted by the

auditory system, and how they are combined and used to create understanding.

This dissertation expands on a model named the speech-based envelope power

spectrum model (sEPSM), which uses the signal-to-noise ratio in the envelope

power domain (SNRenv) as the decision metric. The sEPSM was analyzed and

compared to several other models that either use different front-ends or different

decision metrics, such as the audio SNR. The goal was to tease apart the essential

components of intelligibility models in a range of conditions known to be challenging.

Furthermore, a quantitative model was developed in an attempt to predict the

speech intelligibility measured in conditions where listeners are known to benefit

from using both ears, compared to using either ear alone, such as in a noisy

“cocktail party”. The model represents a binaural extension of the sEPSM, denoted

as B-sEPSM. Overall, the results of this thesis support the hypothesis that the

SNRenv is a powerful metric for intelligibility prediction. Furthermore, the B-sEPSM

could be used to investigate the impact on intelligibility of different binaural noise

reduction techniques, such as beam-forming, and of various binaural hearing aid

compression strategies.
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