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Abstract

The auditory evoked potential (AEP) is an electrical sighat can be recorded from
electrodes attached to the scalp of a human subject whenna sopresented. The
signal is considered to reflect neural activity in respomsthé acoustic stimulation
and is a well established clinical and research tool to d¢ivgly assess the function
and integrity of the auditory nervous system. However, thigsplogical generation
of AEPs represents a complicated interaction betweenrliaea nonlinear cochlear
and neural processes and is not well understood in humanss tfiésis presents
and evaluates a phenomenological model of AEP generat@nctm predict key
experimental observations of recorded AEPs. The purposthenfstudy was to
investigate the role of the different stages of auditorynalgprocessing and their
effects on AEP generation.

In recent years, there has been a push both clinically anesearch towards using
realistic and complex stimuli, such as speech, to elecyrsiplogically assess the
human hearing. However, to interpret the AEP generatiomtoptex sounds, the
potential patterns in response to simple stimuli needs tarfekerstood. Therefore,
the model was used to simulate auditory brainstem respodgeRs) evoked by
classic stimuli like clicks, tone bursts and chirps. The ABB these simple stimuli
were compared to literature data and the model was showrethgbrthe frequency
dependence of tone-burst ABR wave-V latency and the lespkddence of ABR
wave-V amplitude for clicks and chirps varying sweepingsatThe model was also
evaluated based on ABR recordings evoked by speech sw|afel was shown to
account for the differences in the responses observed batite stimuli. It was
demonstrated that the generation of the syllable-evokeRs\Bas highly influenced
by cochlear and afferent neural processing, which supgafie importance of
cochlear processing for the generation of AEPs.

A second major contribution of this study was the invesiayabf whether auditory
steady-state responses (ASSRs) can be used to assess foghigarccompression.
Sensorineural hearing impairments is commonly associaitida loss of outer hair-
cell functionality, and a measurable consequence is theedsed amount of cochlear



compression at frequencies corresponding to the damagatidos in the cochlea. In
clinical diagnostics, a fast and objective measure of looahlear compression would
be of great benefit, as a more precise diagnose of the defiitsrlying a potential

hearing impairment in both infants and adults could be oleti It was demonstrated
in this thesis, via experimental recordings and supportethbdel simulations, that

the growth of the ASSR amplitude with stimulus level can edi®e used as such an
estimate of local cochlear compression.
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Resumé

Akustisk udlgste potentialer (Auditory evoked potentidlEP)! er elektriske signaler,
der kan males via elektroder fastgjort til hovedskallen mfperson, nar lyd bliver
preesenteret for personen. Signalet, der forventes at tefielen neurale aktivitet,
der sker i respons til et akustisk stimulus, er et anerkeeltkigj til at evaluere
funktionaliteten og integriteten af det auditive neurajstem. De fysiologiske
mekanismer, der genererer AEPer, repraesenterer dog enligerap interaktion

mellem bade linezere og ulinesere processer, som ikke egsgedt forstaet. Denne
afhandling preesenterer og evaluerer en faenomenologislelnabd\EP generering,
som kan simulere vigtige eksperimentelle AEP observatione

| de senere ar har der veeret en gget interesse i bade derkélivesden og i
forskningsverdenen for at bruge realistiske og kompleksaui, som fx tale, til
elektrofysiologisk at evaluere den menneskelige hgrélseat kunne fortolke AEPer
malt med komplekse stimuli er det dog ngdvendigt at havedetsde potentielle
mgnstre, som mere simple stimuli genererer. | denne aftmndlev AEP modellen
derfor brugt til at simulere akustiske hjernestammereseoifAuditory brainstem
response, ABR) til klassiske stimuli som klik, tonepulsgrahirps. De simulerede
ABRer blev sammenlignet med data fra litteraturen. Det hlest, at modellen
kunne simulere frekvensafhaengigheden af ABR bglge-\adigen, nar stimuli var
tonepulser, samt simulere niveauafhaengigheden af ABRebé#kgmplituden nar
stimuli var enten klik eller chirps med varierende stigrsitig. Modellen blev ogsa
evalueret pa ABR malt med stavelsesstimuli, og det blevatisten kunne redeggre
for malte responsforskelle mellem forskellige stavelsBet blev demonstreret, at
genereringen af AEPer malt med stavelsesstimuli var megeirket af cochleaer
processeringen og den afferente neurale processering Weterstreger vigtigheden
af cochleeer processeringen i AEP-genereringen.

Et andet vigtigt bidrag i denne afhandling er studiet af, ridi det akustiske

1| dette resume er begreber sa vidt muligt oversat til danskitmeal forkortelser, for at undga forvirring,
er bibeholdt i deres originale engelske version.
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steady-state respons (Auditory steady-state responSRN&nN bruges til at evaluere
cochleaer kompression i mennesker. Sensorineurale hdnlatabofte associeret med
tab af funktionaliteten af de ydre harceller. En malbar lebwens af dette er en
nedsat cochleser kompression ved de frekvenser, der sitatertteskadigede steder
i gresneglen. | klinisk diagnostik ville en hurtig og objektest af lokal cochleger

kompression veere meget veerdsat, da mere preecise diaghaser anderliggende

fysiologiske arsag til et potentielt hgretab ville kunn&élstillet for bade spaedbgrn
og voksne. | denne afhandling blev det demonstreret, vipegkaentelt arbejde savel
som simulationer, at veeksten i ASSR-amplitude med stigestideulusniveau kan

bruges som et saddant veerktgj til at estimere den lokale eamtkompression.
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Introduction

The auditory evoked potential (AEP) is a sub branch of edecicephalography
(EEG) that has been in use since the 1930s. It is an elecsigahl that can be
recorded from electrodes attached to the scalp of a humgacsutvhen a sound is
presented. The signal is believed to reflect neural actimitgsponse to the acoustic
stimulation, and can as such be used as a tool to objectigslysa the function and
integrity of the auditory nervous system. Unlike psychagmtic measures, it does not
necessarily (depending on the particular AEP understugtyire the attention of the
test subject, making it specifically interesting to use veaithall children. The AEP
is well established as a clinical tool to screen the hearfrigfants. Besides clinical
usage, it represents a powerful tool for research purpo3ee AEP is objective,
fairly fast to record and reproducible. It can be recordaanfrall stages in the
auditory pathway, from the auditory nerve (AN) over the bs&m to the cortex. The
earliest responses, stemming from the AN or brainstem,jges\an assessment of the
integrity of the mechanoelectrical transduction of sounthe auditory periphery and
initial neural encoding prior to higher order cognitive pessing, and thus offers a
more direct method to investigate the auditory system treatittonal psychoacoustic
methods allow. However, much interest is typically focusedhe behavioral outcome
measures and the link between the two is currently not weletstood. Given the
type of stimulus and the recording settings, the neural geioa site of the AEP
can be varied. Common for all types of AEPs, independent négsion site and
stimulus type, is that they produce a one-dimensional AEfepa where the electrical
potential varies as a function of time. This pattern reflectsomplex signal in the
brain, where individual nerves contribute in various degré the recorded AEP.
Further, the acoustic stimulation evoking the responsdban processed through the
entire auditory periphery including the nonlinear cochl€he AEP is thus the result

1



2 1. Introduction

of an acoustic stimulation and the processing through ttadimiear, the nonlinear
cochlear, and various subsequent neural sites, all of wicHuce complex neural
activity that is then recorded on the scalp of the human stibjjeis difficult to deduce
the contributions from the different underlying physidlea mechanisms, based on
recorded AEPs. There is thus a need for models such as the AEBI presented in
this thesis.

The generation of AEPs depend on various linear and nomnlipexesses along
the auditory pathway. One way to test hypotheses about therg®r mechanisms
underlying AEPs is to develop a model. Such a model shouldbeeta predict key
experimental observations of AEPs to various stimuli, agrchmark. The present
study develops and evaluates such an AEP model. The modeErsomenological
implying that it has been built to mimic experimentally meesi phenomena instead
of strictly modeling the physiology of the auditory pathwalhe model is divided
into stages similar to the auditory system, and a link betwsmulated phenomena
and the model stage producing the key feature of the phermmnbe established.
This means that, if a simulated AEP predicts key featurespéementally measured
AEPs, itis likely that the underlying physiology behind #etual recording resembles
the functionality that has been modeled. The AEP model buthis study is capable
of testing current hypotheses regarding the functionalityhe different stages of
the auditory pathway, and open for investigations of whieesdurrent knowledge is
limited. Furthermore, the model can be a valuable tool teustdnd the consequences
of hearing loss on the formation of AEPs and can help to imptbe use of AEPs as
a diagnostic tool.

The present thesis is structured as a collection of papdisreveach chapter is
based on a peer-reviewed paper published in a journal or feremte proceeding.
The only exceptions are chaptémwhich is based on a submitted journal paper and
chapter8 which presents recent work, not yet submitted for a journdlipation.

1. Chapter2 provides a background overview of auditory evoked poté&naad
reviews existing models of AEP generation and selected mad¢he auditory
periphery. This provides the reader with a historic ovewad the field and



presents the approaches attempted to auditory and AEP imgpdelnd in the
literature.

2. Chapte3 is based orRgnne et al(2012 and develops an auditory brainstem
(ABR) model capable of simulating transiently evoked pttds. The mod-
eling framework and the underlying assumptions, used tirout this thesis,
are presented in this chapter. The developed model cotgstwith insights
into the complex nature of ABR generation, and the impoiasfche auditory
periphery. Further, the model has been made availabledrdimd can be used
to investigate the representation of other types of stimsilivell.

3. Chapter4 is based orRgnne et al(201]). It investigates a limitation of the
ABR model found in chapteB, that the level-dependent latency of click-
evoked ABRs is under-estimated. A second model, based orffexedit
simulation of the auditory periphery, is developed in thiagter. This is done to
investigate whether the implementation of the periphe@ehhas a significant
influence on this limitation. The chapter contributes witHiscussion of the
potential stages in the auditory periphery that are likelyaffect the level-
dependency of ABR latency. The chapter highlights that tBRAnodel fails to
simulate a realistic ABR latency behavior even though twatdished models
of peripheral processing, the auditory-nerve (AN) model thre dual-resonance
non-linear (DRNL) filter model, are used.

4. Chapters is based orRgnne and Ggtsche-Rasmus$2@11) and presents a
study of the alignment of high- and low-frequency contenewhecording
rising-chirp-evoked ABRs. This study is motivated basedtun simulations
using the ABR model, and evaluates the hypothesis foundténature that
chirps evoke larger ABR amplitudes than clicks due to theetatignment of
low-frequencies.

5. When investigating AEPs evoked by longer-duration stimub key feature
of the auditory system becomes the adaptation of the inaierekll (IHC) -

1 The ABR model is included in the Auditory Modeling (AM) toolb¢Sgndergaard et aR011) and can
be downloaded fromht t p: / / ant ool box. sour cef orge. net /.


http://amtoolbox.sourceforge.net/

1. Introduction

auditory-nerve (AN) synapse in the cochlea. Chajewhich is based on
Harte et al.(2010, investigates this adaptation using experimental renged

and simulations of click trains. The chapter contributeslisgussing the extent
to which the modeling approach can be used to simulate resgaof longer-

duration stimuli.

. Chapter7 is based orRgnne et al(20123 and presents an investigation of
whether auditory steady-state responses (ASSR) can béaiasdess cochlear
compression in humans. This study examines two potentiperaxental
paradigms, level-growth and modulation-growth functiamsing an analytical
approach, ASSR recordings in humans, and an extended wessithe ABR
model (referred to as the ASSR model). The clear recommigmdgiven in
this chapter is to use the level-growth function. This is &ptal clinical
application that could be of interest in both infant heargmyeening and in
hearing aid fitting procedures for both children and adults.

. Chapter8 evaluates the ABR model capabilities to simulate speeclesl/o
AEPs. Itis demonstrated that, even with highly complex stisuch as speech
syllables, the model captures key features of the AEP resgspiilemonstrating
the importance of peripheral processing for the generatidkBRs evoked by
complex stimuli. Further, the chapter contributes withscdssion of the effects
of cochlear tuning on the neural encoding of speech sykable

. Chapter9 provides a general discussion of the modeling approach w&nd
limitations.  Further, the implications and perspectivdstiis study are
presented.



Background

2.1 Auditory evoked potentials

In 1875, Richard Caton recorded electrical activity from lnain of a rabbit. What he
recorded became known as electroencephalography (EEQ)amnsince developed
into a major diagnostics and research tool. Fifty years,|&erger(1929 became
the first to record EEGs in human subjedi¢ever and Bray1930 recorded cochlear
microphonics in animals and were the first to use EEG for dagdical purposes.
The first reported measurement of acoustically evoked resgmin humans was
undertaken byFromm et al.(1935. Since 1935 the recordings of auditory evoked
potentials (AEP) have developed fast and now representsllakm@vn and used
technique both for clinical and research purposes Gs#kira(1993 andHall (1992

for a historical review).

A common setup for recording AEPs includes a computer géingrdigital sounds,
a D/A converter and an acoustic transducer presenting tivedsao the subject. On
the recording side, the setup includes electrodes attaihéte scalp, a recording
amplifier including an A/D converter and a computer to stard post-process the
recordings. The recordings are time-aligned with the diisyand, by using multiple
repetitions and averaging, the noise can be suppressecieniffy to record a signal
where the response to the stimulus is detectable. Noiseimsntfaough a major
obstacle to AEP recordings, and post-processing likeifigeand artifact rejection
schemes are often applied. The AEP formation is highly dégenon the location
of the electrodes on the scalp. An often used configuratiom iecord differentially
between the vertex and the ipsi-lateral mastoid, with amgalectrode placed on the



6 2. Background

forehead. This configuration is sensitive to sources ofteted activity originating
from the brainstem, whereas other configurations are useehdéng on the AEP of
interest. Throughout this thesis, the vertex / ipsi-ldterastoid configuration, is used
both for modeling work and experimental work.

AEPs represent the summed electric potential from many telynimcated neurons
firing in response to an acoustic stimulus. They are oftessdiad in terms of time
of occurrence after stimulus onset, specifically when fearsstimuli are used. The
AEPs are thus called auditory brainstem responses (ABR$) lafencies between
1 and 15 ms (first described hlewetf 1970, middle-latency responses (MLRS)
with latencies in the range of 15-50 ms (first described3aysler et al. 1958 and
auditory late responses (ALRs) with latencies in the rarfgabout 75-200 ms (first
described byDavis et al, 1939. The latencies can be associated with generation
place, such that longer latencies corresponds to highargton sites in the auditory
pathway. The generation site of the AEP has also alterhatbaen used to classify
recordings, such that; AEPs from the hair cells in the cacldee called cochlear
microphonics (CM) (e.gVithnell, 2001); AEPs from the distal end of the auditory
nerve (AN) are called compound action potentials (CAPg) Ghertoff et al, 2010);
AEPs from the brainstem are called auditory brainstem mesg® (ABR); and AEPs
from the cortex has been named cortical auditory evokedntiate (CAEPS) (e.g
Sharma and Dormaf999. The term ABR is in the present study used to denote both
an AEP evoked by a transient signal producing a responseanitency between 1
and 15 ms, and also as an AEP recorded at brainstem level t@arhitsary stimulus.
A third potential classification is to classify recordingscarding to the stimulus
that evokes them. An AEP can be evoked by any acoustic stiifonjahowever, in
literature some stimuli have been studied intensively aaekteen established as
de facto standards for investigating AEP generation anditteerlying physiology.
These stimuli include transients like clicks, chirps andetdursts (e.glewett 1970
Jewett and Williston1971, Dau et al, 200Q and chapteB of this thesis), steady-
state signals such as amplitude modulated (AM) tones {elgn and Picton200Q
Galambos et al1981, Kuwada et al.1986 Picton et al. 1987 Rees et a.1986 and
chapter7 of this thesis), but also more complex signals like speedlaldgs (e.g.,
Warrier et al, 2004 Agung et al, 2006 Aiken and Picton2008 Akhoun et al, 2008
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Lalor and Foxe201Q Chandrasekaran and Kra@®1Q and chapte¥ of this thesis).
Auditory steady-state responses (ASSRs) are often assdaidth the special case
where a pure tone carrier is modulated by a lower-frequeacgltmodulator. The
response to complex stimuli like syllables have often bedarred to as complex
auditory brainstem responses (CABR) (eSfoe et al.2011) or frequency following
responses (FFR) (e.Dau, 2003 Swaminathan et al2008. In this study, the syllable
evoked cABR (studied in chapt8&) will be denoted ABR, as the division between a
“complex” and “non-complex” stimulus is difficult to define.

To summarize, important parameters for the AEP generatierganeration site,
electrode montage, onset latency, amplitude range, dulention and plasticify
as well as stimulus characteristics like duration, intgndrequency content and
variation over time. Tabl€.1 summarizes the differences in the characteristics
between the different types of responses. The responseshie@n grouped to aid
clarity. The ASSR has not been included in the table as theutatidn frequency
alters both the generation site and the dependence on swrmesal. At high
modulation rates, the ASSR would belong in the column alalegthe ABR whereas
at lower modulation rates, the ASSR would behave as the CAR®first chapters
(3, 4, 5 and6) of this study focus on the transiently-evoked ABR, becahsse are
reproducible and largely unaffected by subject arousalap@r 7 investigates the
low modulation rate 40-Hz ASSR (i.e. an ASSR belonging in@&EP column).
Besides being an interesting clinical tool, the 40-Hz AS®Rllenges the developed
AEP model of the present study, as it includes higher-stageah processing and
adds potential complications of subject arousal to the modkapter8 investigates
the syllable-evoked ABR (CABR). This challenges the modelhfer, as it has been
suggested in the literature that the syllable-evoked ABRulgect to plasticity.

1 physiological changes of the nervous system due to e.quitegar
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CM CAP/ABR/MLR CAEP /ALR
FFR /cABR
Generation site | Cochlea Auditory nerve (AN) Cortex

and brainstem

Typical electrode | Within ear canal Vertex and mastoid Multiple electrodes
montage

Onset latency <1lms 1to 50 ms >50 ms

Amplitude range | uv nv [Ny

Subject arousal | Unaffected Largely unaffected. Eliminated in
Subjects can sleep sleeping subjects

Plasticity Unaffected Experience slightly Experience alters
alters the AEP the AEP

Stimulus intensity| no latency shifts latency shifts latency shifts

Table 2.1: Differences between groups of AEPs.

2.2 Auditory models

Several models of the (human and animal) auditory pathwag haen proposed.
Some of which aim at modeling cochlear mechanics and therlyig physiology

as strictly as possible while others model the observedress without having the
intention of strictly modeling each stage of the physiotadipathway. The latter
is called a phenomenological model. This section descrilveswell-established
phenomenological auditory models, the auditory nerve (AM)del and the dual-
resonance non-linear (DRNL) model. The AN model is used asbtisis for the
AEP model developed in this study. The DRNL model, is consides an alternative
AEP model Rgnne et a).2011 chapted).
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2.2.1 The AN model

The AN model is a phenomenological model developed over nyaays (1993 - to
present), designed to simulate AN responses of cats. TgmalAN model Carney
1993 simulates single-fiber responses which are linked to aifsipptace on the BM
with a specific characteristic frequency (CF). Even thoughrhodel only simulates
responses from one fiber at a time, the simulation of the respt broad-band stimuli
is possible, as the BM filter stage of the model simulates dgmeributions from both
on- and off-frequency stimulation to the single-fiber resgm This ensures that the
simulated single-fiber responses can be compared to exgaamsingle-fiber AN
recordings (in this model from cats). The first stage of thgioal AN model is a
time-varying BM filter, implemented as a symmetric gammetéilter, with a feed-
back control path simulating broadening tuning with insieg stimulus level. The
output is delayed in time to simulate the traveling-waveagein the BM. The signal
path of the model does further contain an inner hair-celQ)Hon-linearity that gives
a physiologically-inspired half-wave rectification. Coiméd with a low-pass filter,
this simulates the transition between responses followhagfine-structure of the
stimulus at low stimulus-frequencies and responses fatigithe stimulus-envelope
at higher stimulus-frequencies. The IHC-AN stage prodwmptation (similar to
Westerman and Smitli988 resulting in an onset emphasis and a slight suppression
of the late part of a long duration response. The last staffeeimodel simulates the
refractoriness of the neural AN responses. The refractagyesis not included in the
AEP model developed on basis of the AN model.

The AN model has been modified several tim&hang et al.(2001) exchanged
the feed-back control path of the BM filtering with a feedwiard control path.
Further, the control path filter was made broader than theasigath filter, and
the tip was shifted slightly towards a higher CF. These wxlamade the model
capable of simulating two-tone suppression, asymmetgcath of suppression
and the offset of suppression tuning curves (compared tibagsig tuning curves).
The Zhang et al(200]) cat-version of the AN model was transformed into a human
version byHeinz et al(2001) which was later used byau (2003 to develop a human
ABR model.
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Tan and Carnef2003 implemented a middle-ear filter and exchanged the gamma-
tone BM filters by chirping BM filters. The latter was done tmsiate best frequenéy
shifts with stimulus level and frequency glides in the ingeutesponses independent
of stimulus levels. Experimentally, the best frequency hasn observed to shift
upwards with increasing stimulus levels. The frequencyglagj also accounted for
by the Tan and Carney2003 AN model, is based on the experimental observation
that the early part of the impulse response of a BM filter isduohinated by the same
frequency components as the later part of the impulse regp@arney et al.1999.

The frequency glide was found to be independent of stimesl] such that the zero-
crossings of the fine structure was independent of level @dsethe envelope of the
response changes with level.

Zilany and Bruce(2006 and Zilany and Bruce(2007) modified the model to be
able to account for the effect of high stimulus levels. Topessented at high
stimulus levels have been shown to be subject to a sharpitioanef up to 180

of the phase-level functiorkfang, 1990. This transition is called the component 1
(Cl)/lcomponent 2 (C2) transition, where C1 is the respoodew stimulus-levels
and C2 the response to high stimulus levels. At the level©@®fG1/C2 transition,
approximately 90 to 105 dB SPL, “peak splitting” occuksang, 1990. Peak splitting
describes the phenomena that the phase-locked responisigiiolavel tone can result
in a doubling of the number of peaks in the recorded time brstms. In this case,
peaks in-between the phase-locked peaks appear whenrthdustilevel approaches
95 dB SPL and grows with stimulus-level until they complgt@bminates above 105
dB SPL, resulting in a 180phase shift (C1/C2 transition). These two related effects,
the C1/C2 transition and peak splitting, were implementethé model as a parallel
C2 filter path, complementing the regular (C1) signal path.

The latest version of the modeZi(any et al, 2009 exchanged the double log-
arithmic adaptation with a combined logarithmic and polesr-adaptation which
have been shown to provide a more realistic IHC-AN adaptatiehavior. Among
the achieved improvements were a more accurate predictifonweard-masking, an

2 The best frequency was defined as the frequency at which teerisponse is strongest at a certain
stimulus level, whereas the CF can be defined as the frequdmeguhe threshold of the fiber is lowest
(Tan and Carney2003
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improved recovery of the AN response after stimulus-onsétiaproved predictions
of the response-synchrony to amplitude-modulated tometsble2.2, the differences
between the AN model versions are shown with respect to teaghena they can
simulate.

TheZilany and Brucg2007) AN model was used here as basis for the ABR model
discussed in chaptes 4, 5 and6. TheZilany et al.(2009 AN model was used as
basis for the ASSR model and the ABR model presented in ctspsand8.

2.2.2 The DRNL model

Another well established auditory model is the DRNL modelalirbuild upon the
DRNL filter. The DRNL filter (Meddis et al.2001) resembles the BM stage of the AN
model such that it also is a phenomenological model thatlsit@si the response of a
single place on the BM. Furthermore, the original DRNL madi#¢ddis et al.2001)
was also evaluated on animal data (chinchilla and guinéa plee input to the model
is stapes velocity and the output BM motion. Although the eiaslimplemented in
a different way as the AN model (the DRNL filter is implementedthe sum of two
parallel processes, one linear and one nonlinear, whelneasN model uses a feed-
forward control path to control the BM filter), it is capablesimulating many of the
same BM related phenomena, such as compressive input{dutptions, two tone
suppression and frequency glidetopez-Poveda and Meddf2001) exchanged the
animal-fitted parameters of tiideddis et al.(200]) DRNL model with human-data-
fitted parameters, and added an outer- and middle-ear fiige vefore the DRNL
filter. In the model presented Hyleddis (2006* an advanced model of the IHC
functionality was added to the DRNL modelFurthermore, a spike generating AN
stage which includes refractoriness was implemented. Titgub of the peripheral
part of the DRNL model, including stages from the outer eah&AN, were used as

3 Tan and Carney2003 argued that the frequency glides of the DRNL model are |deglendent,
contrary to experimental data

4 parts of the work was presented$umner et al(2002 andSumner et al(2003

5 this far more complicated model is sometimes referred to as the éhafcthe auditory periphery”,
however, to avoid confusion the term DRNL model are used h&he term DRNL model has to be
distinguish from the DRNL filter described previously
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Auditory function / Carney Zhang Tan Zilany Zilany
processing stage 1993 2001 2003 2007 2009
Middle ear

Middle ear filtering + + +
Basilar membrane filtering

Broadening tuning with stim. level + + + + +
Compressive input/output functions  + + + + +
Traveling wave delay + + + + +
Two-tone suppression + + + +
Assym. growth of suppression + + + +
Frequency glides + + +
Best frequency shifts + + +
C1/C2 transition + +
Peak splitting + +
IHC transduction

Physiological rectification + + + + +
Upper limit of phase locking + + + + +
IHC-AN synapse

Double logarithmic adaptation + + + + +
Power law adaptation +
Spike generator

Refractoriness + + + + +

Table 2.2: Overview of the AN model development, with respecthie phenomena simulated by the
respective version of the model. The corresponding papereatly referenced areCarney (1993,
Zhang et al.(2001), Tan and Carney2003, Zilany and Bruce(2007 and Zilany et al. (2009. The
Heinz et al.(2001) model is similar to th&hang et al(2001) only human- instead of cat-fitted parameters
are used.
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input to a neural model of a single cochlear nucleus chopperam, effectively being
a decision making stage that compares inputs from severdei@d AN responses
(tuned to different CFs).

2.3 Modeling AEPs

In this section, a convolutive approach to simulating AEBsdéscribed. This
convolutive approach has been used in the present study@togean ABR model, as
convolution between single fiber responses produced by khmédel and a so-called
unitary response (UR).

2.3.1 Convolutive approach

Elberling (1976 defined a “unit function” as the recorded electrical wavefdhat is
synchronous to a single event (one spike) in one neuron.nGhe assumption that
the same waveform is generated by all types of neurdeBoer(1975 developed
a model of CAP generation. The CAP model was based on linearfiBdfing,
half-wave rectification and envelope extraction. The outfuthis peripheral part
of the model was the firing rate function. To model CAPs, rdedrin the ear
canal,deBoer(1975 proposed a unit function describing the waveform recorided
the ear canal when a distal AN neuron discharges. Theollgtib@ summation of
contributions from all AN neurons would lead to the CAP, asig that there are no
other interfering electrical potentials. However, as swatiom of all neurons were not
computationally viabledeBoer(1975 suggested to use 64 representative neurons,
each related to a different BM filter tuned to a specific CF. Shenmed activity
pattern, from the 64 channels, convolved with a (calibratetdt function provided
the simulated CAP. Following this conceMglcher and Kiand1996 suggested, in
a more general description, that the potential producedréace mounted electrodes
by any cell in the auditory pathway, including higher newtalges, can be described
by the convolution of the instantaneous discharge rate avithitary response (UR).
This concept was adopted Byau (2003 who developed an ABR moddDau (2003
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Figure 2.1: The UR derived bpau (2003 and corresponding click evoked ABR.

used the AN model byHeinz et al.(2007) to produce instantaneous discharge rates
and a summed activity pattern. AleBoer(1979, this was done using independent
channels tuned to different CFs. Dau (2003, 500 channels between 100 Hz and
10 kHz were considered. The summed activity pattern reptedethe activity at
the distal end of the AN and was Dau (2003 convolved with a UR representing
not only contributions from wave-| (the CAP) of the ABR (a® thnit function of
deBoer 1979, but also contributions from wave-Il to wave-VII, i.e. cponents
spanning the first 7 ms of the neural processing. The UR idesathues that a single
spike in IHC-AN traveling up the auditory pathway, will glipotentials at several
places, each delayed and scaled compared to the previouPan€2003 assumed
the UR to be a linear function independent of stimulus, thgsiiag that convolving
the instantaneous discharge rate functions with the UR ddihg the contributions
after wards, yields the same result as convolving the sumewédity pattern with
the UR. The UR was calculated as the deconvolution betwesisummed activity
pattern evoked by a click stimulus, and an experimentaltpmded ABR evoked by
an identical click stimulus. Figur.1 shows the derived UR and the recorded click
evoked ABR (reprinted with permission frobau 2003. The UR bears a large
resemblance to the recorded click evoked ABR, and waveggponding to wave-

[, -lll and -V can be detected.

In contrast to theleBoer(1975 model, not only the CAP component but also later
waves of the ABR response was considereDau (2003. Furthermore, the effect of
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nonlinear BM processing on the potential pattern was censdj whiledeBoer(1975
used a linear model. However, both models were based on the aasumptions
that, 1) the complete set of AN fibers can be replaced by adufrset of simulated
fibers (channels), each corresponding to a representdtice pn the BM tuned to a
specific CF. 2) The individual channels creating the insta@bus discharge rates act
independently of one another. 3) The UR is linear. Meanimg iths invariant to the
type of stimulation, subject and the type of neurons inviblve

The third assumption was evaluated Bertoff (2004, who found that his
unit function was slightly dependent on both stimulus-freiscy and stimulus-level;
however, the stimulus-dependencies were small and no aedescription was
attempted.

Regarding the simulation of steady-state respon&shorquez and Oezdamar
(2008 presented a convolution approach to predict the 40-Hz ASSHRSs
convolution approach has little resemblance to the UR nektihescribed above.
Bohorquez and Oezdam@008 modeled the 40-Hz ASSR as a convolution between
a click-train and the single-click evoked MLR, thus modglihe ASSR as a linear
convolution between two linear functions. The click-evdKdLR consist of three
main peaks, the ABR wave-V th#& and theR,, each of which are typically separated
by approximately 25 ms. When a click-train at a rate of 40 Hzrespnted to the
auditory system, the components of the MLR were argued toupdd phase, such
that theN, peak of one click will add up in phase with tiNg peak of the previous
click. A convolutive approach thus seems to be modeling thelZASSR well.

2.3.2 Dipole modeling and ABR physiology sources

Scherg and von Cramof19853 developed a spatio-temporal dipole model of AEP
generation. The model was focusing on the electrical dipofeponents in the brain,
and had therefore no model of the auditory periphery. Th&lasumption was that
scalp potentials result from the superposition of all cbargithin the brain. Further,
it was argued that, as the net charge in the brain is zero, maihg of positive and
negative charges exist. Each pair is thus producing a dipgte The primary idea
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was that the scalp potentials result from the superposdfaihe far fields of many
microscopic dipoles, i.e. the same assumptionleBoer(1975, Elberling (1976,
Melcher and Kiang1996 andDau (2003 used to argue for the UR idea. The main
difference between the approaches was the use of multikehaeacordings in both
Scherg and von Cramdt9854 andScherg and von Cramdt985, and the fact that
the UR of Dau (2003 includes neural processing whereasherg and von Cramon
(19853 only considers the propagation from the dipole to the ebglets. The aim of
Scherg and von Cramdi985 andScherg and von Cramdi 9853 were to provide
a full description of the waveforms at all electrodes sirandtously. By searching for
the minimal number of equivalent dipoles sufficient to ekpthe scalp potential, each
dipole source (defined by stationary location and orientttould be associated with
a hypothesized anatomical source. This approach led tamthEsion that the spread
of local potential to the electrodes was only dependent enatation and orientation
of the recording electrodes and dipole sources. The UR @f,[2au (2003 can thus
be seen as the special case, where the electrode locati@ns athvertex and mastoid
(giving the orientation as direction between them), andreloaly the dipole sources
in the brain aligned with this orientation (or weighted arling to their misalignment)
were effective Scherg and von Cramdi985 found that the generation of wave-I of
the classic ABR was located to the distal end of the auditerye Wave-IIl of the
ABR, was located to be in, or near to, the cochlear nucleusvev and wave-V
could not be located precisely; however, an origin in théygaarts of the brainstem
was suggested.

2.4 Background summary

This chapter reviewed the literature on some of the key aspéchis study. It was
outlined how this study models the transiently evoked ABR,40 Hz ASSR and the
syllable-evoked ABR. Furthermore, the present study adgsebn AEP model based
on the convolutive approach, where the AN model producesasd activity pattern,
that is convolved with a linear UR, to produce the simulatdePAThe following
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chapter is based dRgnne et al(2012), which develops and evaluate the ABR model,
designed to simulate transiently evoked ABRs.
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Modeling auditory evoked brainstem
responses to transient stimuli

This chapter develops an ABR model. The theoretical modeframework is

presented, as is the main implementation details on how tiemddel has been
humanized. Both the theoretical framework and the huménizés used throughout
this thesis. This chapter can thus be read both as an indepesididy of modeling
transiently evoked ABRs, and as the method section for teeafethis thesis. The
chapter is based drRgnne et al(2012).

3.1 Abstract

A quantitative model is presented that describes the foomatf auditory brainstem
responses (ABR) to tone pulses, clicks and rising chirpsfasetion of stimulation
level. The model computes the convolution of the instardgasedischarge rates
using the “humanized” nonlinear auditory-nerve (AN) modélzZilany and Bruce
(2007) and an empirically derived unitary response fumctichich is assumed to
reflect contributions from different cell populations withthe auditory brainstem,
recorded at a given pair of electrodes on the scalp. It is shthat the model
accounts for the decrease of tone-pulse evoked wave-Vchateith frequency but
underestimates the level dependency of the tone-pulselbasadick-evoked latency
values. Furthermore, the model correctly predicts the ineal wave-V amplitude
behavior in response to the chirp stimulation both as a fonadf chirp sweeping
rate and level. Overall, the results support the hypothisisthe pattern of ABR

19
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generation is strongly affected by the nonlinear and d&perprocesses in the
cochlea.

3.2 Introduction

When sound is presented to the ear, it is possible to recoiitbaydvoked potentials
(AEPs) on the surface of the human scalp. AEPS representutinensed electric
potential from many remotely located neurons firing in resm@oto the stimulus
applied. They are typically grouped in terms of time of ocence after stimulus
onset and are thus denoted as auditory brainstem respokB&s) with latencies
between 1 and 7 ms, middle-latency responses (MLRs) wigmtds in the range of
15-50 ms, and auditory late responses (ALRs) with latenicigbe range of about
75-200 ms.

AEPs have been used to asses the neural encoding of sountbbatimical and
research purposes. Various types of stimuli have beendemesl, such as transients
like clicks, chirps and tone-bursts (e.dewett and Williston1971 Dau et al, 2000,
steady-state signals such as amplitude modulated (AM)st{ag.John and Picton
200Q Galambos et al.1981;, Kuwada et al. 1986 Picton et al. 1987 Rees et a.
1986, but also more complex signals like speech (eMyarrier etal, 2004
Agung et al, 2006 Swaminathan et gl2008 Aiken and Picton2008 Akhoun et al,
2008 Lalor and Foxe 2010 Chandrasekaran and Krau)10. Tone-burst evoked
ABRs have been studied to objectively estimate frequepegific hearing sensitivity,
for example in newborn and young children (eRibeiro and Carvallp 2008
or to estimate effects of cochlear group delay as a functibrrequency and
level of stimulation (e.gGorga et al. 1988 Harte et al, 2009 Neely et al, 1988
Murray et al, 1998. Broadband rising chirps have recently been developedBiR
recordings to maximize synchronous firing of nerve fiber@seifrequency, leading
to an increase of ABR wave-V amplitude and a higher signaldise ratio compared
to traditional click stimulation (e.gDau etal, 200Q Elberling and Don 2008
Fobel and Dau2004 Junius and Dau2005 Shore and Nuttall1985. It is argued
(Dau et al, 2000, that these broadband chirp stimuli compensate for thguéracy-
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dependent group delay seen in the basilar membrane (BMEitgltisplacement
traveling waves. In a recent studylberling et al.(2010 presented five chirps with
different frequency-delay functions and investigatedrémulting wave-V amplitude
of their responses at stimulation levels of 20, 40 and 60 dBnab hearing level
(nHL). Their results demonstrated that the dispersiontfan¢ or sweeping rate, of
the chirp that evoked the largest wave-V amplitude was atiomof stimulation level.
With increasing level, the “optimal” chirp that created thegest wave-V response
was found to become progressively shortelbérling et al, 2010, i.e. to have the
fastest sweeping rate.

It is well known that thefrequencydependency of wave-V latency is related to
the tonotopical coding of frequency on the BM in the cochlddigh-frequency
stimulation excites basal parts of the BM and thus producskoater delay than
low-frequency stimulation that mainly excites apical past the BM Gorga et al.
1988 Greenwoog199Q Harte et al. 2009 Neely et al, 1988 Murray et al, 1998.
Theleveldependency of wave-V latency is not so well understood. @actuning is
known to be level dependent, where an increase of the stinhesel results in broader
auditory filters and thus a broader excitation pattern orBiklg Glasberg and Moore
1990 Recio and Rhode€000. This means that regions of the BM with characteristic
frequencies further away from the stimulus frequency ase a&xcited. Elberling
(1976 andFolsom(1984) reasoned that the broadening of excitation with level migh
result in shorter latencies, as more basal regions of the BMaativated that are
associated with shorter implicit delays. Another inhefeature of the filter tuning is
the change in the envelope of the BM impulse response at a peation, as level is
increased. The timing of the individual peaks of the phyxjatal impulse response
are level independent but the amplitude of the earlier peaksmore emphasized
as the stimulus level increases (el§iang (1969, Recio and Rhod€2000). This
change in the envelope, as stimulus level is increasedltsdauan onset emphasis
that could result in a decrease of the wave-V latency. Adiptan the inner-hair
cell (IHC)-AN synapse similarly enhances the onset of aaligmile attenuating later
parts Westerman and Smiti988) in the stimulus. Thus, adaptation in the IHC-AN
synapse might also contribute to the level-dependence wé-Wdatency.
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The wave V amplitude is both stimulus frequency and stimigus| dependent.
The general shape of the frequency dependence is considdoednainly controlled
by the transfer functions of the outer and middle ear effebti acting as a band-
pass filter Pascal et al.1998 Purig 2003, with maximal transduction at 1-2 kHz.
The level dependence of the wave-V amplitude results froemn gshmmation of
the individual neural responses after the non-linear msiog through the BM at
the individual characteristic frequencies (CFs), wherenpessive behavior has
been found for medium-level stimulation at the CF while éindehavior has been
found for low-level stimulation (e.dqRuggero et al.1997). The chirp-evoked ABRs
obtained in Elberling et al. (2010 demonstrated non-monotonic level-dependent
behavior, assumed to result from the broadening of neurdation with increasing
level (Harte et al. 2010. At low levels, each frequency component of the chirp
might excite a narrow region on the BM and, given the timingoagated with each
component, might add up in phase (elau et al, 2000. At high stimulus levels,
each frequency component excites a broader region on thelB&to upwards spread
of excitation Rhode and Reci®000. Thus, a specific location on the BM is excited
by a broader range of frequency components. These diffemmponents contribute
with different timing which results in desynchronizationdaa reduction of ABR
wave-V amplitude Elberling et al, 2010).

However, while it appears obvious that cochlear processHiiegts ABR amplitudes
and latencies, only very few studies have actually attechfiieprovide quantitative
predictions of ABR data. In the present study, a computatiorodel is presented that
simulates evoked responses to tone pulses of various fietpgeand levels, upward
chirps with different sweep rates and levels as well as diakuli. The key stages
in the model are (i) the nonlinear processing in the cochiedding key properties
such as compressive basilar-membrane filtering, innerdadlifIHC) transduction,
and IHC-AN synapse adaptation, and (ii) the (linear) tramsftion between the
neural representation at the output of the AN and the recdopdéential at the scalp.
This approach was inspired lyoldstein and Kiand1958, who described evoked
responses as a linear convolution of an elementary unitfeaweof a given neuron,
called the unitary response, with the instantaneous aydi&rve (AN) discharge rate
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in response to a given stimulus. This approach was applisifrtolate cat compound
action potentials (CAP) bgeBoer(1975.

Based on the work ofGoldstein and Kiang (1958, deBoer (1975 and
Melcher and Kiang(1996, Dau (2003 proposed a model for the generation of
ABRs and frequency following responses (FFR) to toneddn (2003, the unitary
response was estimated empirically based on measured ABRvitadeconvolution
of average click-evoked responses and the simulated neatiaity pattern at the
output of an AN modelDau (2003 demonstrated that the auditory periphery strongly
affects the simulated ABR patterns and could account foresofithe key features
observed in the recordings of chirp- versus click-evokeghoases. However, while
that study provided a proof of concept, it did not consider@erdetailed analysis
of the responses as a function of stimulation frequency amdl.l Furthermore,
significant discrepancies between the predicted and medsvave-V latencies were
observed but not further evaluated. Here, the original rilogldramework ofDau
(2003 was extended to include current advances in AN modelingh &s linear
BM filters at high stimulus levels, peak splittingi@ng, 1990 and a shift of best
frequency with level. The AN model developed Byany and Brucg2007) was used
here which is based on current knowledge derived from bdtlavieral and objective
measures of cochlear processing. The model was originellgldped for cat but also
adopted by the same authors for humans including corregppnuddle-ear filtering
and BM filter tuning (brahim and Brucg2010.

3.3 Model for ABR generation

3.3.1 Convolution model of ABR generation

Melcher and Kiand1996 described the generation of ABR in cats as a summation of
individual brainstem cell potentials,, in response to a given stimultss,

ABR(t,X1,X2,S) = H Vi(t,X1,X2,9) (3.1)
|
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wherex; andx, are the locations of the electrodes on the scalp. The patentiin
response to a given acoustic stimulus, can be determinedcbynlution between
the instantaneous firing rate of tii& cell, r;(t,s), and a unitary response function,
u(t,xy,x2). This latter function is defined as the potential producetivben the
electrode positions on the scalp,andx,, each time the cell discharges;

Vi (t,X1,X2,S) = ri(t,s) » Ui (t, X1, X2) (3.2)

wherex denotes the convolution operation. To obtain an ABR witls thiethod, all
cells need to be considered individually, which would be patationally prohibitive.
To avoid this,Melcher and Kiang(1996 suggested the use of the cell population
potential,V. Cells can be grouped by the physio-anatomical type of thegevhere

P is the number of different cell types:

T

ABR(t,X1,%2,5) = S Vp(t,X1,%,S) (3.3)
p=1

It is reasonable to assume that all cells of the populatiatriged have the same
unitary response (URY(t,x1,x2), as they have the same morphological and electrical
properties Melcher and Kiang1996. The combination of eqn3(2) and 3.3) yields

a general expression for ABR generation:

P Np

ABR(t,X1,%2,8) = u(t,Xg, X2) * rpi(t,s) (3.4)
PP

where Ny is the total number of cells of typgy. The three main peaks in the
click-evoked ABR are waves I, Ill and Dau (2003 made the assumption that the
instantaneous firing functions in the medial superior o{MSO), anterior ventral
cochlear nucleus (AVCN) are the same as in the AN, following $uggestion by
Melcher and Kiand1996. Thus, the instantaneous firing functions for the différen
cell populations are given by mso = ri aven = ri.an = ri, simplifying Eqn.3.4to:
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N
ABR = u(t, 51, 52) 3 ri(t,9 (3.5)
i=
The generation of an ABR is thus represented as the sum ofist@nitaneous firing
from all cells, convolved with a UR that is dependent on tlee®bde location on the
scalp but assumed to be independent of cell type, efferfineimce and stimulus.

3.3.2 Model structure

The structure of the ABR model is shown in Fig. 1. The AN modatulates the
instantaneous discharge rate for individual AN fibers, Bpomse to a given acoustic
stimulus defined in pascals. Each AN fiber is tuned to a specifaracteristic
frequency (CF). The CFs chosen were spaced according tautharhcochlear map
of Greenwood(1990. The number of fibers included was a trade-off between
computational time and model accuracy. Throughout thidystB00 fibers ranging
from 100 Hz to 16 kHz were used in all simulations. The fibersenghosen so they
were spaced equally on the BM according to the human cochiearGreenwood
1990. The output of the AN model, the instantaneous firing ratalidhe AN fibers,
were summed and convolved with the UR function.

The AN model ofZilany and Brucg2006 is shown schematically in Fig. 2. The
input to the AN model is the instantaneous pressure wavefartine stimulus in
units of pascals. The output of the AN model is the spike rateesponse to the
stimulus pressure. The model includes a number of key fonatistages: a middle-
ear filter; a feed-forward control path; a primary signathpiiter (C1) representing
the basilar membrane (BM) filtering adapted by the contrtthpa parallel-path filter
(C2) for high-level stimuli; an inner-hair cell (IHC) seati followed by a synapse
model and a stochastic AN spike discharge generator. In Rigthe following
abbreviations are used: outer hair cell (OHC), low-pasg {llfer, static nonlinearity
(NL), characteristic frequency (CF) and inverting nonéirigy (INV). Conc andCiyc
are scaling constants that indicate the OHC and IHC stadgpectively. The black
and gray curves in the filter stages represent the tuningveautal high sound pressure
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Figure 3.1: Schematic structure of the ABR model. 500 AN fibened to different CFs are individually
simulated by the AN model. The summed activity, integrated ach@gjuency, is then convolved with a
unitary response and represents the simulated ABR to a divealss.

model

levels, respectively. The wide band C2 filter shape is fixedl iarthe same as the
broadest possible C1 filter. The black and gray functionhédtage following the
C1 filter indicate the nonlinearity in the IHC input/outpuinictions in normal and
impaired (scaled down according @yc) hearing, respectively. Details about the
model implementation can be foundZilany and Brucg2006. In the present study,
the spikes/s output from the synapse model was used, ratethe stochastic output
from the spike generator. The stochastic spike generajaires averaging over many
repetitions before it becomes repeatable and thus usabiBRomodeling.

3.3.3 Features of the humanized AN model

The parameters of the AN model @flany and Bruce(2006 and Zilany and Bruce
(2007 were originally fitted to cat AN data. Later, the model wagdified to estimate
human responses by the same authors. First, the originahicltie-ear transfer
function was replaced by a human middle-ear transfer fanctbased on the linear
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Figure 3.2: Diagram of the auditory-nerve model developeditgny and Brucg2006. Reprinted from
Zilany and Brucg2006 with permission from the Acoustical Society of America (©2P0&he input to
the AN model is the instantaneous pressure waveform of theukis in units of pascals. This waveform
is band pass filtered by a middle-ear filter. A feed-forwardtimpath filter determines the characteristics
of the main C1 filter path which is mainly active at levels belgpm@ximately 96 dB SPL. A parallel C2
filter path is mainly active at higher stimulus levels. The twefipaths are followed by a nonlinear inner
hair-cell (IHC) stage and a nonlinear synapse model. Theubofithe AN model, used in this study, is the
instantaneous discharge rate obtained at the output of/ttegose model.

circuit model of Pascal et al(1998. Second, the cat BM tuning was replaced by
human BM tuning (sed¢brahim and Bruce201Q for details). Two prominent and
different estimates of BM tuning exist in the literaturenbe the relative broad tuning
by Glasberg and Moorél990 and the sharper tuning hera et al(2002. In this
study, the tuning fronBhera et al(2002 was used. It has been argued that humans
have this significantly sharper BM mechanical tuning thgoeeixnental animals such
as cats and guinea pigSHfera et aJ.2002 201Q Bentsen et al.2011). The sharper
human tuning is also probable in light of the recent findingddris et al(2011) who
showed that macaque monkeys have sharper tuning than satehtats. Further, the
simulations using the ABR model produced the best resuttstiveShera et al(2002
tuning compared to the alternative broader tuning predeloyeGlasberg and Moore
(1990. To incorporate the sharper tuning, the model equivakstangular bandwidth
(ERB) quality factorQgrs, for cochlear tuning was modified to be:

CE 0.3

where CF is the center frequency of the BM filter. Accordingsttera et al(2002),
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Figure 3.3: Filter bandwidthQggrg, derived from the output of the C1 filter path (from Fig. 2).€ldashed
curve showQerp estimates based @hera et al(2002's data obtained at a stimulation level of 40 dB pe
SPL.

this function is applicable to humans at frequencies at &inde 1 kHz. To map the
Qers to theQq estimates used by the AN model the following mapping fumctias
used (brahim and Brucg2010:

Q10 = 0.2085+ 0.505QcRrs (3.7)

Fig. 3.3shows the quality factor, Q, for the model’s filters for difat levels and CFs
derived from simulated responses. The Q-values were defieen tuning curves
by evaluating the magnitude response at CF to a number oftpoes with equal
amplitude covering the frequency range around CF. The otripu the C1 filter path
was used for this calculation.

Third, cochlear suppression tuning curves have been foarithte a peak at a
higher frequency than the tip of an excitatory tuning curi2elgutte 1990, i.e.,
maximum suppression has been observed when stimulatingheghar frequency
than CF. This was implemented in the origirélany and Bruce(2006 model by
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basally shifting the CF of the so-called control path filtgrli2 mm on the BM. The
1.2 mm basal shift was retained in the humanized model,Greenwood(1990’s
human frequency-place mapping was implemented to link tBemim shift to the
corresponding characteristic frequency.

3.4 Method

3.4.1 Estimation of the unitary response

The unitary response (UR) was obtained by deconvolving mgtate” click-evoked
ABR with the summed neural activity pattern generated byAiNanodel in response
to a click stimulus. Given the assumed superposition, anyustis should in theory
be usable. In this study, a click stimulus was chosen as iistommonly used in
clinics. The deconvolution is an ill-posed mathematicalgbem and has an infinite
number of solutions. A stable and probable solution was, ilikDau (2003, found
using Tikhonov regularizationT{khonov, 1963 as implemented in the MATLAB
Regularization Tools dflansen(1998. The UR is subject dependent. In an attempt to
employ a general URgIberling et al.(2010’s grand average ABR data (left panel of
Fig. 4) was used for the deconvolution. The resulting gdriéRawas advantageous
as the simulations presented in this study were comparesfécence data, typically
averaged across many subjects.

The grand average ABRE(berling et al, 2010 was made by aligning wave-V
peaks across recordings from 20 ears. The stimulus was audéGflandard click
presented at 60 dBnHIx(95.2 dB pe SPL, see section Il1.B.3 for conversion factor).
The alignment procedure created a standardized clickesV/dkBR that had the
disadvantage that the wave-V amplitude was smaller than individually measured
ABR, due to inter-subject variability of the individual wewforms. The UR was
therefore scaled such that the simulated click-evoked ABROadBnHL had the
same amplitude as the mean ABR amplitudes (rather than tpétade of the grand
averaged waveforms) froElberling et al(2010. The right panel of Figur8.4shows
the UR, obtained with the grand averaged ABR (from the lefigheas the target. The
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Figure 3.4: Left panel: Grand average ABR evoked by 60 dBnlitk ¢Elberling et al, 2010. Right panel:
The derived unitary response function used throughousthidy. This was calculated as the deconvolution
of the grand average ABR and the summed neural activity pagemerated by the AN model in response
to an identical click stimulus.

UR function is similar to the one obtained au (2003. The ABR model using
this UR is also capable of simulating the latency of waveie@ the linearity of the
UR function the wave-I to wave-V interval will remain consta Simulated wave-I
amplitudes will however be smaller due to the way the UR waivel@ from the grand
average ABR. If the model were to simulate wave-lI amplitudles UR should either
be scaled according to a representative wave-l amplitudeg cecalculated based on
a click-response where the wave-I is more faithfully repreed. In the present model,
linear superposition was assumed above the level of the Alse; thus, the derived
UR function was applied to any input stimulus at any level.

3.4.2 Stimuli
Tone bursts

Hanning-windowed tone bursts adHiarte et al(2009 were used as stimuli. The tone
bursts with center frequencies of 2 kHz and above includgdegmately 10 cycles
and therefore ranged from 5 to 1.25 ms (see T&Hle The number of cycles during
the rise time period was reduced to 7.5 at 1.5 kHz and 5 at 120 KHese durations
represent a trade-off between having an equal number cg€pdross frequencies and
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Frequency| Total Length
kHz ms | cycles
0.5 10 5
0.75 7 5.25

1 5 5
15 5 7.5
2 5 10
3 3.4 | 10.2
4 25 10
6 1.7 | 10.2
8 1.25| 10

Table 3.1: Tone burst stimuli used, with durations represeitt ms and as number of cycles.

a relatively narrow spread in their spectrum. Levels of 40G0 dB peSPL were used,
in steps of 10 dB.

Broadband chirps and clicks

Five chirps with different delay functions were used as agfim Elberling et al.
(2010. The frequency-dependent delays of the chirps were defised

T=k-CF ¢ (3.8)

whereTt represents the latency associated with frequency CFkamdld are paired
constants. Tabl8.2lists the parameters representing the individual chimpiiowing

the choices oElberling et al.(2010. The delay difference between 710 and 5700 Hz
for the chirps 1 to 5 were thus 1.86, 2.56, 3.32, 4.12 and 5.94respectively. For
comparison, a “standard” click stimulus of 1@& duration was presented at 20, 40

and 60 dB nHL. The five chirps were calibrated such that theljtha same spectrum
level as the click.
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k d Chirp
0.4501| 0.6373| 5
0.2207 | 0.5468
0.1083| 0.4563
0.0531| 0.3658
0.0260| 0.2753

RIN WA

Table 3.2: Values of the paired parameter, k and d, which déiméelay-frequency function (e8§.8)

Calibration of the stimuli

As the experimental data were described in dB pe SPL or dB iittkas necessary
to acoustically calibrate the transient stimuli used irs tstiudy with an IEC 60711
coupler. The tone bursts and the click were measured acallgtwith an Etymotic

ER2 earphone connected to an IEC 60711 coupler (Bruel and Ki&) through a
Briel and Kjeer external ear simulator DB 2012. For each dtimin the tone burst
simulation (6 tone bursts and 1 click), the amplitude wasstégd until the acoustically
measured peak-to-trough amplitude was similar to the pedtough amplitude of a
reference 1-kHz pure tone signal. A scaling factor was fdorudlibrate the numerical
model.

As in Elberling et al.(2010, the chirps were adjusted to have the same spectrum

level (rather than dB pe SPL) as the calibrated cliglberling et al.(2010 provided
the click and chirp levels in dB nHL, and the stimuli neededb&® converted
to dB peSPL at the eardrum before being presented to the modlké correct
conversion factor was found to be 35.2d@Richter and Fedtke2005, and hence

1 The ISO 389-6:2007 standard specifies that the peak-to-pefakence equivalent threshold sound
pressure level (peRETSPL) is 43.5 dB peRETSPL, for an ERgZheae connected to an IEC 60711
coupler through the external ear simulator DB 0370. Unfately, the tube diameter for the
standard ear tip for the ER2 earphone (ER1-14) is 1.37mm whketeis 3mm for the DB 0370.
This mismatch creates an acoustic horn effect which affeetsprectrum Richter and Fedtke2005
Elberling et al, 2012 and thus the levelRichter and Fedtk¢2005 also measured the peak-to-peak
reference equivalent threshold sound pressure level (PERE) for an ER2 earphone connected to a
head and torso simulator (HATS) and found it to be 35.2 dB. Tange of the external ear simulator
from the DB 0370 (ISO 389-6:2007) to the HATS (Tabl®ithter and Fedtke2005), results thus in a
8.3 dB change in the peRETSPL. As the acoustic horn effeattipresent in human fittings, the 1ISO
389-6:2007 does not represent the pe SPL at the eardrum. éandteling presented in the present
study, the HATS measurements frdtichter and Fedtké€005 were therefore used as the reference.
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the levels corresponding to 20, 40 and 60 dB nHL were founcetéh?2, 75.2 and
95.2 dB peSPL, respectively.

3.5 Results

3.5.1 Simulation of tone-burst evoked wave-V latencies

Figure 3.5 shows the simulated tone-burst evoked ABR wave-V latenoi#ained
with the ABR model (symbols connected with solid lines). Eaect comparison,
functions fitted to measured data frageely et al.(1988 are indicated as dashed
lines. Neely et al.(1988's fitted lines were described by:

T, = a+ bc (/199 (CF/1000 ¢ (3.9)

where i is the tone-burst intensity in SPL (divided by 100} 1S the tone burst
center frequency in Hertz, aradl= 5 ms,b = 12.9 ms,c = 5.0 andg = 0.413 were
fitted constants. Additionally, measured data obtainddarte et al (2009 at a level
of 66 dB peSPL are shown as a dotted line. The differencesdagtiveely et al.
(1988 andHarte et al(2009’s stimuli resulted in negligible differences in simutati
results, therefore onlyHarte et al.(2009’s stimuli are simulated here. The inter-
subject variability (the standard deviation) on tHarte et al.(2009 data is 1.36 ms
for 1 kHz, 0.93 ms for 2 kHz, and 0.71 ms for 8 kHEkleely et al.(1988 does not
explicitly state any inter-subject variability. The clidata Elberling et al, 2010
showed an inter-subject variability of 0.61 ms, 0.92 ms a®d @ns for hence 20 dB
HL, 40 dB HL and 60 dB HL stimulus level.

The simulated and measured ABR wave-V latencies decregsmentially as a
function of frequency. At the highest stimulation levelbge tsimulated latencies
are close to those observed Neely et al.(1988. With decreasing level, the rate
of change of latency with frequency increases both in theukitions and the
measured data. However, the dynamic range of latenciessataeels is smaller in
the predictions than in the data. This effect is dominantatols higher tone-burst
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frequencies where latencies of about 6-7 ms were prediotedntrast to 6-8 ms in
the measured data. The squared correlation coefficientétteelag of the normalized
covariance function) between tone-burst data and sinamsis found to b& = 0.90,
showing a nice covariance between simulations and datasiidated click-evoked
latencies are indicated by the symbols next to the 8-kHz-parge results. The
filled circles on the right show the corresponding measutii clata taken from
Elberling et al(2010. The stimulus levels used for the simulations were the sasne
those for the tone-burst simulations, whereas the levetsatlick in the experimental
study ofElberling et al.(2010 are stated next to the respective data points. As for the
high-frequency tone pulses, the model predicts a reducedrdic range of wave-V
latencies across levels compared to the measured values.

3.5.2 Simulation of broadband chirp-evoked wave-V amplitaes
and latencies

The black lines in Fig.3.6 shows the simulated wave-V amplitudes obtained for the
five chirps described iklberling et al.(2010, at the three levels tested. In addition,
click-evoked wave-V amplitudes for the same stimulatiorele are shown on the
left. The “change of delay” abscissa refers to the delayiifices between the 5700-
Hz component to the 710-Hz component of the stimulus. THisaes that a chirp
with a faster sweeping rate has a shorter duration. The diglepresented by a
0-ms change of delay as all the frequency components havsatine delay. The
gray lines of Fig. 3.6 shows the corresponding measured data fElberling et al.
(2010. The squared correlation coefficient between data andations isR? = 0.90,
demonstrating good covariance between simulations aral dBhe measured data
shows that, for the highest stimulation level of 60 dB nHlg thirp with a relatively
short duration (chirp 2) i.e. a small delay difference betwé¢he low- and high-
frequency stimulus components, had the largest wave-V iardpl Chirp 2 thus
represents the stimulus that is most effective at synchirmgthe neural output across
frequency. In contrast, for the stimulation levels of 40 dBLrand 20 dB nHL, the
corresponding maxima were found with chirp 3 and chirp Speesvely, suggesting
that other sweeping rates provided maximal synchroniaagross frequency. These
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Figure 3.5: Simulated (solid curves) and modeled (dashedkswased on e@.9, dotted curve, based on
Harte et al.2009 ABR wave-V latencies as a function of tone-burst centegdency and level. Each line
fitted toNeely et al.(1988's empirical data corresponds to one simulated level. Opeibsis to the right
show simulated click-evoked ABR wave-V latencies, filled spislshowElberling et al(2010 measured
click latencies. All levels are given in dB pe SPL.

key features observed in the measured data are also refladtezlsimulations. The
click-evoked responses show a smaller amplitude than thiotséned with all chirps
both in the data and the predictions. However, the maximaégrsimulated functions
are slightly shifted towards chirps with shorter duratioBserall, the correspondence
between simulations and measured data is remarkable anckghls support the
hypothesis that the dynamic nonlinear processes in themaitrongly affect ABR
formation.

Figure 3.7 shows wave V latencies simulated (black lines) by the ABR ahod
and measured (gray lines) liberling et al. (2010 in response to the click and
the five chirps. The squared correlation coefficient betwasga and simulations is
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found to beR? = 0.96, indicating covariance of simulations and daR¥. does not
tell anything about the agreement between absolute latealcies, it only shows
that the data and simulation co-vary to a large degree. Tlesuned latencies can
probably be explained in terms of upwards spread of exaitdElberling et al, 2010
and the fact that the frequency region dominating the ABRaggse is 2 to 4 kHz
(Eggermont and Dar1980 for the lower levels of 20 and 40 dB HL (for higher levels
the region broadens towards higher frequencies). As dtisnlglvel is increased, the
BM filters broaden and lower frequency parts of the stimulils excite the main
frequency region. The longer the chirp is, the earlier isltefrequency part of the
stimulus presented and an early excitation of the main #rqy region is possible.
Thus, at high levels (e.g. 60 dB HL) and long chirp delays.(etdrp 5), the latency
will be very short due to the early presentation of low freggies and the upward
spread of excitation. The simulated results show the saenel$ i.e. that the shortest
duration is observed for high stimulus levels and long clagtays. However, the
level-dependence seems, as in the previous simulatiomeftiorsts and clicks, much
compressed.

3.6 Discussion

This study evaluated the developed ABR model by comparingulsitions with
literature data, using clicks, tone-bursts and chirpsiasuit The wave-V amplitudes
simulated in response to a click presented at three stirleiets showed good
correspondence to literature data, demonstrating thabvbeall calibration of the
model was correct. Further, the correct level-dependendiates that cochlear
compression was well implemented. The latencies of the late tone-burst
evoked ABRs showed good frequency-dependence, wherelas¢helependence was
somewhat compressed. First, this shows that the travelavg welay (the frequency-
dependence) was modeled well. Second, the compresseddyehdence suggests
that either the level-dependence of the BM tuning or the &di@mm of the AN-IHC
synapse was modeled imprecisely, or alternatively, trieaisumptions underlying the
UR were too extensive. This will be further discussed beldtve chirp simulations
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Figure 3.6: Black lines: Simulated ABR wave-V amplitudes ewby click and 5 chirps with different
frequency-delay functions at three different stimulus levgray lines: ABR wave-V amplitudes evoked by
the click and five chirps (Recorded Byberling et al, 2010. All simulations are well within one standard
deviation of the measured value. Note that the error barsifigire represents one standard error.

showed a good correlation with literature data. The sinmat of the five chirps

with different sweeping rates at three different levels destrated that the current
model was capable of simulating responses to complex standlthat the interaction
between the traveling wave delay and the level-dependenttiihg seems to be
working well.
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Figure 3.7: Black lines: Simulated ABR wave-V latencies awlby click and 5 chirps with different
frequency-delay functions at three different stimulus levegray lines: ABR wave-V latencies evoked
by the click and five chirps (Recorded Bjberling et al, 2010. Note that the error bars represents one
standard deviation.

3.6.1 Limitations of the conceptual approach

The assumption that all nonlinearity is restricted to the Bkd AN and that
the remaining processing is linear is an obvious over-sfioation given the high
complexity of neural processing within the brainstem. $p=dly, the assumption
that the rate functions in the MSO and AVCN within the braémstare the same as
in the AN is most likely erroneousD@u, 2003. For example, it has been shown
that neural synchronization in the AVCN can be enhanced eoegpwith AN fibers,
due to the convergence of inputs from two or more AN fibers oA&@N cell and
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postsynaptic cells that require coincident input spikdetedfiring (Joris et al.1994).
Furthermore, even though the human ABR may be largely geatblay brainstem
cells in the spherical cell pathwaiélcher and Kiang1996), there is probably also
some contribution from other cell types such as globularranttipolar cells. There
is still some controversy about the exact generating sitéseoABR peaks beyond
wave |. The whole modeling approach should therefore beideresi as a rough
approximation of the real neural mechanisms involved ingieeration of brainstem
potentials. Nevertheless, it appears that the chosen agiprepresents an effective
approximation since major characteristics of the measdatal can be accounted for.
These major characteristics include the wave-V amplittlteefrequency dependence
of the wave-V latency and, to a lesser degree, the levelrdkpee of the wave-V
latency.

3.6.2 Effects of the unitary response function

In the present study, the UR was empirically obtained by dealeing a grand average
click ABR with the discharge rate function at the output of thN model. The UR

was only obtained once, for this 95.2 dB SPL click evoked draveraged ABR,

and all other stimulus conditions made use of this UR. Onipgiene UR derived

from a single waveform ensured that the generality of theeting framework could

be tested. Simple linear convolution of a UR might be an a#eplification for

several reasons. First, the UR can be assumed to be submehdint. In the
present study, all simulations were rerun using indivijuaestimated UR functions
from three different subjects (not shown explicitly). Hoxee this only resulted in
a change to the overall simulated response amplitudes,ramdiiced an individual
latency offset. The differences were minimal and reflecteedrisubject differences,
keeping the same broad dynamics as observed for the granagadeUR. Second,
Chertoff (2004 investigated the level and frequency dependency of a UR tse
model compound action potentials (CAP) in Mongolian gerbile showed that the
UR has both a slight level and frequency dependence in tkhisiep (the first peak of
the CAP-UR shifts up to 0.1 ms). However, no general fornotedf the dependency
was stated and no formulation of a level-dependent UR fordnsrhas yet been
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attempted in the literature. Further, the interval betweere-I and wave-V peaks
has been shown to be remarkably robust across stimulusileveBR recordings
(Don and Eggermont1978 Eggermont and Dgn1980, indicating that a level-
dependent UR is not required. Contradictory to this, howeghertoff et al.(2010
measured compound action potential (CAP) latency in huprsardsdemonstrated that
CAPs could have a smaller latency change with level than Wasibeen reported for
ABR wave-V latency $erpanos et gl1997 Dau, 2003 Elberling et al, 2010. This
would tend to suggest that the wave-I (which is believed teliae same origin as the
CAP) to wave-V interval, and thus the UR, should be leveletejent. It is unclear
from the literature whether a level-dependent UR is in fagtded.

3.6.3 Wave-V latency dependency on frequency and level

Taking the variability on the measured data into accourd, simulated tone-burst
evoked response latencies showed reasonable agreeméntheitmeasured data
(Harte et al. 2009 Neely et al, 1989 for the frequency range 1 - 8 kHz and for a
level range of 40 - 100 dB SPL. In particular, for a given stiation level, the change
of latency with frequency can be accounted for quite wellh®/model. However, the
latency change with level was smaller in the simulations thahe data, particularly
at high frequencies. Click-evoked ABRs were also simuldtedest the model’s
performance when considering broadband excitation. Thmilasied click-evoked
latencies of the present study decreased by only 0.6 ms fodB 4hcrease of stimulus
level (from 55 to 95dB pe SPL), corresponding to -0.015 ms,Adich is in contrast
to the decrease of a little less than 2 ms observed irEtherling et al.(2010 data,
corresponding to -0.043 ms / dB. Other literature studipsntdatency decreases in
the order of -0.043 ms / dBSrpanos et al1997 and -0.046 ms / dBQau, 2003
for similar stimulus ranges. Even though the variability tbe individual data set
was high (a standard deviation of 0.81 ms on averagé&loerling et al, 2010, the
discrepancy between model and data is noticeable.

BM filter tuning and IHC-AN synapse adaptation determindéivel dependency of
ABR wave-V latency in the model. The ABR model latency chaofy®.015 ms / dB



3.6 Discussion 41

is a small improvement over the earlier modeling studybiay1 (2003 who obtained
latency changes of -0.005 ms / dB for a similar stimulus leeglge. Additional
simulations, where the BM tuning was altered (and repomelddnne et al.2011),
demonstrated that the improvement was the result of the fisheohumanized
version ofZilany and Brucg2007)’s AN model instead of the model byeinz et al.
(2001). The humanized AN model uses the sharper tuning estimatesShera et al.
(2002 (seelbrahim and Bruce2010 while Heinz et al.(2001) used the estimates
of Glasberg and Moor¢1990. The filters of Shera et al(2002 (derived at only
40 dB SPL) are more sharply tuned than those describe@lasberg and Moore
(1990 since they were estimated based on behavioral forwardintslata and
otoacoustic emission data. In contrast, the estimatéslagberg and Moorél990
are based on behavioral simultaneous masking, which istaffeby peripheral
suppression Shera et aJ. 2002 Bentsen et al.2011). However, there is still a
substantial discrepancy between the simulated and theumsshkatency-level range.
As shown in Fig.3.3 the model incorporates a level dependence in the C1 filbéngu
factor. While the empirical evidence for the frequency delegice of the tuning factor
(Shera et a).2002 2010 Bentsen et al2011]) is well documented, there is little data
existing for the level dependence in humans. This qualityofalevel dependence
will strongly affect wave-V latency and could be one reasantiie underestimation
observed in the simulations. Additionally, neural adaptain the IHC-AN synapse
enhances the onset and leads to shorter delays. For aralygses (data not shown
in this paper, seRgnne et a).2011), click-evoked wave-V latencies were simulated
using an altered version of the ABR model where the IHC outptiie AN model was
used, thus not including any adaptation process. Howevahe wdaptation affected
the absolute value of the wave-V latency in the frameworkhef present model, it
did not have a major impact on the latency variation with lev& possible level-
dependence of the UR, though not implemented in the modaldaso affect the
ABR wave-V latency. As discussed above, the literaturedsiiclusive on this matter.
Further,Chertoff et al.(2010’s CAP latencies decrease by -0.030 ms / dB over the
level range of 75 to 105 dB SPL. So, even if a level-dependéhtvds implemented
to account for the difference in latency change betw€bertoff et al.(2010 and
Elberling et al.(2010, the AN model would still under predict the wave-V latency.
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It thus remains unclear why the model fails to account moceiately for the level-
dependent behavior of wave-V latency.

3.6.4 Across-frequency synchronization for broadband sinula-
tion

When considering effects of level-dependent neural symehation across frequency,
the simulations illustrate the crucial role of nonlinearckigar processing for the
formation of brainstem responses to transient stimuli. Theps presented in

Elberling et al.(2010 were considered here as “critical” stimuli to challengel an
evaluate the model. The results support the hypothesisthieatlynamic behavior

of ABR generation is mainly due to peripheral mechanismdlgsacessing at higher

neural stages beyond the level of the AN was essentiallyidered as a linear filter.

Further, the results reinforce the need to have level degenchirp stimuli to get

maximum wave-V amplitude clinicallygberling and Don2010.

3.6.5 Perspectives

The model might be useful as a tool for studying consequeatetifferent types
of cochlear hearing impairment on the evoked potential Yeawe, provided that
pathology can be adequately simulated in the model. Furmbes, brainstem
responses to complex stimuli (CABR), such as consonantlaitterances, have
been considered as an objective index of the neural tratiseriof features (e.g.
temporal, spectral) that are important for speech undaistg in quiet and noise
(e.g. Anderson et a).2011). The model could be used to analyze which spectro-
temporal characteristics of the speech-evoked patternsbeaaccounted for by
cochlear processes. Finally, an important step would beotsider "steady-state”
responses (SSR) obtained with temporally fluctuating dtisaiech as complex tones or
amplitude modulated tones or noises. These responsessaraesto be generated by
units in the auditory brainstem and in the primary auditaitex (e.gKuwada et al.
1986. Therefore, the corresponding unitary response woule havbe extended
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by a middle-latency component. It is not clear, to what eixgrch a convolution
approach can be successfully applied to middle-laten@oreses (MLR), to transients
as well as amplitude modulation following responses. RéiggrMLRs, at least, it
has been shown that the “classical” SSR to click trains jprteskeat a 40 clicks/sec
repetition rate can be modeled reasonably well using arfioeavolution approach
(Bohorquez and Oezdam&008 Junius and Daw2005.

3.7 Summary and conclusion

A computational model for the generation of ABRs to transigimuli was pre-

sented. The model was based on the assumption that an ABRecamilated

as the convolution between an instantaneous dischargduratdon and a unitary
response. The instantaneous discharge rate function iaiseth from a state-of-the-
art nonlinear AN modelZilany and Bruce2006. The UR was derived “empirically”
as the deconvolution between the simulated instantanéscisadge rate AN function
in response to a click stimulus and measured average ofiakeel ABR.

The model was evaluated by comparing the predicted respanseeasured ABR
data from the literature. It was shown that a realistic satiah of the level-dependent
signal processing in the cochlea is essential for the im¢aion of ABR to tone
pulses, clicks and chirps presented at various stimulddeels. In particular, the
model could account reasonably well for the nonlinear wa\amplitude behavior as
a function of chirp stimulus level and sweeping rate whichpaarts the strong role
of cochlear nonlinearities, such as compression and eeéndent tuning, for the
formation of ABR. However, the model clearly underestindatee level dependence
of the response (wave-V) latency and it remained unresolvete framework of
the modeling work presented here what mechanisms are r@bpmofor the relatively
large latency changes with level observed in the data.

Overall, the developed model can provide insight into thaglex nature of ABR
generation. It can be used to investigate the represemtatiother types of stimuli
(such as speech in noise) or to study effects of (differepedyof cochlear) hearing
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impairment on the predicted potential patterns. Furtheemihe modeling approach
might provide a basis for the investigation of longer-lateresponses, such as steady-
state responses to amplitude modulated tones and noises.

The ABR model including, grand average ABR, UR, and key satiohs, is
included in the Auditory Modeling (AM) toolboxSgndergaard et al2011) and
can be downloaded fronmt t p: / / ant ool box. sour cef or ge. net/ (date last
viewed 02/14/12).


http://amtoolbox.sourceforge.net/

A

Modeling the level-dependent latency of
the auditory brainstem response

This chapter is based d?gnne et al(2011). In the framework of the thesis, this is an
expanded discussion on why the level-dependent latendyeatlick-evoked ABR is
under predicted by the ABR model.

4.1 Abstract

Auditory brainstem responses (ABR) are used for both dirand research purposes
to objectively assess human hearing. A prominent featutteeafansient evoked ABR
is the level-dependent latency of the distinct peaks in @seform. The latency of
the most prominent peak, wave-V, is about 8 ms at a peak dgotvsound pressure
level of 55 dB, and reduces for increasing level by approxéiyal ms / 20 dB. A
classical explanation for this finding asserts that an sirgy stimulus levels lead
to a broadened excitation pattern on the basilar membramés ré&sults in further
activation of the basal regions of the cochlea. Given thesiglay properties of the
basilar membrane, increased basal activation is believeduse a decreasing ABR
latency. An Auditory Nerve (AN) model and the Dual Resonaiumn-Linearity
(DRNL) filter model are considered as separate front-entlleac models to simulate
ABRs. Even though both models incorporate level-depenterihg and synapse
adaptation, and thus theoretically should be capable ofilsiing level-dependent
latencies, both models under-predict the latencies. Tiardato produce accurate
simulations suggests, that the level-depending tuningemtodels is not accurately

45
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modeled. The level dependency of the basilar membranetfildéng in humans is not
well described in the literature and could therefore cabsertodeling difficulties.

4.2 Introduction

ABRs in response to transient sound stimuli represent tharsaed electric potential
from many remotely located neurons, recorded via scalgreldes. The ABR has 7
distinct waves, where wave-V is the most prominent. One keyure of the ABR
wave-V is the peak latency which is dependent on both frecyué¥eely et al, 1988
and level Dauy, 2003. This frequency dependence is due to the tonotopic mapping
on the basilar membrane (BM) with high frequency at base amdftequency at
apex. The result is that high frequency auditory nerve nespeoccur earlier than low
frequency responses. The level-dependence is not as widlstnod, but is thought
to be determined by the frequency specificity of the basilamiorane (BM), i.e. its
tuning, and the inner hair cell (IHC) - auditory nerve (ANnspse adaptation. This
study has investigated the ability of two established augitodels, when used as a
front-end in an ABR model, to simulate level-dependent we\atency in response to
click stimuli. Both the Auditory Nerve (AN) modelflany and Bruce2006 2007
and the Dual Resonance Non-Linearity (DRNL) filter moddlefidis 200§ were
assumed to contain the nonlinear processes required tairtctor level-dependent
wave-V latency. Two front-end models are used to minimizeghtential effect of
implementation errors, and to evaluate whether the indadidifferences between the
two models are important.

4.2.1 Level-dependent latency theory

Cochlear tuning is level-dependent, where an increaseirmukts level results in
broader auditory filters. On the BM, the broader filters resubroader excitation
patterns, i.e. regions of the BM with characteristic fremgies further from the center-
frequency of a stimulus are recruitelberling (1976 andFolsom(1984) discussed
how this broadening in excitation with level results in gdrofatencies as more basal
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regions of the BM are activated, i.e. regions with shortepliait delays. Another
inherent feature of the filter tuning is the change in the kpee of the local BM
impulse response. An increase in level will result in an rehdly shorter impulse
response. The delay of the individual peaks will be condtahthe amplitude of the
earlier peaks will be emphasized, and given the associaky avill decrease with
increasing stimulus leveRecio and Rhod&000 demonstrated that this phenomena
can be physiologically measured on the chinchilla BM, Kiahg (1965 showed that
the effect is also measurable in the cat AN. Across manysdilttie envelope change
with increasing stimulus level acts as an onset emphadisehalts in a decrease of
wave-V latency. The IHC-AN synapse adaptation has similaperties, amplifying
the onset of a signal and attenuating later paffegterman and Smitti988. This
effect enhances the level-dependent effects on wave-Vidatereated by the filter
tuning.

4.3 ABR Model structure and unitary response

The structure of the ABR model is shown in Fig.L The ABR model uses either
the DRNL filter model (DRNL-ABR) Meddis 2006 or the AN model (AN-ABR)
(Zilany and Bruce 2006 2007 as the front-end cochlear model. The AN model
calculates the instantaneous discharge rate for individdafibers, in response to
a given stimulus defined in Pascals. Equivalently, the DRMe&rfmodel calculates
the vesicle release probability also for single AN fiberscliefiber (in both models)
is tuned to a specific characteristic frequency (CF). The €esen were spaced
according to the human cochlear mapGfeenwood1990. The number of fibers
included was a trade-off between computational time andatrexcturacy. Throughout
this study, 500 fibers ranging from 100 Hz to 16 kHz were usedl isimulations. The
output of the front-end cochlear models was summed acrbfbeis and convolved
with a unitary response (UR) function, derived separatelytiie two models. The
UR is defined as the potential produced between the elecfrasions on the scalp
each time a cell discharges. The URs, one for each of the sodele obtained by
deconvolving a template 95.2 dB peSPL click-evoked ABRerling et al.(2010),
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Figure 4.1: Schematic structure of the ABR model. 500 AN fibened to different CFs are individually
simulated by the AN model. The summed activity, integrated ach@gjuency, is then convolved with a
unitary response and represents the simulated ABR to a giiveualss.

shown in the left panel of Fig3.4, with the summed neural activity pattern generated
by either front-end model in response to a similar click stins. The deconvolution

is an ill-posed mathematical problem and has an infinite rernab solutions. A
stable and probable solution was, likeDau (2003, found by using the Tikhonov
regularizationTikhonov (1963, and the MATLAB toolbox fromHansen(1998.
Figure4.2 (right) shows the unitary responses, obtained with a graedaged ABR

at 95.2dB peSPL as the target. Linear superposition wasrestabove the level of
the AN synapse, and thus the calculated unitary respons#¢idas given in Fig.4.2
was used for any input stimulus level. As expected, the twiveled URs are almost
identical (sedHarte et al (2010 for further information on the modeling framework).

4.3.1 Cochlear models

The input to the auditory nerve (ANZilany and Bruce(2006 2007 model is the
instantaneous pressure waveform of the stimulus in uniBaofThe output of the
AN model is the spike rate in response to the stimulus presstiie model includes
a number of key functional stages: a middle-ear filter; a fieeadbard control path
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Figure 4.2: Left panel: Grand average template ABR evoked B§.2 dB peSPL clickElberling et al.
(2010. Right panel: Derived unitary response functions for ketiee AN-ABR and the DRNL-ABR
model. Both are calculated as the deconvolution of the graechge ABR and the summed neural activity
pattern generated by the front-end cochlear model in regptonan identical click stimulus. The two URs
has for display been shifted in amplitude.

representing the active mechanism; a primary signal-plh {C1) representing the
basilar membrane (BM) filtering adapted by the control pattparallel-path filter
(C2) for high-level stimuli; an inner-hair cell (IHC) seati followed by a synapse
model and a stochastic AN spike discharge generator. Inrdsept study, the spikes/s
output from the synapse model was used, rather than theastticloutput from the
spike generator. The input to the dual-resonance nonli(@RNL) filter model
Meddis (2009 is also the instantaneous pressure wavefori@an The output from
the model is the vesicle release probability. The mddetidis (2006 used in this
work consists of an outer and middle ear-filter, the DRNL fi{8M filter stage), an
inner hair cell (IHC) transduction stage and a IHC-AN symapshe DRNL (Lopez-
Poveda and Meddis, 2001; Meddis et al., 2001) filter is a cdatjpmal algorithm
which aims at simulating a number of features characterigtine basilar membrane.
One of many features is a compressive input-output funcéod consequently level-
dependent tuning. The output from both models were detéstitrand the effects of
refractoriness were thus not considered in this work.
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4.3.2 Stimuli and calibration

As the literature data are described in dB peSPL it was napeds acoustically

calibrate the transient stimuli used. The click were mesg@acoustically in an IEC

60711 coupler. The numerical stimulus peak-to-trough #og# of a reference 1-
kHz pure tone signal was adjusted until the acoustically suesal peak-to-trough
amplitude was similar to that of the click. A scaling factdefined as the ratio
between the stimulus peak-to-trough amplitude of the pme a&nd the stimulus peak-
to-trough amplitude of the transient signals, was derived a

S— LSignaI (4.1)
LReference
whereSis the scaling factorl_sjgnal is the stimulus peak-to-trough amplitude of
the transient signal, andreferencelS the stimulus peak-to-trough amplitude of the
reference pure tone. The AN model was calibrated such tleatabt-mean-square
value of a reference pure tone signal was 1, whereas the DRddehis calibrated
such that the peak value of a reference pure tone signal washé.amplitude of
the numerical click in Elberling et alElberling et al.(2010, used as stimuli to the
models, was thus scaled by the derived fa&tor the DRNL model, and by\% for
the AN model.

4.4 Results

The left panel of Fig4.3 shows ABRs simulated by the AN-ABR model in response
to clicks at 50, 70 and 90 dB peSPL. A shift in the wave-V peakHorter latencies
with increasing stimulus level is clearly observed. Thétiganel of Fig.4.3 shows
simulated click-evoked ABR wave-V latencies as a functibstonulus level. Also
shown are recorded click ABR latencieau(2003. Simulations were done with both
the DRNL-ABR and the AN-ABR model. The two models produceikinresults
for stimuli levels between 70 and 100 dB peSPL. For lowerlgwhe DRNL-ABR
model no longer produces a distinct wave-V, thus derivirggericy associated to those
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Figure 4.3: Left panel: AN-ABR model simulations to click stilmsi at 50, 70 and 90 DB peSPL. Note
the latency change of the wave-V peak. Right panel: Simulataf click-evoked ABR wave-V latencies

across stimuli levels, using both the AN-ABR and the DRNL-ABRdel. Both models show compressed
level-dependent latencies compared to Dew (2003 experimental data.

levels was not possible. As expected, it is seen that botheta@imulated reduced
wave latency for increasing stimulus level. However, arcthgparity between both
sets of simulations and the recorded reference data isw@ukeThe recorded data
shows a decrease in wave-V latency of approximately 2 ms #0 aB stimulus
level increase, whereas the models simulates approxiynaugis decrease for 40dB
increase in stimulus level.

4.5 Discussion

Fig. 4.3 (right) showed that both models under-predicted the ABRney. The

classical theoretical explanations of the ABR latency deawith stimulus level

says that the IHC-AN synapse adaptation and the cochleargwhould be the key
features. To quantify whether these features were captthredmpact of the tuning
and the adaptation in the AN-ABR model was investigated. fboeis was on the
AN-ABR model as it produces the most reliable results ovemtidest range of input
stimulus levels. To be able to interpret the model corretiRgs for each new version
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of the model were derived. The URs were derived from the sabn2 @B peSPL
click-evoked template ABR, thus results shown in this seckiave by default correct
latency estimation at 95.2 dB peSPL.

The key feature producing the level dependency of wave-&hlat was the filter
tuning. Fig. 4.4 (left) shows the effect of exchanging tt&hera et al.(2002
filter tuning, originally implemented in the AN model, withé less sharply tuned
Glasberg and Moorgl990 filters, on wave-V latency. It is observed that the latency
change with stimulus level is approximately halved. B&thera et al(2002 and
Glasberg and Moor¢1990 describe the frequency dependence of the filter tuning.
Thus, exchangingshera et al.(2002 tuning with the Glasberg and Moor¢1990
tuning makes all the filters broader, independent of levédie feason for the larger
latency change with stimulus level found when us8tgera et al(2002) tuning is that
sharper filters increase the frequency specificity and timis the upward spread of
excitation at low levels. At higher levels, there is thusmofor a significant increase
in upward spread of excitation, thus creating larger latedecanges with level.
Shera et al(2002 measured the filter tuning using a forward masking paraditime
tonal target stimuli was presented at 40dB SPL. Literataa a@btained at higher
levels and high frequencies, measured with this paradigenh@wvever not available.
For the high levels, the lack of data is likely due to the pcadtlimitations of
presenting an off-target masker that does not get uncoafifiyrtoud when measuring
the skirts of the filters. As the sharpness of the tuning wasvehto be important
for the level dependency of wave-V latency, the lack of tmasthy data is however a
large uncertainty. Getting the level-dependency of thentynorrectly could prove to
be key when modeling wave-V latencies. F#5 shows filter bandwidth€Qerg, at
different center frequencies and levels, derived from treent AN model. Data to
which these simulate@-values could be compared with, would be beneficial.

The right panel of Fig4.4 shows simulated click-evoked ABR wave-V latencies,
generated by the AN-ABR model where the adaptation of the-ANCsynapse has
been left out. The removal of the adaptation clearly showsdaation of latency
change with stimulus level. Note that the UR was calculatestd on a 95.2 dB peSPL
click, and that the latency of the simulations around thiglldy default therefore is
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Figure 4.4: Simulations of click-evoked ABR wave-V laterscéross stimuli levels. In both figures are the
data recorded bipau (2003 and the simulations from Figd.3 shown as reference. The figure to the left
additionally shows wave-V latencies simulated by the AN-ABRRdel where the filter tuning was based
on Glasberg and Moorgl990. The figure to the right shows wave-V latencies simulatedrbpAB-ABR

model that excluded the IHC-AN synapse adaptation.
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Figure 4.5: Filter bandwidth€erg, derived from the output of the C1 filter path. The dashedeshows
Qerebased orShera et al(2002’s experimentally derived function for a stimulation levé4® dBpeSPL.
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correct. The "correct" picture when removing the adaptatbould therefore have
been a curve shifted upwards, as the inclusion of adaptatiampens the onset and
thus leads to shorter delays. However, the simulated seshtiw that removing the
adaptation approximately halves the latency change wit.|& his was supported by
an additional simulation (not shown) where the adaptatias kemoved from the AN-
ABR model based on th&lasberg and Mooré1990 tuning. The IHC-AN synapse
adaptation used in the AN model was revisedilany et al. (2009. Additional
simulations were performed using this synapse model; hexveo effect on the level-
dependent latency was found. The adaptation is thus argusglimportant for wave-
V latency but not the reason for the under-estimated latehayge.

Two other modeling features could be thought to affect thérA&ency. The first
is the unitary response (UREhertoff (2004 investigated the level dependency of a
UR used to model compound action potentials (CAP) in Moragotjerbils.Chertoff
(2009 showed that the UR was level-dependent in this species.eMenvno general
formulation of the dependency was stated, and no formulasfoa level-dependent
UR for humans has been found in the literature. It cannot lotudrd that a level-
dependent UR would affect the latencies. The interval betwegave-I and wave-V,
is however, remarkably robust across stimulus level. Thenudlels the auditory
pathway from the wave-I generation site, argued to be the-M¥Csynapse, to the
wave-V generation site. Thus, it is not likely that a levepdndent UR would have a
major impact on the latencies. The second alternativefe#tiat could affect the ABR
latency is the auditory nerve refractory period which wasimduded in the AN-ABR
model of the present study. This choice was made to make tdelrmomputationally
faster. Additionally simulations were carried out where tiefractory period was
included. However, no improvement on the wave-V latencyngeawith level was
observed.

4.6 Conclusion

Two ABR models were build, both using a principle where a ¢eah front-end
model was convolved with a unitary response (UR). Both ABRlel® were shown
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to significantly under-estimate the click-evoked ABR wakdatency change with
stimulus level. The two models should, given classical @xations, be able to model
click-evoked ABR latencies. The fact that they fail leadghte suggestion that the
cochlear tuning is likely to be imprecise at high levels aightirequencies.
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5

Low-frequency versus high-frequency
synchronization in chirp-evoked
auditory brainstem responses

In chapter3 the ABR model was developed. It was quantified that the modal w
capable of simulating ABR wave V latencies and amplitudeslitk, tone bursts
and chirps. First, this chapter develops two tools to ithist details of the ABR
model simulations. These illustration tools, the AN-spagtam and the AN-UR-
spectrogram, has proven a valuable tool aiding stimuluatione for experiments, as
well as the understanding of simulations. Here they are tsedotivate the “Low-
frequency versus high-frequency synchronization in cbirpked auditory brainstem
responses” study.

5.1 The ABR model used as an illustration tool

5.1.1 Stimuli

The two stimuli used, a click and a chirp, were both taken fEiberling et al (2010
and were thus identical to the click stimulus and the “cl#fgstimulus in chapteB.
Both stimuli were band-limited from 100Hz to 10 kHz. All sitations were carried
out at 75.2 dB peSPL, corresponding to 40dB HL for the clide(sectior8.4.2

1 This study is based oRgnne and Ggtsche-RasmusEzi 1)
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5.1.2 Spectrograms

Fig. 5.1and5.2 show hence a simulated click and chirp evoked ABR. Wave I, IlI
and V are clearly visible. The latency and amplitude of theevd’s were naturally
similar to the ones presented in Fi®.7 and 3.6. Each simulated ABR was the
summation of 500 channels, each tuned to a different CF.5=8shows click evoked
AN responses in a AN-spectrogram representation. The ¥-stxdws the 500 AN
fibers characterized by their CF. Each horizontal line infigere are thus the click
evoked response of the humanizé&thny and Brucg2007) AN model tuned to a CF.
The color represents the instantaneous discharge ratepaicdis time in a specific
fiber. Fig.5.4shows AN-UR-spectrogram representation, created by daingoeach
horizontal line in Fig.5.3 with the unitary response (UR, see sect®4.]). As the
convolution was a linear process, the summation over chsuwighis figure give
the ABR shown in Fig.5.1 The color represents each channels contribution to the
summed ABR potential (unit gfiv).

time [ms] time [ms]

Figure 5.1: Simulated ABR evoked I@lberling etal.  Figure 5.2: Simulated ABR evoked I&lberling et al.
(2010 click. (2010 chirp-3.

In the spectrograms, details of the underlying processamglb®e observed. In the
AN-spectrogram it can be observed that the fine-structdoerimation is available at
low frequencies whereas only the envelope seems to be ttathegher frequencies.
This is seen as the impulse responses at low frequenciesdke siorizontal line)
has multiple peaks, with a periodicity corresponding tofther CF. In the AN-UR-
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Figure 5.4: AN-UR-spectrogram visualizing the
components that sums up to form the simulated ABR.

Figure 5.3: AN-spectrogram showing the simulated This figure is created by convolving Fig.3 line by
neural activity at the AN in response to click stimulus. |ine with the UR.

spectrogram the ABR wave lll and V are visible as the two reedioccurring around
4 and 6 ms. A clear latency shift from the AN-spectrogram seobed due to the UR.

Fig. 5.5and5.6 shows spectrograms evoked by tiberling et al.(2010 chirp-3.

It is clearly observed that much of the activity in the AN-WRectrogram is time-
aligned at the discrete values of 4,5 and 6 ms. It is furtheepked that the impulse
responses have a long duration at low frequencies. Thisheasansequence that it
is impossible to time-align all of the activity stemming findow frequencies. It is
however observed, that the peaks of the low frequency irpelsponses are aligned
with the peaks of the high frequency contributions. A langave-V amplitude is thus
observed using a chirp stimulus than a click stimulus.

5.1.3 Motivation for the following study

It was shown that the simulated the low frequency contrdmgito the click-evoked
ABR was not time-aligned with the high-frequency contribos and were thus
not adding up in phase (Fig5.4). The chirp evoked ABR showed a much more
time-aligned response at low frequencies (Fig6); however, it was also indicated
that the alignment of high-frequencies was significantlitdye This contradicts the
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] ] ) Figure 5.6: AN-UR-spectrogram visualizing the
Figure 5.5: AN-spectrogram showing the simulated components that sums up to form the simulated ABR.

neural activity at the AN in response to an This figure is created by convoliving Fig.5 line by
Elberling et al.(2010 chirp-3 stimulus. line with the UR.

common belief in literature (e.@hore and Nuttall1985 Dau et al, 2000 where it
has been argued that the alignment of the low frequenciestiveasnly reason for
the larger wave-V amplitude evoked by a chirp rather thanick.clThis deviation
between literature explanations and simulations led tofdhlewing study, where
it was investigated whether the better alignment of the Hiighuencies contribute
significantly to the larger chirp evoked ABR wave-V amplieud

5.2 Abstract

This study investigates the frequency specific contrilbutathe auditory brainstem
response (ABR) of chirp stimuli. Frequency rising chirpsrevelesigned to com-
pensate for the cochlear traveling wave delay, and leadgedavave-V amplitudes
than for click stimuli as more auditory nerve fibers fire symoetously. Traditional
click stimuli were believed to only excite high-frequencipeis synchronously. It
is still currently unclear whether the broad-band chirpnsius leads to increased
synchronization of both low- and high-frequency fibers. sltaiso unclear if both
these groups of fibers contribute significantly to the ovesave-V amplitude. In
the present study, ABRs were recorded from 10 normal-hgdisteners using low-



5.3 Introduction 61

and high-frequency band-limited chirps and clicks (0.15 KHz and 1.5 - 10 kHz)
presented at a level of 40 dB HL. The results showed signilicdarger wave-V
amplitudes for both low and high-frequency band-limitedtgh than for the filtered
clicks. This demonstrates that the synchronization of editvers occurs across the
entire frequency range at this presentation level, andehigs to significant increases
in wave-V amplitudes. The increase for the low-frequenciypcivas found to be
clearly larger than that obtained at the higher frequencies

5.3 Introduction

ABRs in response to transient sound stimuli represent thersd electric potential
from many remotely located neurons, recorded via scalgreldes. The click evoked
ABR has 7 distinct waves, where wave-V is the most promin©mte key feature of
the ABR wave-V is the peak latency which is dependent on bintinutus frequency
(Neely et al, 1988 and level Dau, 2003. The frequency dependence is due to the
tonotopic mapping on the basilar membrane (BM) with higtgfrency at base and
low-frequency at apex@reenwood1990. Each frequency component of a stimulus
is associated with a certain delay, and a click stimulus thills elicit responses
over a relatively large time span. This limits the synchrafythe response, and
thereby reduces the ABR amplitude evoked by such a stimilbg(ling et al, 2007).
Frequency rising chirps have been designed to compengateefcochlear traveling
wave delay. The use of chirp stimulus lead to larger wave-¥ylaudes than for click
stimuli as more auditory nerve fibers fire synchronously Eberling et al, 2007, for
review). The increase in synchrony has traditionally begued to occur mainly at
low frequencies, where the peaks of the individual nervparses are most delayed.
E.g. Shore and Nuttalf1985 andDau et al (2000 argue that the low frequencies are
the key to the improved wave-V amplitudes, as low frequenare least synchronous
with the more aligned high frequencies and the room for im@neent thus is largest.
However, the impulse responses of the nerve fiber respondew &equencies are
much longer in time citepKiang1965, and it is thus not pdsstb align all the
excitation at low frequencies. A chirp is though designedlign all frequencies
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(Elberling and Don2008, and the better alignment of high frequencies, with short
impulse responses, could thus be an alternative hypothesistill currently unclear
whether the broad-band chirp stimulus leads to increasechsgnization of both low-
and high-frequency fibers. It is also unclear if both of thgxsrips of fibers contribute
significantly to the overall wave-V amplitude. The reseagciestions addressed in
this paper are: 1) Is the increased wave-V amplitude (irse@aervous synchrony)
observed for both high and low frequencies when stimulatiity chirps instead

of clicks? 2) Are high or low frequencies key to the increasee-V amplitude
observed when stimulating with broad-band chirps?

5.4 Testdesign

Six stimuli were created. A broad-band click and a broaddbanirp, containing the
frequencies from 100 Hz to 10 kHz, were used as reference. clitlewas a 100
ts standard click, and the chirp was identical to "chirp r8'(&lberling et al, 2010.
Further were low-frequency and high-frequency versionsaice click and chirp
created. The method described Eferling et al, 2007 was used. The phase delays
for hence chirps and clicks were the same as used to creabrdahd-band stimuli.
Both the high-frequency and low-frequency cut-off frequewas 1500 Hz. Fig5.7
and Fig. 5.8 shows the time series representation of the three hendeasiid chirp
stimuli. The power spectra of the two broad-band stimuliendentical. The summed
versions of hence the low-frequency and high-frequenckcéind the low-frequency
and high-frequency chirp has also identical power spestth@broad-band versions.
The power of hence the low-frequency (-3.1 dB relative t@drband condition) high-
frequency (-0.6 dB relative to broad-band condition) stimware thus smaller than the
power of the broad-band versions. Fi§.9 shows the power spectra of the stimuli,
note that hence the two broad-band stimuli, the two lowfeggpy stimuli and the
two high-frequency stimuli have identical spectra. Thessimuli were linked to each
other in terms of the power spectra as described above. fbhnerenly the broad-
band click was calibrated, and the rest adjusted corres$pgiydBy inserting ER1-14
ear plug in a B&K Ear Simulator Type 4157 (IEC 60711) usingmdaB&K DB
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2012 the click was calibrated to a level of 75.2 dB peSPL. Hierence equivalent
threshold sound pressure level (RETSPL) for the click catdd this way is 35.2 dB
RETSPL (taken from the corresponding head and torso siorutaeasurement of
Richter and Fedtké2005, and the measurements are thus carried out at 40 dB HL.

High

Low

Broad

0 0.
Time [ms]

Figure 5.7: The three click stimuli.

5.4.1 Testsubjects

High ——4%&/\/\[\%&#—
5 0

Time [ms]

Figure 5.8: The three chirp stimuli, all based on
“chirp 3” from Elberling et al.(2010.

The ABR measurements were carried out at the Centre for éghpliearing Research
(CAHR), Technical University of Denmark. Ten normal-hegriest subjects (10 left
ears) participated in the study. All subjects had normatihgalefined as pure tone
thresholds equal to or better than 20 dB HL in the range frol H2 to 8 kHz.
The subjects were all students between 20-30 years old (2lésnand 8 males).
The session lasted for maximally 1.5 hours including a shoefing and fitting of
electrode cap. Only the left ear was tested.

5.4.2 Measurement procedure

The test subject was placed in an electrically and acolistishielded booth. The
signals were presented at 48 kHz sampling frequency thrandghtymotic Research
ER-2 insert earphone. The recording of the ABR was done @siigdical Equipment
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Figure 5.9: Spectra of the different stimuli. The sum of the tvence low- and high-frequency clicks or
chirps have the same power spectrum as the broad-band stimulus

ApS Synamps2, which sampled the recorded signal at 10 kHze éléctrodes
were placed at vertex (reference), ipsi-lateral mastoid] farehead (ground). An
impedance between the electrodes belowdvkas achieved for the majority of the
test subjects. The post-processing was done using MATLAR: flaw data was
averaged, and filtered using a band-pass filter with cutreffidencies at 100 and
3000 Hz. Wave-V was detected in a time interval from O - 7 merdtte offset of
the stimulation. The wave-V amplitude was calculated aglifierence in amplitude
between the maximum amplitude and the minimum amplitudeddn the subsequent
2 ms.

5.5 Results

Fig. 5.10shows the mean and one-standard deviation of wave-V ardpétof the 6
conditions measured. The broad-band click and chirp uséusrstudy are identical
to the ones presented Ejberling et al(2010. They found an averaged click evoked
wave-V amplitude of 0.368 {V and an averaged chirp evokedli@amde of 0.645 {V.
This compares well with the amplitudes measured in thisystud
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Broad Low High
Stimulus

Figure 5.10: Mean ABR Wave-V amplitude and one standard tlewialotted for each stimulus condition.

The mean amplitudes indicate that the chirp stimuli geedeger ABR Wave-V
amplitude compared to the click stimuli across all condiio The high-frequency
chirp condition is significantly different from both the lad-band chirp (High#
Broad: p value = 0.014) and the low-frequency chirp condifidigh = Low: p value
= 0.005), indicating that both high and low frequencies atéirag to the measured
amplitude. It cannot be rejected that the high-frequenmk @ives rise to the same
amplitude as the broad-band click (HighBroad: p value = 0.614) indicating that
the broad-band click is entirely determined by the higluyfiency contribution. The
p-values were calculated using a two-sample t-test.

The difference between the click evoked and chirp evokedevwaamplitude was
calculated for each test subject to reduce the influenceeoftler-subject variability.
The mean and standard deviation of the improvements frack @i chirp are shown
in Fig. 5.11 A t-test was applied to analyze the data (see T&blg All three
stimuli types show significantly larger amplitudes for gisirover clicks, supporting
the hypothesis that the increased synchrony happens aventfre frequency range.
It is also shown that the high-frequency improvement wasiBaantly different from
the broad-band improvement, and thus the high frequen@asat be the entire
explanation for the larger amplitude measured with a chispeiad of a click. It cannot
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Figure 5.11: Improvement in wave-V amplitude from click to phévoked responses. The mean and one
standard deviation are plotted.

Hypothesis | P-value
Low >0 «0.001
High>0 0.006

Broad >0 | «0.001

Low # Broad | 0.237
High # Broad | 0.004

Table 5.1: Statistical analysis of data in Filgl1 The three upper P-values are calculated using a one sided
one-sample t-test. The two lower using a two-sample t-test.

be rejected that the improvement measured with the lowsfaqgy stimuli are equal to
the improvement of the broad-band conditions. These mewiilltbe further discussed
in the discussion section.

5.6 Discussion

This study investigated the frequency regions contrilgutinthe chirp ABR Wave-V
amplitude. It was found that an increase in ABR wave-V armagitwhen stimulating
with a chirp stimulus rather than a click, was observed batlower and higher
frequencies, indicating that the increased synchrony efrtervous responses takes
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place across the entire frequency range. It was also shastrtite high-frequency
region cannot explain the improvement from click to chirpemhstimulating with

the broad-band stimuli. However, the improvements obskatghe low-frequency
conditions and the broad-band conditions were not sigmifigalifferent, indicating

that the lower frequencies can explain all the improvememfthe click to chirp

condition. This contradiction in the results, that the higgquency improvement
is significantly larger than zero, and that the low-frequeimaprovement is not
significantly different from the broad-band improvemenguid likely be clarified

if more test subjects had been used.

Fig. 5.10shows that high frequencies were the main contributor tdahmation
of ABR Wave-V amplitudes for both clicks and chirps. This wé®ly due to
the fact that the high-frequency stimuli contains more powaad to the fact that
the high-frequency basilar membrane responses have shpulde responses that
were inherently better aligned than the longer impulsearses at low frequencies.
However, the improvement from click to chirp at high freqcies was small.

In Fig. 5.12the amplitudes of the low-frequency and high-frequencypoases
were added for each test subject and compared to the brombelvaked amplitudes.
It is clearly observed that the summed amplitude is largentthe broad-band
evoked amplitude. This shows that the auditory pathway \®haonlinearly. The
explanation is that the outer-hair-cells (OHC) amplifiegalwvsounds more than louder
sounds (compression) and the fact that the filtered respayiges rise to spread of
excitation on the basilar membrane in the region surrountie 1500 Hz cut-off
frequency. The 1500 Hz region would in the broad-band cantthave been masked.
The low level "off-frequency” excitation will be amplifiedybthe OHC and the
summed response of the two frequency limited conditionktiuils be stronger than
the one measured with the broad-band stimulus. The inatesasglitudes observed
with the summed low and high responses, are though equatig f@r both click
and chirp stimulus. This leads to a very limited effect onwave-V improvements
shown in Fig.5.11, and the possible uncertainty regarding the unmaskededfiency
effects were thus negligible.
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Figure 5.12: ABR Wave-V for filtered stimuli are added for eacibject and compared to data for broad-
band. The mean and one standard deviation are shown.

5.7 Conclusion

This study examined the influence of frequency range on ahigked ABR at a
presentation level of 40 dB HL. It was shown that both low amghHrequencies
contribute to the increase in wave-V when using a chirp dtisiinstead of a click
stimulus. This demonstrates that synchronization of néibers occur across the

entire frequency range. However, the largest increase wewais observed at lower
frequencies.
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Modeling human tone-burst and
click-train evoked ABRs

This chapter is based on the paper called “Modeling humait@yevoked brainstem
responses based on nonlinear cochlear procesditaytd et al.2010, and describes
simulations of tone bursts and click-train evoked ABRs. $imeulation of click-train
evoked ABRs represents the first step, in this thesis, tawsirdulating responses to
longer-duration stimuli. In the following two chapters theé-Hz ASSR and speech-
syllable evoked ABRs are simulated. Compared to the orighulication, the
description of the theoretical framework, which alreadyswigscribed in chapte;
has been taken out from the method section to avoid repetitio

6.1 Abstract

The aim of this study was to accurately simulate auditorykedopotentials (AEPS)
from various classical stimuli such as clicks and tonesgrofised in research and
clinical diagnostics. In an approach similar@au (2003, a model was developed
for the generation of auditory brainstem responses (ABRYyansient sounds and
frequency following responses (FFR) to tones. The modéld®s important cochlear
processing stageZifany and Bruce2007) such as BM tuning and compression, inner
hair-cell (IHC) transduction, and IHC auditory-nerve (ABynapse adaptation. To
generate AEPs recorded at remote locations, a convolua@mwade of an elementary
unit waveform (obtained empirically) with the instantansalischarge rate function
for the corresponding AN unit. AEPSs to click-trains as wedl ta tone pulses at
various frequencies were both modeled and recorded atetiffestimulation levels

69
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and repetition rates. The observed nonlinearities in ticerced potential patterns
with respect to ABR wave latencies and amplitudes could tgelg accounted for by

level-dependent BM processing as well as effects of skeont-heural adaptation. The
present study provides further evidence for the importaficechlear tuning and AN

adaptation on AEP patterns and provides a useful basisdattiuy of more complex

stimuli including speech.

6.2 Introduction

For sounds which convey information, such as speech andcmosich of the
information is carried in the changes in the stimulus, nathan in the parts of the
sound which are relatively stable. Through the last dechd#spsychoacoustic and
physiological studies have investigated how the auditgsyesn analyzes the temporal
modulations of sounds. When various sounds are presentadriarhsubjects, it is
possible to record auditory evoked potentials (AEPS) onstiidace of the human
scalp. Auditory evoked potentials are the summed respamse fmany remotely
located neurons recorded via scalp electrodes. They catbeded from all levels of
the auditory pathway, from the auditory nerve, the bramstg to the cortex. They
are typically grouped in terms of time of occurrence aftémstus offset and thus
are known as; auditory brainstem responses (ABRs) recdrdetieen 1 and 7 ms
after stimulus offset; middle latency responses (MLRspréed in the interval 15-50
ms after acoustic stimulus; and auditory late response {AkBorded in the interval
75-200 ms after stimulus.

Hearing deficiencies often lead to difficulties in underdtag speech, especially in
noisy and reverberant environments. Auditory evoked pksnare a powerful tool
used to diagnose and assess classical hearing deficieflissas led to a trend in the
literature of assessing and investigating speech and exnspeech-like stimuli with
AEPs (e.gAiken and Picton2008 Akhoun et al, 2008 Chandrasekaran and Kraus
201Q Lalor and Foxe2010. AEPs are relatively well understood for basic stimuli,
i.e. transients, tone bursts and tones. However, for moneptax stimuli, which
include amplitude and frequency modulations as well aspsbarset and off-set
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transients, it is still relatively poorly understood hove tharious neurophysiological
processing along the auditory pathway gives rise to the A&ddrded at surface
electrodes. A clearer understanding of how the underlyimgrophysiology in the
auditory system leads to surface-recorded scalp potsmiaild help to assess hearing
impairment, or to evaluate how well this has been compeddatewith an auditory
prosthesisAiken and Picton2008, such as a hearing aid or cochlear implant.

The long-term goal of this study is to model and simulate spesvoked and
complex (non-speech) sound evoked AEPs originating in tigitery nerve and
brainstem, based on current knowledge of neural audit@yasiprocessing. Dau
(2003) developed a model for the generation of early AEPsludting auditory
brainstem responses (ABR) to transient sounds like clickkfeequency following
responses (FFR) to tones. Both of these AEPs are generategurgns in the
auditory nerve (AN) and subsequent stages along the ayditamstem. The model
included important cochlear processing stages such dabammbrane filtering with
a compressive feedback loop, inner hair-cell (IHC) tractida, and IHC-AN synapse
adaptation. The instantaneous AN discharge rate from treeehweas convolved with
an empirically obtained elementary unit waveform, to setelIlAEPS.

In the present paper, thi2au (2003 model is extended to include current advances
in AN modelingZilany and Brucg2007) and is humanized. The originBlau (2003
model used theleinz et al(2001) AN model fitted to experimental cat AN data. Here,
the Zilany and Brucg2007) AN model will be adapted for humans by ensuring that
the model has appropriate thresholds, tuning curves, BMeliry wave latencies
etc., based on current state-of-the-art knowledge deffirad both behavioral and
objective measures where possible. This study will preseomparison of the model
output with basic transient, tone-burst and click-traitegén an attempt to build up
stimulus complexity towards the final goal of speech. This fiossible to challenge
the model with relatively basic stimuli, before increasicgmplexity. This study
focuses on the role of basilar membrane tuning and the aéaptaechanism of the
AN model and looks at the consequences for AEPs generatearaNsdaptation is
the phenomenon where the neural output is reduced due tonged or repeated
stimulation, in each stage of the auditory pathway.
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The role of adaptation in AEPs, and more specifically ABRsripartant because
in clinical practice it is highly desirable to obtain acderaecordings of ABRs
quickly, particularly from uncooperative subjects and meges. Any morphological
differences, such as amplitude and latency, from normalkita caused by stimulus
rate adaptation could interfere with diagnosis. The ddsirgquicker acquisition time
has led to the use of rapid rates of stimulation via so-cgtieelido-random binary
sequences or maximum length sequences @ugkard et al. 1990 Jewett et al.
2004). The response to these pseudo-random pulse trains neédsdeconvolved
to obtain an estimate of the ABR. The higher rate of the serpiégads to typically
smaller ABR amplitudes. This is believed to be a result ofrakadaptation.

6.3 Methods

6.3.1 Model for AEP generation

The structure of the ABR model is shown in Fgy1 Within the overall ABR model,
a parallel bank of AN fibers is individually modeled. Each A€f is tuned to a
specific CF. The number of fibers included is a trade off betweamputational time
and model precision. Throughout this study 500 fibers weee @ each simulation,
representing a range of 0.1 to 10kHz. The output of the AN malde instantaneous
firing rate of all the AN fibers, is summed and convolved with thitary response
function.

A humanized AN model

Zilany and Bruceg(2006 2007)'s AN model was fitted to cat AN data, and has thus
been modified to better model human AN response here. Thaniol changes to
the original cat AN model were implemented by Bruce and cokers:

The original cat middle-ear transfer function has beenaegl by a human middle
ear. This was based on the linear circuit modelPaiscal et al(1998 of human
cadavers. The model magnitude response function is showigi.2
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Figure 6.1: Structure of the ABR model. 500 AN fibers tuned ftedént CFs are individually modeled by

the AN model. The summed instantaneous firing rate is then ceedalith a unitary response to create
the modeled ABR.
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Figure 6.2: Frequency response of the human middle ear implechenthe AN model.
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It has been argued that humans have significantly sharper Bhamical tuning
than cats and other experimental anim&hédra et al.2002. To incorporate this, the
model equivalent rectangular bandwidth quality facf@rg, for cochlear tuning was
defined to be,

£ \03
Qers =127 (10‘8()) (6.1)

where f; is the center frequency of the BM filter. This function waseakrom
Shera et al(2002 and is applicable to humans at frequencies at and above 1 kHz
The choice of QERB will be further discussed later.

The tip of a suppression tuning curve is at a slightly highegfiency than the tip
of the excitatory tuning curveDelgutte 1990. This is implemented in the original
Zilany and Brucg2007) model by shifting the CF of the so-called control path filter
by 1.2 mm on the BM. Without sound knowledge of how this me&ranvorks in
humans, the default is retained here. However, a humandreydplace mapping
for the BM is needed and has been updated from the origindedtiman fit from
Greenwood (1990):

fo = A(10P*—K) (6.2)

wherex is the distance on the BM apex in mm, and the constantsfaxel65.4,a =
0.06 andk = 1.

Two additional changes to th&lany and Brucg2007 model was made here. In
Zilany and Bruce(2007), the synapse gain, which describes the relationship of the
inner hair cell potential to the synaptic release rate ggais a function of CF to ensure
that the model thresholds match empirical data from catthdMi such physiological
data available, human behavioral monaural absolute tolgsliKillion, 1978 were
used to fit the model. Thus, the synapse gain function Zilamy and Brucg2007)
was changed to be;
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Figure 6.3: Model example tuning curves (solid curves) fpresentative CFs and simulated (dashed curve)
and reference (dotted curve) absolute thresholds.

Kcr = 0.91- min{400Q 10P-fe/10%+04} (6.3)

where the characteristic frequendy, is in units of hertz.

Figure 6.3 (solid curves) shows example tuning curves of AN fibers ac@s
range of CFs for the revised AN model. The same procedure Hitemy and Bruce
(2007 andChintanpalli and Hein£2007) was used to adaptively determine the tuning
curves. Absolute thresholds are also shown on the figureedewrer dashed line, as
well as the reference behavioral thresholds (dotted cudreg) Killion (1978.

Fig. 6.4 shows theQerp versus CF measured from tkg0 from the model tuning
curves, via the transformation frotorahim and Brucg2010:

Q10— 0.2085

QerB= 0505 (6.4)

Also shown in Fig.6.4 are theQeRB from Shera et al(2002) used to set the BM
tuning in the model.

As described above and shown in FEg3and6.4, the AN model tuning properties
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Figure 6.4: Qgrp values vs CF, measured from the model tuning curves and refeffeom Shera et al.
(2002.

are determined by the frequency depend@agg in Eq. 6.1 However, an additional
delay function exists in the primary C1 filter path of the ANaeb This acts as a so-
called signal-front delay (seRuggero and Temchji2007). This has been altered in
the present model, to ensure that the model produces odefals (signal front and
traveling wave group delays) similar to the estimated BMagleéported irBhera et al.
(2002. To achieve this, each AN impulse response function wasroghed, the
envelope was extracted (via low pass filtered Hilbert em&lpand the latency of the
peak of the enveloped recorded. The following logarithnoiection was then fitted
to the difference between the model output latencies argbtheported irShera et al.
(2002:

Ter = 103 max{0, —10.09- logyo( fe) + 29.23} (6.5)

By using this additional delay, it is hypothesized that pblggically plausible BM
latencies can be approximated in the model. This is vitak &s well known that
cochlear processing and delay has a strong influence ondextdrainstem evoked
potentials Pay, 2003 Dau et al, 2000 Wegner and Da2002).
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The unitary response

The unitary response describes the transformation of thubof the auditory nerve
to the potential measured at electrodes placed on the s@dle.unitary response,
like in Dau (2003, was obtained by deconvolving an experimentally recora&
ABR with the summed neural activity pattern for the click,ngeated by the AN
model. The deconvolution is an ill posed mathematical gwband has an infinite
number of solutions. A stable and probable solution was ddoy using Tikhonov
regularization Tikhonoy, 1963. The calculations were carried out in Matlab using a
toolbox provided byHansen(1998.

6.3.2 Tone-burst simulation

Auditory evoked potentials have been used historicallyiaim indirect estimates of
cochlear delay in humans. Tone-burst evoked ABRs have heeied extensively

in the literature as a means of estimating BM del@piga et al. 1988 Neely et al,
1988 Harte et al. 2009. Thus, this was a logical choice of basic stimuli to test
if the AN model in the present study adequately modeled eachbelay. In
order to test if the BM delay introduced within the presentdelas reasonable, a
simulation was run using Hanning windowed tone bursts asuditi with CFs and
durations given in table 1. Levels of 40 to 100 dBpe SPL wermedusn 10 dB
steps. The choice of stimuli was inspired by the experim&nta Norton and Neely
(1987 and Serbetcioglu and Parkdd999. The tone-burst durations represent a
trade-off between having an equal number of cycles for abdiencies and a
relative narrow spread in their spectrum. The organizatibfrequency along the
cochlear partition is roughly logarithmic and tone burstshva fixed number of
cycles result in uniform energy splatter in log-frequend@ye stimulus rise time is
responsible for the simultaneous neural activation leattirthe brainstem responses
(Suzuki and Horiuchi1981) and to obtain a detectable ABR response. A sharp
stimulus onset (i.e., a short rise time) produces a largauatraf synchronized neural
activity, but also decreases the frequency specificity efdtimulus. Rise times for
frequencies of 2 kHz and above include approximately 5 syata therefore ranged
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Frequency| Total Length
kHz ms | cycles
0.5 10 5
0.75 7 5.25

1 5 5

15 5 7.5
2 5 10
3 3.4 | 10.2
4 25 10
6 1.7 | 10.2
8 1.25| 10

Table 6.1: Tone burst stimuli used, with length in ms and numbeydes.

from 2.5 to 1.25 ms. Below 2 kHz it was felt that the reducedrgnepread, by
keeping a fixed number of cycles, would make it almost imps$0 record a wave-V
response. Therefore, acompromise was struck, similaotga et al(1988, between
the need for rapid stimulus onsets and reduced energy sprehd choice of rise
time. The number of cycles in the rise time were reduced t6 a21.5 kHz and
approximately 2.5 for 1.0 kHz.

ABR wave V is the wave with the largest amplitude and hencentibst easily
detectable. In the simulation, the ABRs for the tone buistdi were generated and
the wave V latency calculated and plotted agaletly et al.(1988’s empirically
determined model of latency derived from tone burst sinnorhet

/f. N\
Twavev = a+bc™ (10%0) (6.6)

wherei is the tone-burst intensity (divided by 100j is the tone burst center
frequency in Hertz, and = 5 ms,b = 12.9 ms, ¢ = 5:0 and d = 0:413 were fitted
constants tdNeely et al.(1988’s data.
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6.3.3 Experimental methods

A total of four normal hearing test subjects (four femalejtipgated in the experi-
mental part of this study, and were aged between 22-26 y&hesexperiments were
conducted in an electrically and acoustically shieldedi@udtric booth (IEC 268-
13). The basic stimulus used in this experiment was a 5 sathplation impulse
played at 44.1 kHz. Five sets of stimuli conditions were gnésd at a constant inter-
epoch rate ofs 8 Hz (i.e. a duration of 125 ms). The first stimuli set was alsing
impulse to evoke s standard ABR used to empirically detegrttie unitary response
functions. The remaining sets were trains of impulses witlitain-train rate of 40,
80, 190 and 250 Hz. A total of 4000 averages were made per Issntype and
repeated twice (three times for the single impulse comu)itto ensure repeatability
of results. The stimuli were all presented at a level of 80 ¢&BSPL, to ensure
reasonable SNR and test subject comfort. The stimuli weneng¢ed in MATLAB
and A/D conversion made through an RME ADI-8 Pro 24-bit socaudl. The levels
were set via a TDT PA5 programmable attenuator. The stimetevpresented to the
left ear of the test subject via an ER-2 insert earphone. E&Sity was recorded
differentially between the vertex and ipsi-lateral mastavith the ground electrode
placed on the forehead. Silver/silver chloride electrodese used, and an inter-
electrode impedance was maintained below 5kW. EEG actwiyg recorded on a
SynAmps2 amplifier at a sampling rate of 10000 Hz, and barsd-fitered between
0.05 and 2000 Hz. After recording, the EEG-data were epocimedfiltered again
from 100 to 1500 Hz using a 200 tap FIR filter with zero phaseydellhe epochs
were averaged using an iterative weighted-averaging ithgoRiedel et al.2001).

6.4 Results

6.4.1 Auditory brainstem response and unitary response

Single transient evoked potentials were averaged acr@301&pochs (all 3 runs) for
subject ML and are shown by the dotted curve in Fch. The recorded ABR shows
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Figure 6.5: Recorded (dotted line) and simulated (solid lnglitory brainstem response to single transient
stimuli.

the typical pattern with clear waves |, 1ll, and V at laterscibat are consistent with
the literature. The wave V peak is the largest occurring &t5 ms.

Figure6.6 shows the calculated unitary response obtained from a @ekdion of
the recorded potential with the AN model. The unitary reggofunction obtained in
the present study is similar to and consistent viiwu (2003. There is significant
subject dependence of the unitary response, but the emseotiphology remains the
same. The interested reader is referre®#&m (2003 for a detailed discussion of the
form of the unitary response and comparisons with previtudies.

The simulated AEP obtained from the convolution of the AN eloautput with
the unitary response is indicated by the solid curve in Bi§. There is a very good
agreement between the recorded and the simulated posertiar the length of the
unitary response calculated (10 ms). The unitary resporasenet calculated for
longer durations as this would have included evoked patentintributions higher
than the brainstem, which are not of interest in the pregedysin the present study,
linear superposition is assumed above the level of the ANM,thas the calculated
unitary response function given in Fig.6 was used for any input stimulus at any
level.
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Figure 6.6: Unitary response function, calculated via deotving the recorded potential with the output
of the AN model.

6.4.2 Tone-burst simulation

Figure 6.7 shows the wave V latencies for the ABR model simulations tetburst
stimuli, with center frequencies from 1 to 8 kHz and excitatlevels 40 to 100 dB
pe SPL in 10 dB steps. Also shown are dotted lines repreggtittnempirically fitted
latency model oNeely et al.(1988 given in Eqg. 6.6. Both the simulated ABR and
modeled latencies show exponentially decreasing delagsfasction of frequency.
At the lowest levels of excitation, the simulated ABR latieschave a slope similar to
that seen ifNeely et al.(1988’s modeled latencies. This is logical as the AN model
tuning and delay was based &hera et al(2002's stimulus frequency otoacoustic
emission delay estimates, made at 40 dB SPL. Further, akganilevels increase
the simulated ABR rate of change of latency with frequenayrelases. The overall
spread of simulated ABR latencies with level is reasonableveer frequencies(1-
2 kHz), but seems compressed at higher frequencies retatMeely et al.(1988’s
results.
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Figure 6.7: Simulated (solid curves) and modeled (dasheesubased on E®.6) ABR wave V latencies
as a function of tone-burst center frequency and level.

6.4.3 Click-train ABR

Figure 6.8 shows the recorded (dot-dashed curve) and simulated (satic) ABR
to a single click and click-train stimuli with within-trairates of 40, 80, 190 and 250
Hz for one illustrative subject. The noise floor for the refma ABR is shown by the
vertical bar near 0 ms on each trace. The vertical line toitfte of the single click
ABR indicates the scale on the figure.

As the within-train rate increases the smaller waves tha&temap the click ABR
(waves I, Il, Il and 1V ) become more difficult to distinguistnd only the wave V
seems to be visible. As the within-train rate increases,pék amplitudes of the
wave V decrease for rates higher than 80 Hz. The first peakypimlly the largest,
and these then decrease as rates increase. The modeled ABR &eaccurately
predict the recorded ABR at moderate within-train rates®H4. Wave V amplitude
seems unchanged within trains and latencies seem well gehd&k the within-train
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Figure 6.8: Recorded (dot-dashed line) and simulated (k) auditory evoked brainstem potentials to
click-train stimuli at 40, 80, 190 and 250 Hz within-traineat

rate increases, the modeled ABR amplitude seems to dedeestisethan the recorded
ABR. In addition, the timing of the peaks of modeled ABR arstéa for higher
rates than for the recorded potentials at the same rate.hEdnighest rate stimuli,
the simulated ABR wave V peaks drop in magnitude seemingphoe&ntially for
successive stimuli. The recorded ABR on the other hand tendave a sharp initial
drop in magnitude and does not demonstrate such an expahéetirease. Similar
trends were observed for all of the subjects tested, thdugmiagnitudes and timing
of the responses demonstrated some subject-dependeatiiliyri
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6.5 Discussion

6.5.1 Frequency-dependent delay

The intrinsic relationship between frequency and travaktin the cochlea is fairly
well represented by the AN and the ABR mod€lorga et al(1988, in the original
study on tone-burst evoked ABR wave V latency, did not spetié earphones they
used to present the stimuli nor the coupler used to calilthatie. Therefore there is
some ambiguity as to the exact levels usedNegly et al.(1988 to model these, and
reproduced here in E&.6. With that in mind, one could not expect an exact fit of the
present simulated ABR wave V latencies with those modeleBdpy6.6. The range
of latencies across level and frequency, should be coveveg\er. As mentioned
earlier, the simulated ABR latencies at higher frequensesm compressed relative
to those seen within the literature. This could be an inthoahat the level-dependent
bandwidth is not well implemented in the AN model.

At low excitation levels, the simulated ABR wave V latencaesurately reproduces
the latencies across frequency seen in the literature. rEgeiéncy dependent delay
in the AN model used here arose due to the cochlear turiagsg, incorporated.
This was given in6.1 and the additional delay i6.5. There is some contention in
the literature about accurate estimateQpkg in humans Bentsen et a].2011). In
the present studyQers estimates fronShera et al(2002 were used. Thes®grs
values were obtained by averaging objective (based on ktinfitequency otoacoustic
emission group delay) and behavioral (forward maskingjredes. In thes®grp
values, as seen in Fig.4, the auditory filters are very sharp and become effectively
sharper as frequency increases. Alternative estimat€s g suggest much broader
tuning, and a near frequency independence. These estiw@tes from objective
stimulus frequency otoacoustic emission iso-suppredsioimg curves Keefe et al.
2008, and behavioral simultaneous maski@jgsberg and Moore.990.

Ruggero and Temchirf2007) offered an alternative novel estimate of in vivo
cochlear delay in humans using post-mortem delay estinveitbsthe post-mortem
effects compensated for via comparison with experimemiahal data.Bentsen et al.
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(2011 showed thaRuggero and Temchi(R007’s cochlear delay estimates led to
Qers estimates similar to those obtained with simultaneous mgs&nd stimulus
frequency otoacoustic emission iso-suppression tunimgesu If Qerg Were much
smaller than those used in the present model (wRerggero and Temchi(2007)’s
were approximately 2.5 times shorter th&hera et al.(2002), then the latency
estimates of the modeled wave-V's seen in F&7 would be much shorter. Thus
a greater degree of disparity would be seen between the ewba@eld historically
reported latencies. This provides some indirect evidewncsupportShera et al.
(2002’s estimates 0QeRg.

An alternative source of error lies with the unitary respofusiction. In the present
ABR model, the only frequency dependent delay is due to thefiBding in the AN
model. It is implicitly assumed that linear-superpositfarids at higher stages in the
model, with the frequency- and level-independent unitagponse function. If the
unitary response function were to be strongly frequencyewsl-dependent, then the
wave V latencies simulated in Fi§.7 would be significantly altered. However, there
is good physiological evidence to suggest this is not the.ca&ve-V latency is often
considered to be composed of the sum of the synaptic delagpsig, the neural delay,
Theural, @S Well as the cochlear delayy (Neely et al, 1988. The synaptic delay is
the time between the inner hair cells activity and the augiterve fibers firing. It
is typically around 1 msBRurkard and Secor2002 Kiang, 1975 Kim and Molnar
1979 Mg ller and Jannettdl983 and frequency- and level-independebbf et al,
1998. The neural conduction time (neural delay) is the time leetwthe auditory-
nerve activity and the place generating the ABR wave. Syoalgtay and cochlear
delay are both included in the AN model. However, the neudsdaction time
is not, and is implicitly in the unitary response function.h€fe is no historical
neurophysiological evidence to suggest that the neuraluaiion time is frequency
dependent@on and Eggermontl978 Don and Kwong 2002 Eggermont and Dan
1980. However, it would still be prudent to investigate both fregquency and level
dependence of the unitary response function in future ssudi
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Figure 6.9: Summed auditory nerve model output for withinkcti@in rates of (a) 40 Hz, (b) 80 Hz, (c)
190 Hz and (d) 250 Hz.

6.5.2 Click-train ABR and neural adaptation

The simulated ABR were successful at modeling the recordgR for within-train
rates of 40 Hz, as seen in Fi§.8. At these relatively slow rates, little or no neural

adaptation was expected. Figle®a shows the output of the summed AN model in
the present study, for the 40 Hz within-train rate stimuli.

The model output clearly reverts to baseline (50 spikesl¢,spontaneous rate)
after each click, and the peak of the response for each newlsis click within the
train does not decrease significantly. Thus the stimuli ddanterfere with each other
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within the AN model. As the within-train rate increases, thBR wave V tends
to dominate the response due to the convolution of smallekgand the reduction
in amplitude of the spikes in the summed AN model output, &nse Fig. 6.9.
For the higher-rate stimuli the summed AN model output negturns to baseline,
and the peak magnitudes reduce. The model does not retus#dife due to the
ringing of the filters in the AN model. The reduction in the bapike rates is linked
with adaptation and appears to follow an exponential deeredth each new click.
Zilany and Brucg2007’s rate adaptation at the synapse between IHC and AN fibers
was a purely exponential model, albeit with multiple shartl dong time constants.
Zilany et al.(2009 have suggested a new rate adaptation model incorporatitig b
exponential and power-law dynamics. Incorporating thisdedaevision into the
present model might help to improve the under-predictedewaamplitudes at high
rates. This will be investigated in future versions of theR\Biodel.

6.5.3 Outlook

It was stated in the introduction that the role of neural &afém in AEP recording
was important to understand, due to the clinical use of higte stimuli. In
addition to this, there is a trend in AEP studies to use stestale signals, where
neural adaptation will play an even greater role. Auditaigady state responses
(ASSR) are typically responses to carrier signals with @uongié modulation (AM)
imposed on them at different rates. Such ASSRs give exddtiequency specificity
as the response will mainly contain energy at the AM from aravarband of
AN fibers at the carrier frequencyldhn and Picton2000. This is obviously an
advantage clinically to test auditory function at specifeqguencies. Invasive animal
studies and magnetoencephalographic (MEG) source asadysdies in humans
have shown that the ASSR is generated in different brainonsgidepending on
the modulation frequency of the stimulusuwada et al. 2002 Schoonhoven et al.
2003. For low rates of AM, around 40 Hz, a number of studies haveatestrated
that the ASSR can be predicted from the convolution of simgiedle-latency and
brainstem transient responses with a click train with therejpriate repetition rate
(Galambos et al.1981 Picton et al. 1987 Hari et al, 1989 Gutschalk et a).1999
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Bohorquez and Oezdama2008. This is further supported by the finding in the
present study, that little or no interaction occurs in the Alddel for the different
clicks in the 40 Hz click train, as seen in Fig.%9. For modulation rates above
80 Hz, ASSRs are typically argued to be generated by neurorikei brainstem
that both respond to transient stimuli and are locked to tivelepes of AM tones
(John and Pictor200Q Kuwada et al.2002 Sininger and Cone-Wessa2002. The
different within-train rates were chosen in the presentiytio span the AM rates
investigated in the literature. The present study has thengial to help understand
the brainstem contribution to ASSRs. This is an advantagsoasces due to the
brainstem are hard to investigate using classic dipoleceauodeling $cherg 1990,
due to the brainstem sources depth and small signal strength
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Investigating the potential of auditory
steady-state responses to assess loss of
cochlear compression

This chapter is based upon the submitted p&@nne et al(20123. It is mainly a
study of the possibility of using ASSRs to assess cochleampcession in humans.
This is investigated using both a simple analytical modepeeimental work with
human subjects and simulations using an extended versithe &BR model, called
the ASSR model. It can thus be read as an independent stualy amother step in the
development and evaluation of the modeling work in thisithes

7.1 abstract

In this study, it is investigated whether the auditory sieatate response (ASSR)
can be used as a tool to estimate human cochlear compredsiat, a simplified
analytical model is presented, for amplitude modulate@sgrassing through a static
nonlinear system. The approximate closed-form solutigivele from this analysis is
used to construct two hypotheses for ASSR level growth ad iepel and modulation
depth are varied. Two experiments are then presented nirg#\8SR modulation
and level-growth functions in human subjects. Finally, arencomplex nonlinear
numerical model for ASSR generation is presented. Thisrskowodel is capable of
accurately simulating the complex processing carried wuhé auditory periphery,
and is used here to evaluate the assumptions of the simpteratadel and to interpret
the experimental ASSR findings. The study demonstratesbibifit the level- and

89
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modulation growth functions can be used to measure cocbégapression. However,
the clear recommendation is to measure level-growth fanstidue to their larger
accuracy and efficiency. A secondary finding, based on thererpntal modulation-

growth function, is the indication of an effective compiessseemingly independent
of cochlear compression. This second compressive mechasimains unexplained
by both the analytical and the numerical ASSR model.

7.2 Introduction

The human auditory system is able to perceive root-meaarsiRMS) fluctuations
in air pressure from as low as 20Pa, corresponding to a dynamic range of aboGt 10
or 120 dB. To achieve this, the local mechanical vibratiorthef basilar membrane
(BM) in the cochlea, excited at its natural frequency, grawsa nonlinear or
compressive fashion with increasing sound pressure IBegjdere 1992 Harte et al.
2009. A number of studies and reviewSé€llick et al, 1982 Nuttall and Dolan1996
Rhode and Recia200Q Robles and Rugger®001) have investigated and reported
BM input-output level curves in experimental animals, whéine 120 dB input
dynamic range is mapped to 30-40 dB output range usable toahencoding. The
compressive input-output level curve for humans is estiohad have linear growth
at excitation levels below sound pressure levels (SPL)ratald dB, i.e. a 10 dB
increase in input leads to a 10 dB increase in output. Betwi@and 90 dB SPL,
sharp compression is observed, where an increase in 10 gBleads to about 3
dB increase in the response. Above approximately 90 dB,ew& kcurve tends to
become linear again. This is often explained in terms of ttw@mechanism within
the cochlea supplying significant amplification at low eatign levels and saturating
at mid-levels. At high levels, this mechanism becomes esteaiuand is unable to
further contribute to the BM response. This compressiveatieh will be termed
cochlear compression throughout this study. The localthopitiput compressive non
linearity depends on the integrity of the outer hair cellH@® (Ruggero 1992
Robles and Rugger@001). Damage to OHCs, common in many forms of sensori-
neural hearing losses, reduces or completely eliminatesadttive amplification of
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low-level sounds, leading to a linearized input-outputelesurve. Sensory-neural
hearing loss thus often leads to loss of cochlear compmessias desirable to have
an objective physiological metric sensitive to cochleanpoession and its loss. Such
a measure will necessarily be sensitive to local BM vibragmd could be used as
a further objective audiometric tool for neonates or unesafive subjects, where
subjective methods are challenging. The auditory stetateg-sesponse (ASSR), being
a robust objective measure already used clinically for opheposes, could be an
interesting and suitable choice for such a metric.

When transient sounds are presented to human subjectsntineesliresponse from
many remotely located neurons can be recorded via scalpifmanive) electrodes.
These auditory evoked potentials (AEPS) can be recorded fib levels of the
auditory pathway, from the auditory nerve (compound acpotential, CAP); the
brainstem (auditory brainstem response, ABR); up to théegofcortical auditory
evoked potential, CAEP). These classical AEPs are obtdiggutesenting transient
stimuli at slow repetition rates. At more rapid rates, thgpmnses to each stimulus
overlap with those evoked by the preceding stimulus to fosteady-state response
(Picton et al, 1987. Typically, such auditory steady-state responses (AS&R)
evoked by sinusoidally amplitude modulated (AM) tondduWada et al. 1986
Rees et a).1986 Picton et al. 1987, and are argued to give excellent frequency
specificity as the stimulus only contains energy at the eafrequency and the side-
bands due to the modulatiodahn and Pictor2000. The ASSR is therefore typically
analyzed in the frequency domain, where the amplitude oftheier component at
the AM rate is used as the ASSR response magnitude. AM ratesoahd 40 Hz
have been shown to produce the largest ASSR response aepliuwada et al.
2002 1986. Although the ASSR has been heavily studied, the effectochlear
compression on the ASSR is still unclear.

The amplitude of arecorded ASSR is necessarily dependartatiear mechanical
processing and reflects the variation in level of the amgditinodulated sinusoid
used to elicit it. Thus, one might expect to see cochlear ceasgion reflected in the
ASSR amplitude, as either the depth of amplitude modulairahe stimulus level is
systematically varied. However, the recorded ASSR is a @am@ potential arising
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from the summation of many neural fibers along the auditothvay. Intuitively,
fibers along the tonotopic axis tuned close to the carrigpuieacy will typically have
the largest contribution, and thus one might expect to sekeree of local cochlear
compression.

Only a few studies have examined ASSR magnitude as a funcfiomdulation
depth for sinusoidally amplitude modulated stimiugvada et al.1986 Rees et aJ.
1986 Picton et al. 1987 Boettcher et a.200). The ASSR modulation-growth
functions (defined here as the log. ASSR response magnitottegpas a function
of the log. modulation depth) generally seems to grow in ghly compressive
fashion. Typical slopes vary betweerbOand 08 dB/dB as modulation depth is
varied. This might support the assertion that they reflemlloochlear compression.
However, the degree of compression estimated is significkgs than expected, of
the order of 0.2 to 0.3 dB/dB as seen in other physiologidénetes of compression
(e.g. Prieve et al. 1996 Ruggero et a).1997 Moore et al, 1999. Unfortunately,
there is also significant variation in absolute amplituda®ss the historical studies,
probably due to variations in electrode placement, exoitatevel used and the
limited number of test subjects used. It is not clear whethedimited compression
seen in the ASSR modulation-growth function truly refleatsidear compression,
or some other property of the ASSR generation mechanismhl€accompression
could also be estimated using ASSR by varying the stimulusl.leTypical slopes
of compression were historically reported to 4€0.2 dB/dB Kuwada et al. 1986
Picton et al. 1987. These slopes are similar to those observed when measuring
cochlear compression psychoacoustically, with oto-atto@snissions (OAE) or in
vivo in animals (e.gPrieve et al. 1996 Ruggero et a).1997 Moore et al, 1999.

It is, however, difficult to establish whether the ASSR leartl modulation-growth
functions reflect cochlear compression, and not effectompression applied at
higher, retro-cochlear, stages of the auditory pathway.

This study develops two models to investigate the role ohlm@r compression
on ASSR generation. The first, provided in sectioi3, is a highly simplified
analytical model, used to explain how amplitude modulatétdi are processed
through simple static nonlinear systems. This is used toelexperimentally testable
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predictions on the nature of modulation-growth and levelgh functions. A second,
more physiologically plausible, nonlinear numerical madalso developed (section
7.5 by extending an existing model of ABR generatidda(, 2003 Harte et al.
201Q Rgnne et a).2012 to be able to account for the ASSR. Two experiments,
using normal-hearing test subjects, were carried out aported here (sectior.4),
measuring ASSR magnitude growth functions as modulatigsthdand level are
varied. The numerical ASSR model and the simple analyticalehmake reasonable
predictions of the experimental results and are used toeatlyat local cochlear
compression can indeed be estimated using both ASSR mmtutrowth and level-
growth functions. However, care should be taken with maihriagrowth estimates
as they are more prone to experimental uncertainty, andetiemmended that level-
growth functions be employed in future studies.

7.3 Analytical model for AM tones passing through a
static nonlinear system

The physiology underlying the generation of auditory syeathte responses is
complex. A sinusoidal amplitude modulated tone consista @arrier with two
side tones, whose equal frequency separation from theecagjuals the modulation
frequency. Cochlear mechanical processing spatiallyrdilthe stimulus to yield
a place-specific excitation pattern. This will necessahb/ subject to cochlear
compressive non linearity. The inner hair-cells (IHC) ia ttochlea are responsible for
mechanoelectrical transduction, and act like a half-waegfier and a low-pass filter
(Russell and Sellickl978. This processing extracts the envelope for stimuli with a
high enough carrier frequencfg = 1.5— 2 kHz (Palmer and Russell986. Thus, the
nonlinearities in the peripheral processing and mechact@al transduction process
effectively ensure that AN fibers firing patterns reflect tioenpressed envelope of
an amplitude modulated stimulus. Additionally, the trarssion of neural spike
trains from the brainstem to surface potentials acts likalzr low-pass filter stage,
effectively ensuring that only the compressed envelopéebearecorded.
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To illustrate how AM signals are represented after such gssing, a simple
analytical model is presented. It is explored what happeassinusoidally amplitude
modulated tone when it is passed through a static compees&inlinear system.
Specifically, an approximate closed-form solution is dedivor the amplitude of the
first harmonic of the AM frequency, after passing through ribalinear system. It
is argued that this could reflect the experimentally recdi8SR, and yield testable
hypotheses for the experimental part of the study.

The basic stimuli used in the present study are sinusoidatiglitude modulated
tones, defined as;

§ = S-sin(2mfdt) - <1+ m~sm(2rrfmt)>

5 (7.1)

where f; = 1 kHz is the carrier frequency, = 40 Hz the modulation frequency,
m the modulation depth an8 defines the overall stimulus level. The subsctipt
represents a variable with time dependency throughoutaperp

7.3.1 Static nonlinear model of compression

Static or memory less nonlinearities are defined such thatcthrent output time
seriesyt, is a function only of the current input time serigg,i.e.

ye=f(x) (7.2)

A simple example of a static nonlinear system is a power-law Imearity, given
by

Yt = x| “sgnx] (7.3)

where compression is ensured if the power,is less than unity. The signum
function, defined by
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-1, forx <0,

sgrnx] = (7.4)

+1, forx >0
ensures asymmetry in the nonlinear characteristic.

Figure7.lillustrates a SAM tone (bottom left) passing through a stadimpressive
power-law non linearity (eqriz.3) with compression ratior = 1/3. Also shown is the
instantaneous characteristic function (top leftx), of the compressive non linearity
and the output time series (top right). The variation of thygut envelope is mapped
to a reduced range in the output, indicted by the dashed lines

Figure 7.1: lllustration of a SAM tone passing through aistabmpressive non linearity (witb = 1/3)
and resulting output time series. The envelopes of the inpougut are shown in black curves.

7.3.2 Approximate closed-form solution for envelopes pragssed
through a compressive non linearity

Itis assumed that the envelope varies at a much slower ratettie carrier frequency.
This means that it is possible to treat the envelope and thiecaomponents of the
stimulus passing through the nonlinear characteristieparate. Assuming that the
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stimulus is given by
S = Xt - sin(2mfct) (7.5)

with the input envelope given by

- s( e mnten) -

wherem is the modulation depthy, = 2mf,, the angular modulation frequency, and
S defines the level. Passing this sinusoidally amplitudeutaoeld tone through the
instantaneous power-law non linearity, given by Ed3, and noting thaj; > 0 then

it can be shown that

e = X" - |sin(2mfet) [“sgn sin(2mfet) | (7.7)

The two last terms on the right hand side constitute theerafithe output time series
and can be considered a harmonic tone complexg{with minimal contribution to
the overall envelope as it was assunaggl<< «x). Thus, in the present analysis only
the output envelopey, will be considered:

n = X', forxx>0

N = ga(Hmzm(‘*W> (7.8)

For a compressive non linearity,<0 o < 1. It is clear that the output envelope’s
dependence on the overall lex&is a simple power law.

Special attention is needed for the right-hand term in €g8.which is defined in
the range from 0 to 1, with

7o — (W)a (7.9)
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It is possible to expand? in terms of a Taylor series about the arbitrary paﬁnt
2 ( ) ( - 1) 7.10
(k;) k 4 (7.10)
2
Fa ¢ a(a@—1) (¢
14 (1+a (2—1> 4—T (2_1> +)

where(i) represent generalized binomial coefficients, defined as

ZC{

)= (7.11)

(or) o a(a—l)(a—i)---(a—kJrl)
!

Itis possible to represent, the output envelope, in an alternative form as an infinite
sum of harmonics of the fundamental modulation frequency:

M=3 Apsin(p(nt + o)) (7.12)
p=0

whereA, are Fourier coefficientsp is the order of the infinite sum, arfgy is some
phase offset.

Using the method of harmonic baland¢alyfeh and Mook1995, each term in the
power series in Eq7.10is expanded and factored by &ijom + @), whereq is an
integer and represents harmonics of the modulation fregyueRinally combining
equations7.6, 7.8 and 7.1Q, allows the derivation of an approximate closed-form
solution for the first harmonid, corresponding to the Fourier coefficientaf;:

s\ T (2 [a\ ka-dKt
A1<22> {m<kzo <"> {x ) (7.13)
+m3(-)+m5(-)+0(mz”1)+...]

Thus,A; is represented as an infinite power series in terms of the latolu depthm,
comprising only odd-order&@n — 1) of m. The terms for the orders ofi higher than
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1 are not shown here for brevity. Assuming thais small, i.e.m << 1, it is possible
to ignore the higher-order terms, such that:

A~ (f)a.in <i’) k(lzf)k_l> (7.14)

It can be shown that the infinite summation in the right haricgérackets is equal
toad 9, and thus

S a
ne () ma (7.15)
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Figure 7.2: Comparison of approximate closed form solutiaitédi line) for £-Fourier component and
numerically simulated (solid line) result, for=1/3 andS= 1.

Eq. 7.15represents a simple approximate closed-form solutionHerresponse
amplitude at the amplitude modulation frequency afteripashirough a compressive
static non linearity. To test this simple model, a numergiaiulation was carried
out in MATLAB, passing a SAM tone witl5 = 1 through a static non linearity
with a = 1/3, and taking the Hilbert envelope. Figure2 shows the numerically
determined value of the Fourier coefficient (solid curvethatmodulation frequency
W as the modulation deptin was varied between 0 and 1. The approximate closed-
form solution of eqn7.15is shown by the dotted curve, and is a good approximation
for the true value for smaih.
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According to Eqg. 7.15 the amplitude of the first harmonic in the response is
dependent on the input lev8lvia a power-law relation. Therefore, given a fixed
modulation depth, the slope 8§ as a function of the excitation level on double log
axes yields a straight line with slope. This can be used to estimate the degree
of compression in the input/output level-curve, i.e. ceehnlcompression. If the
excitation level is fixed, while varying the modulation depi; will yield a straight
line with slopea(S/2)Y, if plotted on a linear axis. Again, this could lead to an
estimate of the local compression. On a log-log axis, thigp analytical model
predicts a slope of 1. Thus BM compression can be obtained éxerimental data
via:

1. the slopeq, of the ASSR level-growth function, plotted on a double ldtdenic
scale.

2. via the slopea(S/2)?, of the ASSR modulation-growth function plotted on
linear scales. The easiest method to dedvérom the slopea(S/2)? is to
vary excitation level and derive the parameter estimatberahan by directly
inverting .

1 tis possible to invert eq7.15solving for the compression ratim, by recasting the equation as

S alog($ A S
alog<§>e (2)7ﬁlog >

This has the formx(a) = w(a)e"® and its solution fora is given by the Lambert W function
(Corless et a).1996), also known as the product logarithm, i.e.

A
w (%t10g(5))

log(3)
whereW(-), the Lambert W function, is a multi-valued function that candoenplex. Care must
be taken to pick the appropriate branch of this function f@hgsically realistic solution and in this
application this is not necessarily trivial. Therefore tmethods are later proposed to experimentally

fittapproximatea from the slope of the ASSR-level growth function (plotteddmuble log. axes) and
via the slope of the modulation growth function (on linearsjxe

a =
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7.4 ASSR experiment: Evoked response growth as a
function of modulation depth and stimulus level

7.4.1 Methods
Subjects

In experiment A, the left ear of eight normal hearing sulgestre tested. In
experiment B, both ears of a total of ten normal hearing tebjests were tested,
yielding a total of 20 data sets. All subjects had hearinggholds< 25 dB HL
between 0.5 and 6 kHz in both ears. The experiments were ctedtlin an electrically
and acoustically shielded audiometric booth (IEC 268-1B).control the subjects
attention and prevent them from sleeping, they remainethewgnd watched a silent
subtitled movie during the recording session.

Stimuli

In both experiments, the subjects were presented with cidaky amplitude mod-
ulated tones (eqn.7.1). In experiment A, the stimulus level was varied between
55, 65, 75 and 85 dB SPL, with the modulation depth held conhstam = 0.75.
These stimulus levels were chosen to be within the expedetpressive region of
the cochlear input/output function. Experiment B vane¢in Eq. 7.1) between 0.25,
0.5, 0.75 and 1.0. A constant stimulus level of 55 dB SPL waslusThe stimuli
were calibrated to have identical RMS values. This resutiexttual post calibration
modulation depths of 0.3, 0.58, 0.81 and 1.0. On a logarithsuale, relative to

a modulation depth of 1.0, this correspondsMgs = —10.41,—4.77,—1.81,0 dB,
respectively.

The starting and end phases of the stimuli were matched torenkat it could
be repeated continuously without audible discontinuitieach epoch lasted 375 ms,
corresponding to 375 cycles of the carrier and 15 cyclesefribdulation frequency.
In experiments A and B, a total of 1200 and 2000 averages waderfor each test
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condition, respectively. All stimuli were generated in MAAB and playback was
made through an RME ADI-8 Pro 24-bit sound card at a samplieguency of 44.1
kHz. Stimulus levels were set via a TDT PA5 programmablenatiéor. The stimuli
were presented to the subjects via ER-2 insert earphones.

ASSR recording and data analysis

EEG activity was recorded differentially between the vertad the ipsi-lateral
mastoid, with the ground electrode placed on the forehegdAgCl electrodes were
used, and an inter-electrode impedance was maintained b&@ and within 1K of
each other. EEG activity was recorded on a SynAmps2 ampiifiarsampling rate
of 10 kHz (experiment A) and 5 kHz (experiment B), and bangsfdtered between
0.05 and 500 Hz. After recording, the EEG-data were epocihedfiiered again
from 10 to 300 Hz, using a 40 tap FIR filter with zero phase delde epochs were
averaged using an iterative weighted-averaging algoritRradel et al. 2001). The
recorded averaged time series were transformed to thednegudomain using a Fast
Fourier transform. The amplitude of the complex vector ef48-Hz component was
calculated.

A frequency domain F-ratio tesighn and Picton2000 was used to detect if an
ASSR was present in the recorded signal. The energy at 40 Hz@rapared with
the background noise, estimated from 7 neighboring sfdduitita where no evoked
response would be presemdbie and Wilson2001). This yielded an F-distribution
with [2,14] degrees of freedom with a critical value of 6.31tlze 1% significance
level. Responses were only included in the study if theiafi exceeded the critical
value. Data sets from an individual ear were only includedidire than 1 data point
was accepted. These acceptance criteria resulted in ofexsbbing removed from
experiment A, and one ear of one subject being removed frgrarérent B.

An analysis of covariance (ANOCOVA) was performed on the RS8odulation-
growth functions. The ANOCOVA assumes linear regressionthé log.-log. plots
this was obtained by taking the logarithm on both variablés estimate of the
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slope of the best fitted single line and a standard deviatiothe slope estimate was
obtained. Each ear were treated as a separate data set iratheis

7.4.2 Experiment A - Results

Averaged ASSR magnitude and standard errors for all 7 stgbgee shown in Fig.
7.3 (diamonds), as a function of stimulus level (dB SPL). Thecté magnitude
of the 40-Hz component is given relative tp\l rms. Error bars with+-1 standard
error are also shown and reflect the large individual difiees. For each recording
from a given subject, the ASSR magnitude increases moreatiyias stimulus level
increases.

Kuwada et al. (1986)
—— Measured data

Amplitude [dB re 1uV]
iR |
o (6]

|
I
o1

slope = 0.2 + 0.06

! !

_20 1 1 1 1
40 50 60 70 80 90

Stimulus level [dB SPL]

Figure 7.3: ASSR amplitude versus stimulus level averagedtbee’ normal-hearing subjects. Modulation
depth was 75%, and the error bars shtow standard error. The estimated slope (compression ratio) is
indicated as well as th& 1 standard deviation on the slope estimate. Also shown aratitre data derived
from Kuwada et al(1986 (dotted curve).

An ANOCOVA analysis was carried out on the ASSR magnitudetiddine in
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Fig. 7.3). The slope estimate was found to be 0.20 dB/dB with a stadiariation of
0.06. A slope of 1 would indicate linearity, and a slope<ol implies compression.
The low uncertainty on the slope estimate from the ANOCOVAfims that the
individual differences, indicated by the error bars, wemnty offsets of the overall
ASSR amplitude in the individual recordings, rather thanateons of the slope. For
comparison, Fig.7.3also reproduces the data frdtuwada et al(1986 (triangles).
Kuwada et al(1986 measured ASSR with similar electrode placements, modulat
depth, and stimulus modulation- and carrier-frequencye Slbpe of the level-growth
function fromKuwada et al(1986 obtained by linear regression on the log. variables
was 0.18. The same slope (0.18) was found for a similar datg@resented by
Picton et al(1987 (not shown on figure). Thus the estimates reported in theepite
study are similar to historically published ones. The slopthe ASSR level-growth
function thus show compression of an amount similar to eaahtompression, as
previously discussed in secti@n3.

7.4.3 Experiment B - Results

Averaged ASSR magnitude and standard errors for all terest#f19 ears) measured
at 55 dB SPL are shown in Fig-4 (diamonds), as a function of log. modulation depth
relative to 100%. As in the level-growth functions from Fi@.3, the magnitudes
increase monotonically as modulation depth increases. récdcomparison with
historical data is difficult due to differences in stimulusvel and calibration,
carrier and modulation frequency, electrode placemeni andome cases, a very
limited number of subjects. However, the ASSR RMS-ampétideported here
are in agreement with those reported Kywada et al.(19869; Rees et al(1986);
Picton et al(1987); Boettcher et al(2001).

The ANOCOVA analysis, carried out on the ASSR magnitudebd $ioe in Fig.
7.4), gave a slope estimate of 0.78 dB/dB with a standard dewiaif 0.09. For
comparison, Fig.7.4 also reproduces the data frddoettcher et al(2001) (upwards
and downwards pointing triangles). The dotted curve wasdfito log. ASSR
amplitudes recorded in response to AM tones, with carrieqdency of 520 Hz,
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a modulation frequency of 40 Hz, and a stimulus level of 65 dB..SThe dashed
curve (also fronBoettcher et al.2001) was obtained at a carrier frequency of 4 kHz.
Slope estimates obtained by linear regression of the tweesuare 0.73f¢ = 520
Hz) and 0.62 {; = 4 kHz). Slope estimates were also derived frikmwvada et al.
(1986 and Picton et al.(1987 (not reproduced here to aid clarity) for comparison
and were found to be 0.62 and 0.61, respectively. Thus, ttimaes reported in
the present study are in reasonable agreement with hialigrpublished results, even
though stimulus conditions varied significantly acrossligs. The ASSR modulation-
growth functions are not consistent with the theoreticabjmtions from section Il. In
the theoretical predictions ASSR growth functions had asslof 1, when plotted on
double logarithmic scales.

_12 -

-14+ 55 dB SPL v
slope =0.78 + 0.09

_16+
_18}
_oot
_ool
24+ vV

Amplitude [dB re 1uV]

26 e —— Measured data

—o8f e Boettcher 520 Hz
P - — Boettcher 4000 Hz

-15 -10 -5 0
Modulation depth [dB re 100%]

Figure 7.4: ASSR amplitude versus modulation depth averagedtbe 10 normal hearing subjects and
left and right ears. Stimulation level was at 55 dB SPL, andetiier bars showt1 standard error. The
estimated slope (compression ratio) is indicated as wellexs thstandard deviation on the slope estimate.
Also shown are literature data derived fr@oettcher et al(200]) (dotted and dashed curves), see the text
for details.

The closed-form solution derived in the sectibB predicted that the compression
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could be estimated from the slopes of the modulation-grdwtiction, as long as
two independent data sets of different stimulus levels weeasured. For this
reason, three of the subjects included in experiment B wetested and their ASSR
modulation-growth functions measured at a higher levellofiB SPL. Unfortunately
the uncertainty on the slope estimates from the ANOCOVA wamst 50% of its
value, probably due to the few test subjects available. Du&is large uncertainty,
an estimate of the compression coefficiemt,based on the simplified closed form
solution, could not be obtained.

7.4.4 Experiment summary

In summary, the ASSR level-growth function showed compvesbehavior, with
a slope estimate in the order of 0.2 dB/dB and thus corregbmekll to both
ASSR literature slopes, theory predictions and cochleamression estimated using
alternative psychoacoustic or OAE measures. The moduokgtiowth function,
demonstrated a slope of 0.78 dB/dB. On double logarithmaédesc this suggests a
power-law relation withm not predicted by a simple instantaneous compressive non
linearity (Sec.7.3). If cochlear compression should have been derived, twmatts
of the ASSR modulation-growth function slope (estimatelthagr scales) at different
excitation levels would have been needed. However, dueetdith variability of
the ASSR magnitudes, the variation in the slope estimateshé small number of
subjects (three) measured at two levels, rendered thisgsilgle to fit.

The most serious inconsistency between the analytical hprddictions and the
experimental recordings is the slope of the ASSR modulaji@wth function being
less than unity. In an attempt to investigate this furthiee, next section develops a
more physiologically plausible numerical model of ASSR gyation.
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7.5 ASSR model

7.5.1 Modeling framework

This section derives an ASSR model, which is used to prediet focal BM
compression is reflected in ASSR magnitudes. The ASSR medespired by the
work of Goldstein and Kiangd1958, who described evoked responses as a linear
convolution of a single fiber instantaneous auditory ne#l)(discharge rate in
response to a given stimulus with an elementary unit wawefaalled the unitary
response (UR). The UR describes the contributions madestdHP each time a cell
discharges. Following this ide®au (2003 proposed a model for the generation of
ABRs using the instantaneous discharge rate for singleenfédfvers summed across
frequency at the level of the AN to create a neural activittgza. Harte et al.
(2010 andRgnne et al(2012 updated and evaluated an ABR model, following the
principles ofDau(2003. This model was shown to be successful in simulating ABR
responses to varies stimuli as clicks, tone bursts andshiymumber of studies (e.qg.
Galambos et 811981 Hari et al, 1989 Plourde et al.1991 Gutschalk et al.1999
Bohorquez and Oezdam&008 have demonstrated that the ASSR, at modulation
rates around 40 Hz, can be predicted from the convolutionngfles middle-latency
transient responses with a click train with the appropriefeetition rate. Thus, the
predominant response in the ASSR is due to the Ry and N, - P, components of
the middle-latency response (MLR), originating in the yaliditory cortex, and a
smaller contribution due to the ABR. Given the success ofABR model, and the
argument that the ASSR can be modeled as a linear supegposftthe ABR wave

V and the N, - P; and the N - P, components of the MLR, an ASSR model was
created in this study. The ASSR model was, @nne et al(2012), based on the AN
model Zilany and Bruce2007 Zilany et al, 2009 and a linear, subject and stimulus
independent UR. The model distinguishes itself from simpbavolutive models (e.g.
Sparacino et al.2004 Bohorquez and Oezdam&008, in the nonlinear front end
AN model.

In Fig. 7.5, a schematic diagram of the ASSR model is shown. The ASSR Imode
builds upon thezZilany et al.(2009 auditory nerve (AN) model, which simulated the
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instantaneous discharge rate from a single AN fiber tunedpeeific frequency. The
AN model, and thus the ASSR model, includes key propertiesofinear cochlear
processing, such as compressive BM filtering, inner hdirfit¢C) transduction, and

IHC-AN synapse adaptation. The ASSR model simulates ANamsgs from 500

different characteristic frequencies (CFs), in the ramgenf100 Hz to 16 kHz. The
responses were summed to form the neural activity pattedncanvolved with a

unitary response to produce the simulated ASSR. The stipnediented to the ASSR
model were defined in Pascals and calibrated such that themean-square value
equaled 1.

The ASSR model is similar to tHegnne et al(2012 ABR model. However, three
modifications were undertaken. First, tAdany and Bruce(2007) AN model was
replaced withzilany et al.(2009. This was done, since the latter AN model includes
an updated synapse stage that simulates effects of neagkbdidn more realistically.
This is highly important for longer-duration signals (&itany et al.(2009 AN model
was “humanized” in an identical manner as don&anne et al(2012). Second, the
response of low spontaneous rate fibers (0.1 spikes/s) éfithrmodel was simulated,
as opposed to the high-spontaneous rate (50 spikes/s) nidednine et al(2012.
This change was made as high-spontaneous rate fibers sdturtite relatively high-
level and long-duration AM stimuli, and the response is fikedy dominated by low
spontaneous rate fiberSymner et a).2002 Zilany et al, 2009. Third, the unitary
response (UR) was recalculated to include the contributiom the middle latency
response (MLR). As discussed above, the ASSRs generategl aishodulation rate
of 40 Hz have contributions from neurons in the AN, brainstamd up to the early
auditory cortex. By incorporating the MLR into the UR furmti the higher-stage
contributions could be modeled to a first approximation. Uewas only calculated
once as the deconvolution between the summed neural gigi&itern produced by
the AN model (in response to a 60dB pe SPL click), and a recbMER (Harte
2007 using the identical click stimulus and electrode positéanin the recordings
presented in Sed..4. Once obtained for the 60 dB pe SPL click, the UR was fixed for
all further numerical simulations carried out in this paper
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Figure 7.5: Schematics diagram of the ASSR model. A stimulusesgmted to the AN model tuned to a
single frequency. The signal is then processed through tien&del stages of middle-ear filtering, BM
filtering, IHC transduction and IHC-AN synapse. The sum d 5@lividual simulation with the AN model
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Figure 7.6: Left: A 60 dB pe SPL click evoked MLR (data frétarte(2007). Right: The unitary response.
Derived as the deconvolution of the click evoked MLR and ti@sed neural activity pattern obtained as
the summed responses of the humanized AN model given the idesitioalus.
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7.5.2 Simulations

ASSRs were simulated as a function of the stimulus modulatepth (n= 0.25, 0.5,

0.75 and 1) and stimulus level (15 dB SPL to 95 dB SPL in steps0ofiB). The

ASSR components were derived from the amplitude of the 4@dtaponent in the
spectrum of the simulated ASSR time series. Figiwg(left) shows modulation-
growth functions simulated at varying stimulus levels (4G5 dB). A regression line
was fitted to the 55 dB SPL curve and a slope estimate of 1.04olt@sned. This
is close to a linear slope of 1 as predicted by the static nueality, but deviates
from the experimentally measured slope of 0.78. Figu(right) shows the level-
growth function for the 75% modulated ASSRs. It is obsentzat the nonlinear
model produces a slope of 0.48 in the compressive regionea®®wB SPL stimulus
level, and a close-to-linear slope below this stimuluslleve
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Figure 7.7: Left: Simulated ASSR amplitudes of the 40Hz compbas a function of stimulus modulation
depth and stimulus level, plotted on log.-log. axes. Compreggowth, of similar magnitude as expected
from cochlear compression is observed as function of leveleNs linear processing is observed as a
function of modulation depth. Right: Simulated ASSRs as fiamcof stimulus level. The modulation
depth is kept at 75% and the stimulus level is varied from 15td® SPL in steps of 10dB.

In Fig. 7.8 (left panel), the same simulated results are shown on lisegles. For
each modulation-growth function, a regression line wasditind a slope estimate
obtained. In sectioid.3it was shown that, for a static non linearity, the compressio
ratio, o, can be estimated from two adjacent modulation-growthtions ( =1,2).
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Based on Eq7.15 the slope of the modulation-growth functid@, can be described
as:

S, a
kn:<2> -a (7.16)

whereSis the stimulus level. Assuming that the compression affgdtvo different
modulation-growth functions is the same, an estimate o€timepression ratio can be
found as:

10g10(32)

7.17
logio(2) (7.17)

DI ZE

The right panel of Fig7.8 shows compression ratios calculated based on/EkLy.
and two adjacent slope estimates from Fig8. The abscissa represents the average
stimulus level, such that the compression ratio derive@dan the 55 dB SPL and
65 dB SPL slopes are plotted at 60 dB SPL. The compressiarsrathounts to 1 at
low levels, and decreases towards the dotted line repiagethe compression ratio,
CR =0.48, found in Fig7.7 (right).

7.5.3 ASSR model discussion

The ASSR model includes a dynamic compression functionhwiffers significantly
from the simple static compression function used in therttézal model, introduced
in Sec.7.3. Additionally, the numerical model includes other key s®@n auditory
processing important for the generation of evoked potksngach as IHC transduction
and IHC-AN synapse adaptation. The numerical ASSR modellsis contributions
to the ASSR from 500 parallel channels reflecting AN fiberossrthe tonotopoic
axis. For channels with center frequencies close to théecdrequency of the AM
stimulus, the response was compressive. For off-frequemaynels, the contributions
showed linear growth. The numerical model is capable ofritEag far more details
than the simple analytical treatment in S&c3.
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Figure 7.8: Left panel: Simulated ASSR amplitudes of the 40binmonent as a function of stimulus
modulation depth plotted on linear scales. The differentesishow the results of different stimulus levels.
Right panel: CRs calculated using E@.17 and data from two adjacent curves in the left panel. The
stimulus level on the abscissa represents the average stiteugl for two adjacent curves. The CRis 1 for
low stimulus levels, and close to the 0.48 (dotted line) apoading to the slope in Fig..7 (right panel),

at higher stimulus level.

The numerical model showed that realistic cochlear mecharfilters, IHC
mechanoelectrical transductions and IHC-synapse adaptegsulted in the same
ASSR modulation growth functions and level-growth funoti@s a static compressive
nonlinear function processing the amplitude-modulatiérthe stimulus. Plotted
on log.-log. axes, the model predicts a modulation-growticfion slope of 1.04
which is nearly linear and thus does not reflect cochlear cession, whereas the
simulated level-growth function in the compressive regabove 35 dB SPL shows a
compression ratio of 0.48. In S&c3, it was argued that a compression ratio could
be derived for the modulation-growth functions plotted ore&r axes (Fig.7.8).
The numerical simulations supported the theoretical maddlfound a compression
ratio close to 0.48. This method of estimating the composssitio, from two slope
estimates from two stimulus levels, is fine for the numersalulations here, as the
results were entirely noise free. Any variation or unceitiabn the slope estimates,
k12, as one would see in experimental data, would be increasta aatio is taken.
Thus, this is not considered to be the preferred method ftaiming estimates of
compression.
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The simulated cochlear compression ratio was found to & @el considerably
larger than the experimentally measured ratio of 0.2 dB/Binvestigate the cause
of this, an additional simulation was made (not shown) witllyothe 30 fibers
closest to the stimulus frequency, i.e. the frequency regio868 Hz to 1158 Hz.
This eliminated off-frequency contributions, which woudd expected to have linear
growth (Rhode and Reci@000. The simulation yielded a level-growth function with
linear growth below 35 dB and compressive growth above 35 B awslope of 0.19.
A similar compression of 0.20 can be observed for simulateglesfiber response to a
pure-tone stimulus level growth. This follows the expenita findings better where
a compression ratio of 0.20 was estimated. Thus, the nuallgrisimulated broad
band level-growth function does not strictly show local lea compression, but
rather exhibits a slope that is the result of a mixture of @efiency compression and
off-frequency linearity. In human measurements, a singféect might be expected.
However, it is unknown to what extent the off-frequency cifmitions linearize the
human level growth. Further, the human cochlear compredsis been measured
using both OAEs and psychoacoustics both showing compresatios between 0.2
and 0.3. Thus, while the numerical model seems to be capdhtepiuring the
key physiological generator mechanisms for ASSRs, it da#scorrectly model
the contributions across different nerve fibers preciseljhe numerical model
seems to give more weight to linear off-frequency contidng than is observed in
experimental data. Further work to look at the model nomlim@echanical filters
sharpness of tuning (or Q-factor); and/or contributiomsrfrparallel high-, medium-
and low-spontaneous rate fibers (only low-spontaneouswate simulated here),
might shed light on this disparity.

It is important to emphasize that the ASSR model shows theesaampression
obtained using either of the two techniques developed itiet.3. This supports the
hypothesis that it is cochlear compression that are medsisiag these techniques.
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7.6 Overall discussion

7.6.1 Summary

This study investigated the potential for ASSRs to estintatehlear compression.
Based on a closed-form solution of how the envelope of an Adhali would be

affected when processed by a static nonlinear compresgsters, two testable
hypotheses of how to obtain estimates of cochlear compresgere made. First,
the compression ratio can be obtained as the slope of the A&®Rgrowth function

plotted on double log. axes. Second, the compression ratide obtained from the
slopes of two modulation-growth functions measured at tifferént levels plotted

on linear scales. A numerical model of ASSR generation was plesented; it
consisted of a phenomenological AN model capable of acelyrdéescribing the outer
and inner ear; nonlinear cochlear mechanical filtering, IptGcessing (half-wave
rectification and low-pass filtering) and IHC-AN synapsemdtion. The output of
the AN model was convolved with an empirically derived unjteesponse function,
used to model auditory pathway processing and propagaticgilaischarge potential
to the recording electrodes. The numerical model demdestithat local cochlear
compression could be estimated by the two methods inspioed the simple analytic
model, provided care is taken to limit off-frequency cdmitions to the ASSR.

Two experiments were carried out. In one experiment, ASSRIHgrowth
functions were measured in a total of 8 subjects, and a casjoreratio of 0.20 was
obtained. In another experiment, using 10 subjects ancdabdb®0 ears, modulation-
growth functions were measured. A slight compression o8 &@s observed, when
plotted on double logarithmic axes. This is not consisteith tihe analytical and the
numerical model both predicting a linear behavior in thiediion. The modulation-
growth functions of three subjects were additionally meadiat a higher stimulus
level. However, the variability was too large to derive a miegful compression ratio
based on the second hypothesis.

The numerical ASSR model predicted a compression ratio 48 €or both the
level-growth function and the modulation-growth funcsonlt was found that the
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reason for the the decreased amount of compression in théasioms results from
the contributions of the off frequency fibers where the digngrocessed linearly,
such that the overall resulting response becomes less esgipe than in the region
around the stimulus frequency.

7.6.2 Best practice for estimating cochlear compression uxj
ASSR

This study demonstrated that cochlear compression cantimagsd using ASSR,
by either measuring level- or modulation-growth functionslowever, estimating
cochlear compression from ASSR modulation-growth fumgicequires double the
number of measurement points as two slope estimates have tbtained. Any
experimental recording of a physiological parameter wadt@essarily be noisy, i.e.
have an associated uncertainty. To estimate the compnessio, the ratio of the
two modulation-growth functions needs to be taken. Thisthaseffect of adding
the two variances or mean-square errors for the individoglesestimates to give the
uncertainty on the compression ratio. This makes the esimfacompression ratio
implicitly more uncertain than via the level-growth furarts. This was confirmed
by the difficulty in deriving a useful compression ratio fraghe modulation-growth
experiments. The clear recommendation is thus to meastgkdeowth functions if
cochlear compression is to be estimated from the ASSR. Aesmgasurement point
can be measured using 1200 epochs of each 375ms lengtly givileasurement time
per stimulus level of 7.5 minutes. An estimation of a comgi@s ratio can thus be
done by measuring ASSRs at 3 or 4 different levels, and waeddire less than 30
minutes of recording time. This is still a lengthy procedanel does not lend itself as
a clinically viable option at this stage.
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7.6.3 Is cochlear compression reflected in experimental lagith-
mic modulation-growth functions?

Plotting the experimental modulation-growth functionsdmuble log. axes (FigZ.4)
demonstrated a small degree of compression, with a slope78f00.09. This is
at odds with the simple theoretical predictions and thelte$tom simulations with
the physiologically inspired numerical model, both préidig linear growth, i.e. a
slope of 1.0. The experimental modulation-growth funddiomere obtained from
only 10 normal-hearing subjects, so this disparity couldiberibed to experimental
uncertainty. However, the ANOCOVA fitting of the data yiedide low uncertainty on
the slope estimate of onk0.09.

It could be argued that the small degree of compression sethreiexperimental
data might arise from a compressive stage in auditory psitgédependent of local
cochlear compression. If one considers the AN model emgdlityegive an accurate
description of peripheral processing and non linearitgntthe IHC-AN synapse or
early brainstem might contain the additional stage. Anctffeat could give rise to
such an independent compression could be the modulation(gaj.Joris and Yin
1992 Frisina et al. 1996 Joris et al.2004 Malone et al.2010.

Joris and Yin(1992 measured the ability of cat AN fibers to synchronize theindjr
to AM stimuli. They normalized the synchrony by the moduatdepth employed to
derive a modulation gain function. Using a stimulus leved®fB SPL Joris and Yin
(1992 found a modulation gain of 9 dB at 10% modulation depth, monotonically
decreasing te= 2 dB at 100% modulation depth. No exact physiological meisman
was suggested as being responsible for the gain. In the ANehesdployed here,
Zilany et al.(2009 demonstrated that it is capable of simulating the modutegjain
from Joris and Yin(1992 for the cat. There is no way of ensuring that this is corgectl
modeled in humans for the present stualone et al(2010 described how the gain
was increased in the rostral field and even further increasdide auditory cortex,
indicating that the ascending auditory pathway privilelpss amplitude modulation
depths, and indicating that higher stages of the auditotipwrsy also influence the
modulation gainJoris and Yin(1992 showed that synchrony and, consequently, the



116 7. Cochlear compression effects on ASSRs

modulation gain are also stimulus level dependent in a nomotamic way. The non

monotonic stimulus level dependency and the increasingninate with ascending
place in the auditory pathway lead to the conclusion thautigerlying mechanism
might be independent from cochlear compression. Howeter,ntodulation gain

does not seem to be the major cause of the small degree of essium seen in the
modulation-growth function. This conclusion is based anftitt that the simulations
using the ASSR model do not show a compressive slope eveghitbe modulation

gain is modeled by the underlying AN model. The reason coelthht the modulation
gain in all literature studies (and the AN simulation) wereasured in single nerve
fibers of different species of animals. It has not been stuld@v the modulation gain
would be expected to affect a real ASSR, which naturally ste®f the response of
numerous on- and off-frequency tuned fibers.

The apparent compression observed in the logarithmicalalyaed modulation-
growth function is thus still unexplained. It might be reflag a compression
independent of the regular cochlear compression, i.e. @tr@-cochlear stage, which
is not reflected in the model provided here.

7.7 Conclusion

This study evaluated the potential of using ASSR as a toolstonate cochlear
compression. Two different methods were evaluated, fromasmements of the
modulation- and level-growth functions. To evaluate thesthods, three different
approaches were taken, a simple analytical model based tati@ 3on linearity,
experimental measurements and a numerical nonlinear ASS&Im The two
modeling approaches illustrated that both level and mdiduagrowth functions
could be used to estimate cochlear compression. Howeweletkl-growth function
was found to be superior as it requires less measured dathaanlgss uncertainty.
The level-growth function was experimentally measured émes subjects and a
compression ratio of 0.20 was found, corresponding to cesgion ratios found in
literature using both ASSR and psychoacoustic measureditidaally, the measured
modulation-growth function, when plotted on double lotfariic scales, showed a
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small degree of compression, contradictory to the modedigtiens. It was argued
that this was evidence for an effective compressive stadependent of cochlear
compression.
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Modeling auditory evoked brainstem
responses to speech syllables

This chapter presents work that, in cooperation with caastilames Harte and
Torsten Dau, is in preparation for submission to the Jouwrhtile Acoustical Society
of America.

8.1 Introduction

Auditory evoked potentials (AEP) have been used to assessnéliral encod-
ing of sound both for clinical and research purposes. Varitypes of stimuli
have been considered, such as transients like clicks, <lasing tone-bursts (e.g.
Jewett and Williston 1971 Neely et al, 1988 Dau etal, 200Q and chapter3);
steady-state signals such as amplitude modulated (AMsténg.Galambos et al.
1981, Picton et al. 1987 Rees et a).1986 and chaptef?), but also more complex
signals like speech (e.g\arrier et al, 2004 Agung et al, 2006 Swaminathan et al.
2008 Chandrasekaran and Kra#010. Most studies have focused on the auditory
brainstem response (ABR) as they are less affected by iatteand sleep than
potentials with origin at higher neural stages. The ABR Has heen observed to
be unaffected by training. However, a number studies hagentsy investigated
and found plasticity of the ABR, both considering short term training effects
(e.g. Russo et a. 2005 Song et al. 2008 and long-term experience effects (e.g.
Krishnan et al.2005 Johnson et 8120083 seeChandrasekaran and Kra{@)10 for

1 physiological changes of the nervous system due to e.quitegar

119
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review). Russo et al(2005 recorded brainstem responses to the stimulus-syllable
/da/ in learning-impaired children. The responses of tlenieg-impaired children
were recorded before and after an eight week period contpib-40 one-hour
sessions of auditory training. The authors showed that tireckation between
the ABR to the clean /da/ syllable and the response to /da/oisen improved
for the learning-impaired children over this relativelyoshtraining period, thus
demonstrating plasticity in the brainstem. This resultgasged that features of the
brainstem-response might reflect the ability to comprehgmeech and speech in
noise.Johnson et al20083, Hornickel et al (2009 andSkoe et al(2011) measured
brainstem responses to the synthetically created syt&tbiauli /ba/, /da/ and /ga/,
in normal and learning-impaired children. Both groups oildrten were reported
to have normal audiometric thresholds and ABR wave-V laendornickel et al.
(2009 measured stop consonant differentiation scores, congpdhie latencies of
the major peaks of the three ABRs evoked by the differentabidls, and reading
abilities and speech-in-noise perception. They reportedreelation between the
stop consonant differentiation score and the two behavineasures, such that large
differences between peak-latencies (large consonawtréliffiation score) correlated
with good performance in the speech-in-noise test and tstedfereading ability.
Hornickel et al.(2009 argued that this result showed plasticity in the brainstas
the group with the good behavioral performance had underdmmy-term learning
and that the better performance was an indication of thanileg had affected both
the behavioral performance and the electrophysiologicaihbtem recordings. The
observed differences, between the learning-impaired laadrmal-learning subject
groups in the ABR measures of stop-consonant differeatiaticores, were thus
argued to be the result of efferent (top-down) neural praegsand not the result
of peripheral auditory afferent processing.

Johnson et al(2008 presented similar syllable-evoked ABR recordings from 22
normal-hearing children. They measured the latency of tapnpeaks for each of
the three syllable-evoked ABRs and found that, althoughtlinee recorded time-
series were much alike, the peaks of the time-series respmngya/ had shorter
latencies than the peaks of /da/ which again had shorterd&tgthan /ba/. The three
syllables only differed in the frequency content of the setformant, f,, and the
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third formant, f3. Hornickel et al.(2009 andSkoe et al(2011) used almost identical
stimuli. Due to the difference in the frequency content & #yllables and due to
the tonotopic mapping of frequencies to places on the BM pimaks of the ABR
responses were represented early for the /§a# (2480 Hz), later for the /da/f§ =
1700 Hz) and latest for the /baf,(= 900 Hz). The underlying processes accounting
for the findings ofJohnson et al(2008 thus appears to be afferent (bottom-up).
However, since the stimuli were similar, any efferent pesieg that affected the
recordings fromHornickel et al.(2009 should also have affected tiehnson et al.
(2008 recordings.Skoe et al(2011) developed a “cross-phaseogram” from the time-
varying cross-power-spectral-density between two ABRidings. When analyzed
in time-frames, the outcome was a spectrogram-like reptasen of the phase-lag
as a function of time and frequency. It allowed for a more ikedanvestigation of
which part of the stimuli caused the peak-latency diffessploserved byohnson et al.
(2008.

A crucial stage in simulating ABR latencies is the cochlelerfistage and its
tuning within the model Rgnne et al.2012 and3). Broad cochlear filter tuning,
often associated with loss of OHC functionality, is beliévi® lead to shorter
wave-V latencies (e.gglberling 1976 Folsom 1984). However, in subjects with
an audiometric threshold within “normal hearing” (<20 dB Hthere is still a
considerable variation in tuning. In a recent stillerling et al.(2010 showed that
the traveling-wave delay is highly individual. The travgjiwave delay is also believed
to be dependent on the cochlear tuning, and it can be showrcédaulation in section
8.2.5 that subjects with broader tuning in a group of normal-tmggsubjects can have
Q-values that are less than half the Q-values of subjectsshigrper but still normal
tuning. The possible consequence of different filter turonghe simulations of the
syllable-evoked phase-shifts will be investigated in gtigly.

In the present study, a phenomenological ABR model was dpeel based purely
on bottom-up afferent processing. The developed ABR mode similar to the
model ofRgnne et al(2012 (developed in chapte); however, the AN model used
to create the summed activity pattern was updated #Zdany and Brucg2007) to
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Zilany et al.(2009, as the IHC-AN synapse adaptation of the latter AN modelasam
precise for long-duration syllable-stimuli.

Using the ABR model to simulate syllable-evoked ABRs, twaesfions were
addressed in the study: a) Can the ABR model, being puredyeaft, simulate key
features of the syllable-evoked responses, and b) can fieeedice in the recorded
cross-phaseogram between normal and learning-impaiiktterh (Skoe et al.2017)
be explained by potential cochlear tuning differences betwthe groups? To
evaluate the first questiddkoe et al(2011)'s cross-phaseograms was used to assess
three hypotheses that can be deduced from experimentalvatises made by
Johnson et al(2008. First, differences in the frequency contentfafbetween the
syllable-stimuli, should results in components of the @RBRs being differently
delayed due to the tonotopic mapping. This should be seerasegshifts in the
cross-phaseograms. Second, as the differencésdiminish over the course of the
response, the phase-shifts observed in the cross-phasespould vanish completely
when steady state is reached. Third, due to the phase-tppkaperties of the IHCs
(upper limit of phase-locking), neural encoding consiatgé¢ly of phase-locking to
frequencies belovf,. This leads to phase-locking to the envelope rather thafirtbe
structure at and above tHe frequencies. This should result in phase-shifts observed
in the cross-phaseogram at frequencies well belowfthe

The second question will be addressed by changing the twfitlge model and
evaluating the simulations based on models with broad geskarp tuning, however
still representing limits of normal hearing. The crossg#wyrams will be used
to evaluate whether a systematic change in the phase-gtiftebn the syllable-
evoked ABRs can be obtained by altered tuning such thatn&ance, broad tuning
systematically leads to smaller phase-shifts betweenyitabte-evoked ABRs.
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8.2 Method

8.2.1 ABR model

Figure 8.1 shows the structure of the ABR model used in this study. Theeho
was similar to the model oRgnne et al(2012 (see also chapter). However,
the AN model used to compute the summed activity pattern wasted such that
the Zilany et al.(2009 AN model was used instead of tZ@any and Brucg2007).
This update was made as tEdany et al. (2009 has an improved IHC-AN stage
producing more realistic adaptation properties. As th&abig-stimuli are of longer
duration, a precise adaptation is beneficial. The changleeoAN model required a
recalculation of the unitary response (UR). R332 shows the UR (based on standard
cochlear filter tuning) calculated similar Rgnne et al(2012 as the deconvolution
of a 95.2 dB peSPL grand average click-evoked ABR recordEipefling et al,
201Q Ranne et a).2012 and the summed activity pattern obtained by simulating the
response to an identical click-stimulus.

The simulated ABRs were at the output filtered with a 2nd olierd-pass filter
with cutoff frequencies at 70 Hz and 2 kHz. These filter sgiiwere identical to the
output filters ofHornickel et al.(2009 andSkoe et al(2011).

8.2.2 Stimuli

Synthetic /ba/, /da/ and /ga/ syllablgdafnickel et al, 2009 Skoe et al.2011) was
used, that only differ in the frequency content of the sedonahant, f,, of the first 60
ms, corresponding to the consonant part of the stimuli. Bleersd formants decrease
in the [ga] stimulus from 2480 Hz, in the [da] from 1700 Hz andreased in the [ba]
stimulus from 900 Hz, reaching a steady-state frequenaydsponding to the /a/ part
of the syllable) of 1240 Hz in all 3 stimuli. The /a/ vowel-paf the syllables was the
same for the three syllables, consisting of the formantueagiesf, = 100 Hz, f; =
720 Hz, f, = 1240 Hz,f3 = 2500Hz,f, = 3300 Hz,fs = 3750 Hz andfg = 4900 Hz.
All three stimuli were calibrated to have a root-mean-sgqu&MS) level of 1, and
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tuning.
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were presented to the model at a level corresponding to 80RIB 8hich was also
used int the study b$koe et al(2011).

8.2.3 Cross-phaseogram

Skoe et al(201]) proposed a cross-phaseogram to illustrate the phasratiffes and
thus the time delays between two ABR recordings. The firgtistéhe procedure was
to divide the two recordings into time frames of 20 ms, startvith the first frame at
t =-40 ms. Each successive frame started 1 ms later thaneli®ps one, creating an
overlap of 19 ms. A Hanning window of 20 ms length, includirgyrits onset and 10
ms offset ramps was applied to each frame, resulting in a 3 did nbe width of 141
Hz. The cross power spectrum density, i.e. the power spaatiensity of the cross
correlation, was computed between each pair of frames frentvto recordings. An
artificial frequency resolution of 4 Hz was obtained by zeadding, effectively acting
as a smoothing operation. Finally, the unwrapped phasadians) was extracted and
plotted as a function of time (midpoint of the 20 ms frames) ftaquency.

Skoe et al.(201]) also proposed the average phase-shift to simplify theseros
phaseogram into a single number that could be compared & otkasures, such
as the psychoacoustic speech-in-noise performance. Tdrages phase-shift (im
radians) was calculated on the formant transition periéd@160 ms) of the syllable-
evoked ABR in the frequency range of 70 to 1100 Hz.

8.2.4 Weighted cross-phaseogram

The cross-phaseogram weights time-frequency bins with &ttivity as high as bins
with much activity. This limits the use of the cross-phaseagas it is impossible
to distinguish between time-frequency bins of presumaitie importance due to
low activity from bins of major importance due to large aitjiv A weighted cross-
phaseogram is therefore suggested in this section. Thet#stn the procedure was
to derive the energy in similar time-frequency bins as thdsesen in theSkoe et al.
(2017 cross-phaseogram (Fig.5). Each of the two syllable-evoked ABRs were thus
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Figure 8.3: The three left panels show cross-phaseogramesentations of the three comparisons between
the syllable-stimuli. Warm colors indicate that the sylbientioned first in the respective title phase-leads
the other. The time axis refers to the center point of the 20 me frame. The three right panels, show
weighted cross-phaseograms of the same stimuli-comparisons.

divided into 20 ms frames with 19 ms overlap, and the fast iBouransform (fft)

was calculated with a frequency resolution of 4 Hz. The twsulttng matrices were
summed and normalized with the average bin activity. Thigimaas then multiplied
bin-per-bin with the original cross-phaseogram. The redso the normalization
of the activity matrix was to create a weighted cross-phgisen that highlights the
phase-shifts and does not just express the overall activity

Fig. 8.3 displays both the cross-phaseograms (left) and the welgbtess-
phaseograms (right) for the different stimulus pairs. Eiche-frequency bin
represents the corresponding phase lead (warm colorsy ¢cdéd colors) of the first
syllable-stimulus in the title over the second. The periaaif 15 to 60 ms shows the
formant transition period, the period after 60 ms the stesidie part of the response
(Skoe et al.2011). Both sets of figures (left and right panels) show that thasph
shifts between the stimuli are in the frequency region aliokklz.
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8.2.5 \Variability of cochlear filter tuning

Cochlear filter tuning and BM delay are inherently relatedi§éom 1984 Eggermont
1979 Bentsen etal. 2011, such that broader filters lead to shorter delays.
Elberling and Dor(2008 measured derived-band latencies from a total of 81 normal-
hearing subjects (hearing thresholds < 15 dB HL), at foufetkht band center
frequencies (bCF; 710, 1400, 2800 and 5700). ABR wave-\Vhtateand a inter-
subject standard deviation (SD) were derived. The BM delag w&chieved by
subtracting the wave I-V delay (4.1 ms) and the synapticyd@lans), see tabl8.1

A representation of the variation of cochlear filter tuningiormal-hearing subjects
can be obtained from the mean latenciesl standard deviation. The stimulus of
Elberling and Dor(2008 was a click presented at approximately 90 dB peSPL.

Eggermon{(1979 derived a theoretical relation between the cochlear filteing,
Q10, and the average number of cycles in the impulse responsethip latency (minus
1 ms of synaptic delay) of the derived band CAR;

Nay = 05 (5<1+y)(2+y)Q101> <2+|n5(1+y)(2+y)

2 12y 12y + |nQ10) (8.1)

whereN,y can be calculated d€F /1000 * 1cg, whereT is the BM latency of at the
CF. In table8.1 Ny, values derived from the mean latencies and from the latsrtie
standard deviation are showtZ SD were also calculated but not shown in the table
due to clarity).y = 2 is representative of a normal cochl&g@ermont1979, andQ1g
values can thus be calculated based ofNRevalues from tabl®.1and equatio.2.5

To convert theQ1g values intoQgrg values, the conversion frotlrrahim and Bruce
(2010 was applied:

Q10— 0.2085

0.505 (8.2)

Qer=
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bCF (Hz) | Mean latency SD| Nay Nay (-SD) Ngy (+SD)
5700 1.17 0.32| 6.7 4.8 8.5
2800 1.86 0.40| 5.2 4.1 6.3
1400 2.93 0.56| 4.1 3.3 4.9
710 4.57 0.79| 3.2 2.7 3.8

Table 8.1: Derived-band latencies and a one standard d@evig8D) fromElberling et al.(2010. The 1
ms synaptic delay has been subtracted from the latenciesadrhber of cycles in the impulse response up
to the bCF latencyiNay, for the mean latencies and for the mean lateficthe standard deviation is also
shown.

Fig. 8.4 shows theQgrg values derived fronklberling and Dor(2008's measured
delays+1 SDs andt2 SDs. TheQgrgs calculated the mean delays corresponds
well with the Shera et al(2002 estimates of tuning (solid curve). New tuning-
curve estimates were obtained from thé SD and+2 SD based Q-estimates, by
multiplying theShera et al(2002 estimates by a constant offset. The broader tuning-
estimates were obtained by multiplyiiera et al(2002’s tuning estimates by 0.80
and 0.60, the sharper tuning-estimates by 1.15 and 1.28 folinesuggested tuning
curves were implemented in the ABR model. For each simulatedition, a new UR
was calculated. The URs were almost identical to the onesepted in Fig.8.2and
are thus not shown explicitly here.

8.3 Results

Figure8.5presents cross-phaseograms and weighted cross-phaseatgaved from
each of the three possible combinations of the simulated ABRyure8.6reproduces
the cross-phaseograms presenteSkoe et al.(2011). These results can thus be
compared to the simulated cross-phaseograms (left pahélg .0 8.5). Table8.2
shows the average phase-shifts obtaine8koe et al(2011) and the corresponding
values obtained from the simulations presented in &i§. Both experimental results
and simulations show the largest phase-shift between fghblta/, which also differs
most in their frequency spectrum. Also, the data and thelsitions both show that
the phase-shift between /ga/ and /da/ is smaller than theepdtaft between /da/ and
/bal.
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Figure 8.4: Qegrgs calculated based oElberling and Don(2008’s measured derived band latencies
(diamonds). In circles and triangleQerp estimates based oBlberling and Don(2008's measured
latenciest+1 SD an+2 SD. Also shown is th&hera et al(2002 tuning (solid line) which is implemented
in the standard ABR model. The alternative tuning curvestéddines) are fitted to thElberling and Don
(2008 based tuning£1 SD andt-2 SD) and also implemented in the model.

Skoe et al. (2011) Simulations Simulations (weighted)
/ga/-/ba/| 0.317+0.040 0.353 3.040
/da/-/ba/| 0.288+0.031 0.243 2.163
/ga/-/da/| 0.208+0.028 0.141 1.660

Table 8.2: Average phase-shifts 8koe et al(2011) recordings (left column), simulated average phase-
shifts (center column), and weighted average phase-shits Column). The average is taken across the
region from 15 to 60 ms, and from 70 to 1100 Hz.

The cross-phaseogram in Fig.5 show that the /ga/ phase leads both /da/ and /ba/
(warm colors in the formant transition period of panel 1 ajda®d that /da/ phase
leads /ba/ (warm colors in panel 2). Further, the only déffere between stimuli was
the frequency content db, and the observed phase-shifts in the cross-phaseograms
can thus be argued to be caused by the stimuli-frequenagreliftes. This is also
confirmed by tabl@.2 presenting average phase-shifts of the consonant perfatew
itis seen that /ga/ phase leads /da/ that phase leads /wtieF rig.8.5illustrates that
the simulated phase-shifts clearly diminishes over time, that the phase-shifts are
vanished at steady state (>60ms). This shows that the meohting peripheral non-
linearity’s, e.g. the IHC-AN synapse adaptation, is shornpared to the duration
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Figure 8.5: Cross-phaseogram (left panels) and weightssgrhaseogram (right panels) representations of
the three comparisons between the syllable-evoked ABRsn\Walors indicate that the syllable mentioned
first in the respective title phase-leads the other. The tixierafers to the center point of the 20 ms time
frame. It can be observed that the largest phase-shift igifisutihe /ga/ v. /ba/ plot, and the least phase-shift
is found between /ga/ and /da/.
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Figure 8.6: Cross-phaseograms fr@koe et al.(2011) of the three comparisons between the syllable-
evoked ABRs. Left panels, are calculated based on the tdprpgeng group of subjects in a hearing in
noise test (HINT). Right panels, presents the worst perfsmiote that the frequency range is different
from the frequency range presented in RB¢h. © Journal of Neuroscience Methods.
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Figure 8.7: Weighted cross-phaseograms for each of syl@igbinations, for both broad (x 0.80) and
sharp (x 1.28) tuning.

of the stimuli. In Fig. 8.5it can also be observed that there are phase-shifts up
to approximately 1500 Hz, i.e. both below and in the secomthémt frequency
range. However, the weighted cross-phaseograms of Bi§.(right panels) does
not show components at these frequencies, indicating tleatiggh-frequency phase-
shifts reflect time-frequency bins with very little actiyitand thus potentially little
importance. The main trend is thus that thefrequency-difference between stimuli,
results in phase-differences at frequencies well belowftheThe causes for this
finding in the simulations are discussed later.

Figure8.7 shows weighted cross-phaseograms of the syllable pairsinfmlations
of a relatively sharp (x 1.28) and relatively broad (x 0.8@)ihg. It can be seen
(more bins with warm colors) that the phase-shift is largettie sharp tuning. In Fig.
8.8, weighted average phase-shifts for all syllable compassand all five different
tuning-curve implementations are shown. Although the ginavf the phase-shift with
increasing tuning amount is not monotonic, a trend is oleskrwhere sharp tuning
leads to larger phase-shifts. This confirms that the statlefauditory periphery
affects the cross-phaseogram and weighted average phifise-Bhe implications for
theHornickel et al.(2009 andSkoe et al(201]) studies are discussed further below.
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Figure 8.8: Weighted average phase-shifts for each of tiebdy combinations, for both broad (0.60 and
0.80), standard (1.00) and sharp (1.15 and 1.28) tuning.

8.4 Discussion

8.4.1 Unweighted versus weighted cross-phaseogram

The cross-phaseogram and the average phase-shifts waspmal/dy Skoe et al.
(2017 and has proven to be a valuable tool for investigating pishgts between
different frequency components of the recorded (or sinedlaABR. However, the
equal weighting of all time-frequency bins limits the valokthe average phase-
shift Skoe et al(2011), since a bin with little activity will hardly influence theBR
generation. In fact, a time-frequency bin with little energ likely to be dominated
by measurement noise, and the average measure might thiesizgnoise.

In the simulations presented in this study, noise is notuihetl. This makes a
comparison between simulations and data in the terms of teeage phase-shift
difficult, as a systematic phase-shift at bins with littleiaty will be included in the
simulated average phase-shift, whereas such a phasésslikttly to be influenced
or masked by measurement noise in the data-derived avehage4shift. This could
be solved by adding noise to simulations. However, this damlply that the model
would no longer be deterministic which has not been consitlar the present study.
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8.4.2 Explaining the presence of phase-shifts below the sexb
formant

In section8.3it was shown that second formant differences between stinesilt in
phase-differences at frequencies well belpwJohnson et al2008 argued that this
is due to the phase-locking properties of the IHCs (uppeit bifphase-locking), and
that neural encoding consists largely of phase-lockingeqguencies belovi,. This
leads to phase-locking to the envelope rather than the finetsre at and above the
f, frequencies. However, the IHC stage of the AN model (effetyi modeling the
upper limit of phase-locking) consists of a nonlinearitydanlow-pass filter with a
cut-off frequency at 3 kHz. It is thus unlikely that the IH@ge should be the cause
of the simulated phase-shifts at frequencies belgwm the simulations.

Figure 8.9 visualizes the simulated response to the syllable /da/ iAEAJR-
spectrogram. Each horizontal line represents the outpuh fone AN model, i.e.
the response to the stimulus at the respective model CFobaa/ with the UR.
A summation across CFs will thus yield the simulated ABR (seetion6 for
introduction to the AN-UR-spectrogram). It can be obserfed most of the energy
in the simulations is centered at the onset response andeitpeeincy regions of 100,
200 and 500 Hz (latter one highlighted by the ellipse). It banseen in Fig.8.9
that phase-locking clearly occurs in the frequency rangeoup kHz (this can be
observed as the number of peaks at, e.g. 500 Hz is 5 peaks pas,10e. the
corresponding periodicity). The response at larger CFibéghprimarily a periodicity
corresponding to the fundamental frequenfy=100Hz, i.e. the envelope of the
response (highlighted by the arrows in F&9).

To fully explain the presence of phase-shifts beltwthe stimulus and model has
to be analyzed step by step. The syllable-stimuli formaetg. (f2) are modulated
at the rate of the fundamental frequendy & 100Hz) and its higher harmonics.
Thus, at the characteristic places on the BM of fhdrequencies, a signal with an
f, carrier frequency modulated by dg (+ harmonics) modulation frequency will be
processed. Further, the stimulus-level was high (80 dB $Ru%ing upwards spread
of excitation. The left panels of Fig8.10shows the single channel response at the
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output of the filter stage (see Fig3.2 for diagram of AN model), tuned to CF =
2405 Hz, in response to the /ga/ stimulus. The time-seriewsta periodic signal
and its spectrum (shown below it) clearly shows frequenecymanents separated by
fo. Further, is it seen that the energy is centered on the CRalbatthat upwards
spread of excitation results in this channel being exciteddntributions from lower
frequencies. The IHC stage applies physiologically iregpinalf-wave rectification
and low-pass filtering. The output of the IHC stage is showthéright panels of Fig.
8.10for the same CF channel and stimulus. It is seen that thewelé rectification
creates low-frequency energy, as inter-modulation anchbaic distortion products.
However, the majority of energy is still centered on the Clie Bynapse adaptation
stage, that occurs after the IHC stage (see Bigfor AN model), has no significant
effect on the spectrum of the single channel response. Hawéve UR that is
convolved onto the single channel response effectively ldet a low-pass filter. The
left panels of Fig8.11show the UR and the spectrum of the UR. As a convolution is
effectively the same as a multiplication in the frequencmd, the UR is effectively
acting as a low pass filter with the frequency response quoreting to the spectrum
shown in the lower left panel. Thus the resulting simulatedls channel potential
(shown in the right panels) is limited to low frequencies. eT2405 Hz fiber will
thus contribute with frequency components at low frequesicivhich will carry the
traveling wave delay (and thus phase) of the CF of the fibes.flidguency-differences
between stimuli at thé, frequencies will thus be depicted as phase-differencdseat t
fo and corresponding harmonic frequencies in the phaseograms

The outcome measure predicted by the hypothese®lufison et al(2008, that
phase-shifts should be found at low frequencies, was thuisdfan bothSkoe et al.
(2012’s experimental analysis and in this study’s simulatiortowever, the simu-
lations showed that the predicted phase-shifts were maaulged by a combination
of upwards spread of excitation and the effective low-pdssrifig applied by the
UR. Further, it was shown not to be caused by the upper limjghafse-locking, as
hypothesized byohnson et a(2008.

Note, the UR represents the contributions made from lod&ials in the AN and
the brainstem to the far-field potential recorded at theteddes on the scalp of the
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Figure 8.9: AN-UR-spectrogram visualizing the componentéréquency range from 100 to 3000 Hz
that adds up to form the simulated /da/ evoked ABR. It is crbéite convolving each of the simulated
AN fibers responses with the UR. The ellipse highlights tlggare with the most activity. At frequencies
above approximately 1 kHz, the single fiber response trackemielope, i.e. the fundamental-frequency
periodicity of 10 ms (indicated by the arrows), rather thanfthe-structure of the signal.

subject. The peaks of the UR and the time between them, thacsides ascending
places along the auditory pathway were local potentialganerated, that contributes
to the ABR potential. The UR is thus not representing the aleemcoding in the
brainstem but rather the times after onset where a coniibot the surface potential
is made. In this study, the UR is seen to limit the transmissifcthe neurally encoded
signal to the recorded surface potential. This is the camesace of the effective low-
pass filtering that again is the consequence of the distagiveebn the major peaks,
and thus neural generators, of the UR. The effective love-filisring is also limiting
the utility of this kind of electrophysiology in investigat) neural encoding of sound.
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Figure 8.10: Left panels: Time-series and spectrum of the I&t &utput. Right panels: Time-series and
spectrum of the IHC stage output. The CF of the fiber was 2408&rdzhe stimulus was /ga/.
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Figure 8.11: Left panels: Time-series and spectrum of theRIght panels: Time-series and spectrum of
the single fiber response of the model (AN model output conbivigh UR). The CF of the fiber was 2405
Hz and the stimulus was /ga/.
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8.4.3 Limitation of simulating high spontaneous rate fibers

A deviation between simulations and data is the absolutditute of the simulated
ABRs (not shown). The simulated peak-to-trough amplitisl@pproximately 0.1
uv, whereas the measured data in bdthnson et al(2008 and Hornickel et al.
(2009 indicates amplitudes around OLBs. The reason for the under prediction is
the choice of simulating the responses of high spontaneatesfibers. The high
stimulus-level of 80 dB SPL results in saturated fiber resperior high spontaneous
rate fibers umner et aJ.2002. This saturation reduces the overall amplitude of the
response. However, the phase-information in the ABR wagthiet of interest in
this study, not the amplitude of the response, and the chaaseherefore to simulate
high spontaneous rate fibers, as these has been shown to iy reaponsible for
the onset of signal-components. However, if other spegokesl ABRs with an
amplitude-based outcome measure, were to be simulatedntiiiation would need
to be addressed. A possible solution would be to simulatexéunei of both high and
low spontaneous rate fibers, to predict both the amplitudetta® phase-information
as accurately as possible.

8.4.4 Implications of changing cochlear tuning on Skoe et al
(2011) conclusions

Hornickel et al.(2009 and Skoe et al.(2011) found correlations between learning-
impairments of children, and recorded cross-phaseograsepbhifts (peak latencies
in Hornickel et al, 2009 between syllable-evoked ABRs, such that a small average
phase-shift was an indication of learning-impairment. Asibaassumption of
Hornickel et al(2009 was that the two groups of hence normal and learning-iregair
children have equally good peripheral hearirigornickel et al.(2009 argued that
this was the case as all subjects had audiometric thresheld® 20 dB HL and had
normal ABR wave-V latencies. The wave-V latency was meabagean indication
of the state of the cochlear tuning, as broad cochlear tuaiagbelieved to lead to
shorter wave-V latencies (e.glberling 1976 Folsom 1984). However, in a recent
study Elberling and Don(2008 showed that the traveling wave delay was highly
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individual. The traveling wave delay is also thought to bpatelent on the BM tuning,
and it was in the present study suggested that the broadesuBikb in a group of
audiometric-wise normal-hearing subjects can have a Qevtilat is less than half
the Q-value of the sharpest BM tuning. Given the possibléatian of “normal”
BM tuning an alternative explanation for tiéornickel et al.(2009 results can be
hypothesized. A broad cochlear tuning leads to shorter-fseakcies for all three
stimuli. Further, do the traveling-wave delay decreasafidigmically with increasing
stimulus frequency (e.dNeely et al, 1988 Elberling et al, 2010. A broad tuning
would thus lead to a decreased difference between the ABkspaad thus a smaller
phase-shift. Phase-shift differences similar to the $kee et al(2011) finds between
the groups of normal and learning-impaired children, cdhlgs be hypothesized to
also be found when measuring ABRs to two normal-hearingmgdowt with different
cochlear tuning.

The results from this modeling study showed that there isédda relation between
filter tuning and weighted averaged cross-phaseogram sjaldgere sharper tuning
leads to larger phase-shifts. Although this relation was gtoctly monotonic it
do indicate that the phaseograms are sensitive to chandbe euditory periphery.
Whether this finding offers an alternative explanation ferrésults oHornickel et al.
(2009 and Skoe et al.(201]) are, however, questionable. That would require the
assumption that the group of learning-impaired childreag Bignificantly overall
broader cochlear tuning than the normal children. Althotlyh hypothesis is not
unlikely, this study cannot by any chance verify such a claifimat would require
a major study, where the cochlear tuning of learning-ingghiand normal subjects
were measured carefully, and correlated with weightedameeiphase-shifts. The
conclusion of this part of this study is thus, that the hugeag of normal-hearing
cochlear-tuning, in the simulations, leads to a huge spreagighted average phase-
shifts. Skoe et al(2011) showed that average phase-shifts was related to learning-
impairment. Further, diskoe et al.(2011) conclude that the correlation between
learning-impairment and average phase-shifts show pigstf brainstem. This
conclusion was based on the assumption that the state ofiti®iy periphery was
equal (i.e. normal hearing) in both groups. However, thiglgthas indicated, that
the cochlear tuning of the normal-hearing subjects cowe laa effect on the average
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phase-shift, and do thus challenge the underlying assampfithe conclusions from
Hornickel et al.(2009 andSkoe et al(2011). Further, this study has shown that the
use of audiograms and click-evoked ABR wave-V latenciesiati&ely to be precise
enough to claim that the cochlear tuning are similar betweergroups.

8.5 Summary and conclusion

This study evaluated the performance of an ABR model to sitelABR responses to
three synthetic syllables. The ABR model was shown to pteafiase-shifts between
the responses to the three syllable stimuli. It was also shbat the model accounts
for these phase-shifts which diminish over time, as the tspledifferences between
the stimuli also decrease, and that there are no differandbe steady-state part of
the responses. The model also correctly described thatdlqedncy-region of the
response that were mainly phase-shifted was well below réguéncy-region that
differed between the three stimuli. Based on the simulatibmwas shown that this
phase-shift was mainly due to upwards spread of excitatimhedfective low-pass
filtering applied by the UR and not the consequence of therdppi of phase-locking
as hypothesized byohnson et al(2008. Furthermore, it was shown that altering
the cochlear tuning influenced the simulated phase-slilifistrating that the state
of the auditory periphery is crucial when analyzing resgsnbased on the cross-
phaseogram. The results suggests that the assumptldaroickel et al.(2009 and
Skoe et al(2011), that the peripheral hearing was similar between their gnaups
of test subjects, might be flawed and the following conclustbat the larger phase-
shifts for the non-learning-impaired children was the @spgence of plasticity, might
thus be wrong.
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General discussion

9.1 Summary

In this Ph.D. thesis, AEP models based on a convolutive @gbrevere developed,
where the response of a nonlinear peripheral model wereobamw with a linear
UR. The peripheral model simulated single-fiber responsesdiven stimulus. The
response from 500 individually tuned fibers were summedrto the summed activity
pattern, i.e. the activity at the distal end of the AN. Thisnsmed activity pattern
was then convolved with a linear UR, representing the coutions made to the
formation of the far field potential (AEP), from ascendin@q®s along the neural
auditory pathway in response to the events in the summedtgqgiattern. The UR
thus represented the impulse response of the transmiseiorilie activity at the distal
end of the AN to the electrodes attached to the scalp of aubgc. This approach
made use of the assumptions that the UR was independent séitgsct and stimulus,
and unaffected by nonlinear neural processing. Two diffeperipheral models
were used. Th&ilany and Bruceg(2007) AN model to simulate transiently evoked
responses to clicks, tone bursts and chirps, andilaay et al.(2009 AN model to
simulate evoked responses to amplitude modulated tonespa@th syllables. Both
AN models were originally fitted to cat data. TAgany and Brucg2007 model was
humanized by lan Bruce and colleagues, such that the fregtdgpendent cochlear
tuning was fitted to the human tuning estimateSbéra et al(2002, and the middle
ear stage was replaced by the human modBlasical et a1998. This humanization
was also applied to théilany et al. (2009 model. The difference between the two
models was the more advanced IHC-AN synapse adaptatioe statuded in the

141
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Zilany et al.(2009 model. This more precise adaptation was argued to be i@piort
when longer-duration stimuli like amplitude modulatedésior syllables were used.

The ABR model developed inRgnneetal. (2012 was based on the
Zilany and Bruce(2007) AN model and a UR covering the first 10 ms of neural
processing, i.e. including the ABR wave I|-VIl. The ABR modeas shown to
predict the frequency dependence of tone-burst wave-Yidae and the amplitude of
wave-V'’s evoked by clicks and chirps at different stimulergels and chirp sweeping
rates. However, the ABR model under estimated the stimiels-dependence of
wave-V latencies. An alternative ABR model, using the DRNadal as peripheral
model, was also considered (fR@nne et a).201]) to investigate whether the under
estimation of the level-dependence of click-latencies tb@snd to the structure of
the AN model. However, the DRNL-based ABR model was not fotminprove
predictions. The models capability to simulate ASSRs wae avaluated. This
was done as part of thRgnne et al(20123 study, where the possibility of using
ASSRs to assess cochlear compression was evaluated batinesptally and in
simulations. The ASSR model was based onZiany et al.(2009 AN model and a
UR covering the first 80 ms of processing, thus including tlddhe-latency response
(MLR) components. The model was shown to be able to predectrthin trends of
ASSRs to a wide range of stimulus levels and modulation depibwever, the model
failed to predict the slight compression observed in theegrpentally measured
modulation-growth functionRgnne et a).20123. The model accounted for on-
frequency level-growth compression similar to what woudddxpected. However,
when simulating responses from all 500 fibers, the mixturersfand off-frequency
contributions provided a weaker compression than expeiiafly measured. In
chapter8 an ABR model was developed based on Zlilany et al.(2009 AN model
and a UR covering the first 10 ms of the neural processing, thighpurpose to
evaluate whether the model could simulate responses tolegrsiimuli. This model
was used to simulate the response to speech syllables. @rddiction was that
the phase-shifts between two ABRs evoked by two differelialsies were correctly
accounted for frequencies significantly lower than thedesgy content that differed
between the two syllables. This simulation was explainegksslting from upwards
spread of excitation and the effective low-pass filteringligol by the UR. The effect
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of variation of cochlear tuning within what could be expelcteom a group of normal
hearing test-subjects was also investigated. Here it wasdfdhat sharper tuning
generally led to larger phase-shifts. Based on the assamfitiat the peripheral
hearing was equal between groufkoe et al.(2011) argued that the difference in
recorded phase-shift between two groups of normal andilegimpaired children
was caused by plasticity of the brainstem. However, thelosian of the simulations
from the present study was that the variation in normalihgdtining is large enough
to cause significant phase-shifts, and the underlying gssonof Skoe et al(2011)’s
conclusion might thus be incorrect.

This thesis also comprised two experimental studies. Ontherh investigated
whether the higher amplitude of an ABR evoked by a rising cltiompared to a
click was mainly a consequence of the better alignment ofalwefrequency (<1500
Hz) versus the high-frequency (>1500 Hz) components. Alginoboth regions were
found to contribute to the ABR, the region with the largesdiidnal contribution to
the chirp-evoked compared to the click-evoked ABR was theftequencies. In the
other experimental study, it was investigated whether tB8R could be used to assess
human cochlear compression. The conclusion was that betlevkl-growth function
and the modulation-growth function could be used to obtairstimate of cochlear
compression. However, the modulation-growth functioruresggl the double amount
of data and had inherently more noise associated. Thuslglierecommendation was
to use the level-growth function in future work both clifligaand in research. One
interesting finding was the slight compression observedwghating the modulation-
growth function on double logarithmic scales. Accordingtte developed analytical
model and the ASSR model, no compression should have beenvelghis way. The
result remained unexplained.
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9.2 Revisiting assumptions of the convolutive ap-
proach to modeling

The modeling work of this study was built upon the convoleitapproach assuming
linear superposition, where a nonlinear summed activitiepawas convolved with a
linear UR. The UR was assumed to be independent of stimypes{tevel, frequency

and fluctuations), independent of subjects, unaffecteddbwn efferent processing
as training, and unaffected by bottom-up nonlinear neuagssing.

A UR with level- and frequency-dependence, as propose@hmsrtoff (2004 has
already been discussed in secti®i®.3and 4.5 However, the UR could also be
thought to be dependent on temporal fluctuations/modulstaf the stimulus. In
chapter7, it was reported that a slight compression was observed werding
ASSR modulation-growth functions and plotting them on dedbgarithmic scales.
A slope of 1 was predicted by the ASSR model, but a slight ceisgion was observed
experimentally (slope = 0.78). It was suggested that theutatidn gain, reported
by Joris and Yin(1992 for single-fiber cat AN responses, could be the cause of the
compression, as the modulation gain describes how synghisrincreased in the
neural representation of the AN. However, the modulatiaon gas included in the
AN model and could thus not explain the found compressiGtafy et al, 2009.
Joris et al.(1994) reported a further increased neural synchronization énA¥CN
compared with the synchronization in the AN fibers. They adgthat this was due to
the convergence of inputs from two or more AN fibers on an AVE@EN that require
coincident input spikes before firinddris et al. 1994). Malone et al(2010 showed
that the synchronization is further increased at ascenpliaces along the auditory
pathway. An increased synchronization represents narlipppocessing and thus is
not described by the linear UR. Future work could be to imgetra neural stage
where the increased synchronization could be accounteéhftite framework of
the present AEP model. Such an extra neural stage could tiadtgmmprove the

1 Synchrony measures how densely nerve-firing is clusteraghdrthe peaks of the envelope response
(Malone et al.2007)
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simulations, such that the slight compression found in tgailithmically plotted
ASSR modulation-growth functions could be explained.

Another basic assumption underlying the linear UR of the@né AEP model is that
the model is independent of test subject and independeimief tn chapteB, subject
independence was investigated and all simulations wertenrasing individually
estimated UR functions from three different subjects. Tésulted in small changes to
the overall simulated response amplitudes and introducéudividual latency offset.
However, the shape of the UR and the distance between peakined the same, as
expected. This investigation was though only interestdderfirst 5 ms of the UR, i.e.
up to wave-V. Furthermore, all subjects were young nornealrimg adults. A test of
whether higher neural stages, potentially affecting weand higher generation sites,
differed between individual subjects was never conductgdch a potential neural
difference could arise from brainstem plasticity, i.e. gibjogical changes to the
brainstem processing due to learning. A potential effepiasticity was described by
Hornickel et al.(2009 andSkoe et al(2011), where degrees of learning impairment
were found to correlate with electrophysiological ABR phaift measures. It was
argued that the reason for the correlation was that the Adeaming children were
better trained and thus showed plasticity of the brainsteam,that auditory training
had resulted in physiological changes of the brainstemhi#f was true, a general
across-subject UR would not be reflective of the individuifflecences in neural
processing. However, plasticity is the effect of long-tdearning in the range from
weeks to several years, and the consequence is thus thaRtldedes not necessarily
need to be non-linear to simulate these differences. Ratieeconsequence is that the
UR should be calculated for each individual subject andaenefit from frequent
recalculations (to anticipate plasticity of the brainstaver time).

9.3 Limitations of the present AEP model

The AEP model of this study was shown to be limited with regaadtwo different
sets of simulations. The first was the level-dependenceaal-eloked ABR latencies
where the predicted slope of the latency-growth functios wie015 ms/dB compared
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to the slope of -0.05 ms/dB found in literature. The secomitéition was the ASSR
level-growth compression, yielding a compression rati®.d8 dB/dB compared to
experimentally measured compression ratios of 0.2 dB/di& Onderestimation of
the click-latencies was investigatedRmnne et al(2011), with focus on the influence
of the auditory periphery. It was found that the major cdnttor to click-latencies
was the tuning of the cochlear filters and, to a lesser degineelHC-AN synapse
adaptation. Therefore, the conclusion from that study Wwasthe filter tuning at high
stimulus levels and high stimulus frequencies might hawnlecorrect.

The under-estimated ASSR compression ratio was fourginne et al(2012 to
be a consequence of on-frequency compression and offéneguinearity. The on-
frequency compression was shown to have a compressionofali@, i.e. similar to
the experimentally recorded compression. However, wheednivith off-frequency
linear contributions, the mixture demonstrated compogssiith a ratio of 0.48.
Three suggestions for this disparity were made: 1) The filiaing of the model
could be imprecise, such that the mixture of on- and off fesgpy contributions
were wrong. An updated implementation would result in eithestronger on-
frequency compression or a suppression of off-frequenayribwitions, for instance
by making the filter skirt roll-off sharper. 2) The potenlyaincreased synchrony
in the AVCN could also affect the cochlear compression measby ASSR, as the
neural synchrony has been shown to be stimulus-level dependThe increased
synchrony is though not monotonically dependent on theudtisalevel, and can thus
not be a major contributor to a simulated compression thimadow over the entire
compressive stimulus-level region. 3) In the ASSR studly tow-spontaneous rate
fibers were simulated. This was done as high-spontaneoegilbgrs were shown
to be saturated at most stimulus levels. However, a sataragipresents effectively
an extreme compression. An appropriate mixture of low- agt-spontaneous rate
fibers, could thus potentially increase the on-frequencyession, such that that the
mixture of on- and off-frequency contributions would be iihad, and an effectively
higher compression could be obtained. Additional simatetishowed that simulating
the response of high-spontaneous rate fibers led to a ssduwatfrequency response
as expected. However, as the level of the saturated ondreguesponses were low
(due to the saturation), the off-frequency contributiondith were not saturated)
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were inherently given more relative weight. The resultinggtore of extreme on-

frequency compression and linear off-frequency contiilms with higher weight

resulted in a compression ratio very close to the origirgityulated compression ratio
of 0.48. This does thus likely neither provide an explamafar the weak simulated
compression.

Common for the two main limitations of the AEP model is thus timcertainty
about the implemented cochlear tuning. It has not beenmvitieé scope of this Ph.D.
to update the cochlear filters, it has rather been the scdpedstigate the limitations
of the current knowledge and the present model. Howevertuadistudy should
focus on getting the filter tuning accurately modeled. Asprg, uncertainties remains
regarding the tuning@-values) at high stimulus-levels and high stimulus-frepies
and further regarding the slope of the filter skirts, i.e. et of the filter description
not included in theQq value.

9.3.1 Modeling high- versus low-spontaneous rate fibers

Throughout this study, either high or low-spontaneousfib&s have been modeled.
At no point has a mixture of low- and high-spontaneous raterditbeen attempted.
The low-spontaneous rate fibers show slow recovery afteusiition whereas high-
spontaneous rate fibers recover fastelkin and Doucet1991), making the high-
spontaneous rate fibers important when simulating timind anset responses.
Further, the high-spontaneous rate fibers show saturaéisgonse characteristics
for increasing stimulus level, whereas the low-spontasegate fibers show a linear
growth Winter et al, 1990. It thus seems evident that low-spontaneous rate fibers are
responsible for encoding high stimulus-level signals, iehe the high-spontaneous
rate fibers encode low stimulus levels and onsets of sign@taus, to be able to
simulate all aspects of AEPs evoked by fluctuating stimuke IAM signals or
syllables, the inclusion of a mixture of low and high spowtauns-rate fibers is needed.
A starting point for a future inclusion of low- and high-spaneous rate fibers would
be to determine an appropriate ratio of the number of hemeednd high-spontaneous
rate fibers to include in the model, and secondly to ensuteliawo types of fibers
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have appropriate sensitivity. Thus, the summed activityepa would consist of 500
channels, each consisting of the sum of a low and high speaterate fiber response.

9.4 Perspectives

9.4.1 ASSRs as an objective predictor of cochlear compressi

Rgnne et al(20123 investigated the potential use of the ASSR to assess achle
compression. It was found that measuring compression eitetrel-growth function
was possible on a group basis for normal-hearing subjectse rieasurement of
compression at one CF took approximately 30 minuttemn et al. (2006 showed that
ASSRs can be recorded at four different CFs simultaneotiblgrefore, ASSRs could
potentially be a fairly fast (< 30 min) method to get a broadreiew (at four CFs) of
the cochlear compression. However, there are still impbdgaestions that need to be
addressed before such a method would be ready for cliniegleud=irstRa@nne et al.
(20128 showed that compression could be assessed on a group basit,was
never shown that the method also was reproducible and @ecamaan individual
subject level, which is crucial if the method should be aggbiin clinical diagnostics.
Second, it was neither shown that the method works with hgampaired subjects.
In hearing-impaired subjects with resulting broader filf¢he hearing threshold will
typically also be elevated. Further, it is difficult to rai$e stimulus-level as the
test needs to be restricted to the compressive region ofdtiglear 1/0 function of
(approximately 40 to 90 dB SPL). Therefore, the ASSR recwydvill be carried out
closer to threshold. This could lead to a weaker neural sigina thus more noise-
prone recordings. It should therefore be tested whetheAB®R can be recorded
on individual hearing-impaired subjects as well. Finatlye question is what the
information of the state of the cochlear compression in @ihgampaired subject can
be used for in technical application. Currently, no heawidor cochlear implant
manufacturer uses such information in their fitting procedu Therefore studies on
how to use the information should also be undertaken in thedu A reproducible
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ASSR test of individual local cochlear compression wouldbeajor benefit to both
the research community and the outside world.

9.4.2 Electrophysiological correlate of speech perception

In chapter8, Skoe et al.(201])’s cross-phaseogram was introduced as a method
to visualize the difference in ABR recordings between twbatje-evoked ABRs.
This cross-phaseogram analysis could be highly intergétinresearch and clinical
purposes, specifically, if it could be used as an electrdplogical correlate of speech
intelligibility. This would be the case if it was shown thdtet weighted average
phase-shift correlate with speech-in-noise test restdtsa wide variety of stimuli
and subjectsHornickel et al.(2009 andSkoe et al(2011) have indicated for a very
specific set of stimuli, /ba/, /da/ and /ga/ syllables, thet tould be the case. However,
a series of studies has to be carried out to assess, theidgnsit the measure,
how general the measure is and, finally, how the measure igeimfed by hearing
impairment, before it can be claimed that cross-phaseogrraihthe average phase-
shift is an electrophysiologically correlate of speeclelimgibility. On a short time
scale, a first study to carry out could be to determine whetheicross-phaseogram
can be generalized to also account for differences betw#ear gyllable pairs. It
could be hypothesized that the cross-phaseogram is a clistaeasure between two
syllables and, thus, that the larger the average phaseissttie easier distinguishable
would two syllables be. An outcome measure could be a coerddatween a
psychoacoustic test giving a syllable confusion matrix] tre ABR-based averaged
phase-shifts. Further, tests with a series of synthetialsigs, forming a range of
stimuli that are morphing from one syllable into anotheg(&tephens and Holt
2017 could be interesting. Here the hypothesis that the crbssgogram is a distance
measure could be tested directly. Furthermore, the seihgs#ind repeatability should
be tested such that it is investigated whether the crosseoiggam can be used to
assess individual intelligibility.



150 9. General discussion

9.4.3 AEP model improvements

The present AEP model is capable of simulating many featafeAEPs evoked
by both complex and simple stimuli. However, there are stihny types of
responses this model cannot simulate accurately. Impremtsrof the model would
be highly beneficial for the research community as it wouldvalthe testing of our
understanding of the underlying physiology behind AEPseddby more complex
stimuli.

Suggestions for future improvements of the model have dyrdseen made in
this thesis, to make the current simulations more accur#itevas suggested that
the cochlear tuning might be imprecise and that the sinaratiof the cochlear
compression using ASSR as well as the click-evoked ABR wévatency could
benefit from an update of this cochlear tuning. Such an upsatéd require reliable
data and thus a thorough investigation of tuning at high wtis levels and high
stimulus frequencies, as well as an investigation of th@eslof the filter-skirts.
Another suggestion was to include a mixture of high- and égpentaneous rate fibers.
This could make the model capable of accurately simulatoty the phase and the
amplitude of syllable-evoked ABRs. Finally, it was suggesto include an AVCN
stage to increase the AM synchrony and thus the modulatiam g&his AVCN
stage should only influence the components of the UR assdoigth an onset delay
of more than 3-5 ms. This would complicate the AEP modelingaason-linear
stage would be added. Amongst the complications would btettieadeconvolutive
approach to estimate the UR would become invalid.

The AEP model could also be developed to include higher hestages. This
could be important if complex speech-like stimuli were to dmnsidered. As a
starting point the modeling work bpugue et al(2010 could be usedDugue et al.
(2010 measured evoked potentials in epileptic patients whegeethctrodes were
implanted in the primary auditory cortex. These data wemapared to modeling
work based on the DRNL modelDugue et al(2010 extended the DRNL model,
such that the chopper neurons from the DRNL model, were aoeclkin a coincidence
detector argued to simulate the inferior colliculus. Thewges were followed by
stages simulating the medial geniculate body, the thalaeticular nucleus and the



primary auditory cortex. The model was shown to be able toaatfor the temporal-
modulation transfer-function data. The model is, howewet directly comparable to
the modeling work of this thesis, as the data used to fit theainwdre recorded from
electrodes inside the scalp. Some kind of unit function@ased to each of the neural
stages should thus also be developed to be able to simutasedp-recorded AEPS.

A final improvement of the model would be to simulate the reses from hearing-
impaired subjects. This would be highly relevant for stadidere clinically relevant
stimuli were to be developed. A starting point could be tosider the hearing-
impairment related to the loss of OHC functionality. The lempentation of OHC loss
in the AN model has already been attempted for the cat-fitezdion Zilany et al,
2009. However, the outcome measure were single-fiber AN regsoasd not
scalp-recorded AEPsZilany and Bruce(2007) could though inspire a fairly easy
implementation of hearing-impairment in the form of broatisming due to loss of
OHC functionality in the AEP model. Whether such an impleragah of OHC
loss would be sufficient to simulate AEP responses from hgampaired subjects
is unknown, and an evaluation of the capabilities of theihgampaired AEP model
should thus be carried out.
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The auditory evoked potential (AEP) is an electrical signal that can be
recorded from electrodes attached to the scalp of a human subject, when a
sound is presented. The signal is believed to reflect neural activity in
response to the acoustic stimulation, and is as such well established as a tool
to objectively assess the hearing of humans. However, the physiological
generation mechanisms of AEPs are a complicated interaction between linear
and nonlinear cochlear and neural processes, and are not well understood.
The purpose of this thesis was to develop a phenomenological model that
could predict key features of recorded AEPs. The model provides an
opportunity to investigate the influences of the different stages along the
auditory pathway upon the generation of AEPs.

This thesis describes the development of an AEP model capable of
simulating click-, tone-burst-, chirp- and syllable-evoked auditory brainstem
responses, and auditory steady-state responses (ASSRs). Further, the thesis
describes how the ASSR can be used to assess human cochlear
compression most effectively.
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