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Abstract

The auditory evoked potential (AEP) is an electrical signalthat can be recorded from
electrodes attached to the scalp of a human subject when a sound is presented. The
signal is considered to reflect neural activity in response to the acoustic stimulation
and is a well established clinical and research tool to objectively assess the function
and integrity of the auditory nervous system. However, the physiological generation
of AEPs represents a complicated interaction between linear and nonlinear cochlear
and neural processes and is not well understood in humans. This thesis presents
and evaluates a phenomenological model of AEP generation that can predict key
experimental observations of recorded AEPs. The purpose ofthe study was to
investigate the role of the different stages of auditory signal processing and their
effects on AEP generation.

In recent years, there has been a push both clinically and in research towards using
realistic and complex stimuli, such as speech, to electrophysiologically assess the
human hearing. However, to interpret the AEP generation to complex sounds, the
potential patterns in response to simple stimuli needs to beunderstood. Therefore,
the model was used to simulate auditory brainstem responses(ABRs) evoked by
classic stimuli like clicks, tone bursts and chirps. The ABRs to these simple stimuli
were compared to literature data and the model was shown to predict the frequency
dependence of tone-burst ABR wave-V latency and the level-dependence of ABR
wave-V amplitude for clicks and chirps varying sweeping rates. The model was also
evaluated based on ABR recordings evoked by speech syllables, and was shown to
account for the differences in the responses observed between the stimuli. It was
demonstrated that the generation of the syllable-evoked ABRs was highly influenced
by cochlear and afferent neural processing, which supported the importance of
cochlear processing for the generation of AEPs.

A second major contribution of this study was the investigation of whether auditory
steady-state responses (ASSRs) can be used to assess human cochlear compression.
Sensorineural hearing impairments is commonly associatedwith a loss of outer hair-
cell functionality, and a measurable consequence is the decreased amount of cochlear
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compression at frequencies corresponding to the damaged locations in the cochlea. In
clinical diagnostics, a fast and objective measure of localcochlear compression would
be of great benefit, as a more precise diagnose of the deficits underlying a potential
hearing impairment in both infants and adults could be obtained. It was demonstrated
in this thesis, via experimental recordings and supported by model simulations, that
the growth of the ASSR amplitude with stimulus level can indeed be used as such an
estimate of local cochlear compression.
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Resumé

Akustisk udløste potentialer (Auditory evoked potentials, AEP)1 er elektriske signaler,
der kan måles via elektroder fastgjort til hovedskallen af en person, når lyd bliver
præsenteret for personen. Signalet, der forventes at reflektere den neurale aktivitet,
der sker i respons til et akustisk stimulus, er et anerkendt værktøj til at evaluere
funktionaliteten og integriteten af det auditive neurale system. De fysiologiske
mekanismer, der genererer AEPer, repræsenterer dog en kompliceret interaktion
mellem både lineære og ulineære processer, som ikke er særlig godt forstået. Denne
afhandling præsenterer og evaluerer en fænomenologisk model af AEP generering,
som kan simulere vigtige eksperimentelle AEP observationer.

I de senere år har der været en øget interesse i både den kliniske verden og i
forskningsverdenen for at bruge realistiske og komplekse stimuli, som fx tale, til
elektrofysiologisk at evaluere den menneskelige hørelse.For at kunne fortolke AEPer
målt med komplekse stimuli er det dog nødvendigt at have forstået de potentielle
mønstre, som mere simple stimuli genererer. I denne afhandling blev AEP modellen
derfor brugt til at simulere akustiske hjernestammeresponser (Auditory brainstem
response, ABR) til klassiske stimuli som klik, tonepulser og chirps. De simulerede
ABRer blev sammenlignet med data fra litteraturen. Det blevvist, at modellen
kunne simulere frekvensafhængigheden af ABR bølge-V-latenstiden, når stimuli var
tonepulser, samt simulere niveauafhængigheden af ABR bølge-V-amplituden når
stimuli var enten klik eller chirps med varierende stigningstid. Modellen blev også
evalueret på ABR målt med stavelsesstimuli, og det blev vistat den kunne redegøre
for målte responsforskelle mellem forskellige stavelser.Det blev demonstreret, at
genereringen af AEPer målt med stavelsesstimuli var meget påvirket af cochleær
processeringen og den afferente neurale processering. Dette understreger vigtigheden
af cochleær processeringen i AEP-genereringen.

Et andet vigtigt bidrag i denne afhandling er studiet af, hvorvidt det akustiske

1 I dette resume er begreber så vidt muligt oversat til dansk, hvorimod forkortelser, for at undgå forvirring,
er bibeholdt i deres originale engelske version.
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steady-state respons (Auditory steady-state response, ASSR) kan bruges til at evaluere
cochleær kompression i mennesker. Sensorineurale høretabbliver ofte associeret med
tab af funktionaliteten af de ydre hårceller. En målbar konsekvens af dette er en
nedsat cochleær kompression ved de frekvenser, der svarer til de beskadigede steder
i øresneglen. I klinisk diagnostik ville en hurtig og objektiv test af lokal cochleær
kompression være meget værdsat, da mere præcise diagnoser af den underliggende
fysiologiske årsag til et potentielt høretab ville kunne blive stillet for både spædbørn
og voksne. I denne afhandling blev det demonstreret, via eksperimentelt arbejde såvel
som simulationer, at væksten i ASSR-amplitude med stigendestimulusniveau kan
bruges som et sådant værktøj til at estimere den lokale cochleær kompression.
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1
Introduction

The auditory evoked potential (AEP) is a sub branch of electroencephalography

(EEG) that has been in use since the 1930s. It is an electricalsignal that can be

recorded from electrodes attached to the scalp of a human subject, when a sound is

presented. The signal is believed to reflect neural activityin response to the acoustic

stimulation, and can as such be used as a tool to objectively assess the function and

integrity of the auditory nervous system. Unlike psychoacoustic measures, it does not

necessarily (depending on the particular AEP understudy) require the attention of the

test subject, making it specifically interesting to use withsmall children. The AEP

is well established as a clinical tool to screen the hearing of infants. Besides clinical

usage, it represents a powerful tool for research purposes.The AEP is objective,

fairly fast to record and reproducible. It can be recorded from all stages in the

auditory pathway, from the auditory nerve (AN) over the brainstem to the cortex. The

earliest responses, stemming from the AN or brainstem, provides an assessment of the

integrity of the mechanoelectrical transduction of sound in the auditory periphery and

initial neural encoding prior to higher order cognitive processing, and thus offers a

more direct method to investigate the auditory system than traditional psychoacoustic

methods allow. However, much interest is typically focusedon the behavioral outcome

measures and the link between the two is currently not well understood. Given the

type of stimulus and the recording settings, the neural generation site of the AEP

can be varied. Common for all types of AEPs, independent of generation site and

stimulus type, is that they produce a one-dimensional AEP pattern, where the electrical

potential varies as a function of time. This pattern reflectsa complex signal in the

brain, where individual nerves contribute in various degrees to the recorded AEP.

Further, the acoustic stimulation evoking the response hasbeen processed through the

entire auditory periphery including the nonlinear cochlea. The AEP is thus the result

1



2 1. Introduction

of an acoustic stimulation and the processing through the middle ear, the nonlinear

cochlear, and various subsequent neural sites, all of whichproduce complex neural

activity that is then recorded on the scalp of the human subject. It is difficult to deduce

the contributions from the different underlying physiological mechanisms, based on

recorded AEPs. There is thus a need for models such as the AEP model presented in

this thesis.

The generation of AEPs depend on various linear and nonlinear processes along

the auditory pathway. One way to test hypotheses about the generator mechanisms

underlying AEPs is to develop a model. Such a model should be able to predict key

experimental observations of AEPs to various stimuli, as a benchmark. The present

study develops and evaluates such an AEP model. The model is phenomenological

implying that it has been built to mimic experimentally measured phenomena instead

of strictly modeling the physiology of the auditory pathway. The model is divided

into stages similar to the auditory system, and a link between simulated phenomena

and the model stage producing the key feature of the phenomena can be established.

This means that, if a simulated AEP predicts key features of experimentally measured

AEPs, it is likely that the underlying physiology behind theactual recording resembles

the functionality that has been modeled. The AEP model builtin this study is capable

of testing current hypotheses regarding the functionalityof the different stages of

the auditory pathway, and open for investigations of where the current knowledge is

limited. Furthermore, the model can be a valuable tool to understand the consequences

of hearing loss on the formation of AEPs and can help to improve the use of AEPs as

a diagnostic tool.

The present thesis is structured as a collection of papers, where each chapter is

based on a peer-reviewed paper published in a journal or a conference proceeding.

The only exceptions are chapter7 which is based on a submitted journal paper and

chapter8 which presents recent work, not yet submitted for a journal publication.

1. Chapter2 provides a background overview of auditory evoked potentials and

reviews existing models of AEP generation and selected models of the auditory

periphery. This provides the reader with a historic overview of the field and
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presents the approaches attempted to auditory and AEP modeling found in the

literature.

2. Chapter3 is based onRønne et al.(2012) and develops an auditory brainstem

(ABR) model capable of simulating transiently evoked potentials. The mod-

eling framework and the underlying assumptions, used throughout this thesis,

are presented in this chapter. The developed model contributes with insights

into the complex nature of ABR generation, and the importance of the auditory

periphery. Further, the model has been made available online1 and can be used

to investigate the representation of other types of stimulias well.

3. Chapter4 is based onRønne et al.(2011). It investigates a limitation of the

ABR model found in chapter3, that the level-dependent latency of click-

evoked ABRs is under-estimated. A second model, based on a different

simulation of the auditory periphery, is developed in this chapter. This is done to

investigate whether the implementation of the peripheral model has a significant

influence on this limitation. The chapter contributes with adiscussion of the

potential stages in the auditory periphery that are likely to affect the level-

dependency of ABR latency. The chapter highlights that the ABR model fails to

simulate a realistic ABR latency behavior even though two established models

of peripheral processing, the auditory-nerve (AN) model and the dual-resonance

non-linear (DRNL) filter model, are used.

4. Chapter5 is based onRønne and Gøtsche-Rasmussen(2011) and presents a

study of the alignment of high- and low-frequency content when recording

rising-chirp-evoked ABRs. This study is motivated based onthe simulations

using the ABR model, and evaluates the hypothesis found in literature that

chirps evoke larger ABR amplitudes than clicks due to the time-alignment of

low-frequencies.

5. When investigating AEPs evoked by longer-duration stimulus, a key feature

of the auditory system becomes the adaptation of the inner-hair-cell (IHC) -

1 The ABR model is included in the Auditory Modeling (AM) toolbox (Søndergaard et al., 2011) and can
be downloaded from:http://amtoolbox.sourceforge.net/.

http://amtoolbox.sourceforge.net/


4 1. Introduction

auditory-nerve (AN) synapse in the cochlea. Chapter6, which is based on

Harte et al.(2010), investigates this adaptation using experimental recordings

and simulations of click trains. The chapter contributes bydiscussing the extent

to which the modeling approach can be used to simulate responses of longer-

duration stimuli.

6. Chapter7 is based onRønne et al.(2012a) and presents an investigation of

whether auditory steady-state responses (ASSR) can be usedto assess cochlear

compression in humans. This study examines two potential experimental

paradigms, level-growth and modulation-growth functions, using an analytical

approach, ASSR recordings in humans, and an extended version of the ABR

model (referred to as the ASSR model). The clear recommendation given in

this chapter is to use the level-growth function. This is a potential clinical

application that could be of interest in both infant hearingscreening and in

hearing aid fitting procedures for both children and adults.

7. Chapter8 evaluates the ABR model capabilities to simulate speech evoked

AEPs. It is demonstrated that, even with highly complex stimuli such as speech

syllables, the model captures key features of the AEP responses, demonstrating

the importance of peripheral processing for the generationof ABRs evoked by

complex stimuli. Further, the chapter contributes with a discussion of the effects

of cochlear tuning on the neural encoding of speech syllables.

8. Chapter9 provides a general discussion of the modeling approach and its

limitations. Further, the implications and perspectives of this study are

presented.



2
Background

2.1 Auditory evoked potentials

In 1875, Richard Caton recorded electrical activity from the brain of a rabbit. What he

recorded became known as electroencephalography (EEG) andhas since developed

into a major diagnostics and research tool. Fifty years later, Berger(1929) became

the first to record EEGs in human subjects.Wever and Bray(1930) recorded cochlear

microphonics in animals and were the first to use EEG for audiological purposes.

The first reported measurement of acoustically evoked responses in humans was

undertaken byFromm et al.(1935). Since 1935 the recordings of auditory evoked

potentials (AEP) have developed fast and now represents a well known and used

technique both for clinical and research purposes (seeCollura(1993) andHall (1992)

for a historical review).

A common setup for recording AEPs includes a computer generating digital sounds,

a D/A converter and an acoustic transducer presenting the sounds to the subject. On

the recording side, the setup includes electrodes attachedto the scalp, a recording

amplifier including an A/D converter and a computer to store and post-process the

recordings. The recordings are time-aligned with the stimulus and, by using multiple

repetitions and averaging, the noise can be suppressed sufficiently to record a signal

where the response to the stimulus is detectable. Noise remains though a major

obstacle to AEP recordings, and post-processing like filtering and artifact rejection

schemes are often applied. The AEP formation is highly dependent on the location

of the electrodes on the scalp. An often used configuration isto record differentially

between the vertex and the ipsi-lateral mastoid, with a ground electrode placed on the

5



6 2. Background

forehead. This configuration is sensitive to sources of electrical activity originating

from the brainstem, whereas other configurations are used depending on the AEP of

interest. Throughout this thesis, the vertex / ipsi-lateral mastoid configuration, is used

both for modeling work and experimental work.

AEPs represent the summed electric potential from many remotely located neurons

firing in response to an acoustic stimulus. They are often classified in terms of time

of occurrence after stimulus onset, specifically when transient stimuli are used. The

AEPs are thus called auditory brainstem responses (ABRs) with latencies between

1 and 15 ms (first described byJewett, 1970), middle-latency responses (MLRs)

with latencies in the range of 15-50 ms (first described byGeisler et al., 1958) and

auditory late responses (ALRs) with latencies in the range of about 75-200 ms (first

described byDavis et al., 1939). The latencies can be associated with generation

place, such that longer latencies corresponds to higher generation sites in the auditory

pathway. The generation site of the AEP has also alternatively been used to classify

recordings, such that; AEPs from the hair cells in the cochlea are called cochlear

microphonics (CM) (e.gWithnell, 2001); AEPs from the distal end of the auditory

nerve (AN) are called compound action potentials (CAPs) (e.g Chertoff et al., 2010);

AEPs from the brainstem are called auditory brainstem responses (ABR); and AEPs

from the cortex has been named cortical auditory evoked potentials (CAEPs) (e.g

Sharma and Dorman, 1999). The term ABR is in the present study used to denote both

an AEP evoked by a transient signal producing a response witha latency between 1

and 15 ms, and also as an AEP recorded at brainstem level to anyarbitrary stimulus.

A third potential classification is to classify recordings according to the stimulus

that evokes them. An AEP can be evoked by any acoustic stimulation, however, in

literature some stimuli have been studied intensively and have been established as

de facto standards for investigating AEP generation and theunderlying physiology.

These stimuli include transients like clicks, chirps and tone-bursts (e.g.Jewett, 1970;

Jewett and Williston, 1971; Dau et al., 2000, and chapter3 of this thesis), steady-

state signals such as amplitude modulated (AM) tones (e.g.John and Picton, 2000;

Galambos et al., 1981; Kuwada et al., 1986; Picton et al., 1987; Rees et al., 1986, and

chapter7 of this thesis), but also more complex signals like speech syllables (e.g.,

Warrier et al., 2004; Agung et al., 2006; Aiken and Picton, 2008; Akhoun et al., 2008;
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Lalor and Foxe, 2010; Chandrasekaran and Kraus, 2010, and chapter7 of this thesis).

Auditory steady-state responses (ASSRs) are often associated with the special case

where a pure tone carrier is modulated by a lower-frequency tonal modulator. The

response to complex stimuli like syllables have often been referred to as complex

auditory brainstem responses (cABR) (e.g.Skoe et al., 2011) or frequency following

responses (FFR) (e.g.Dau, 2003; Swaminathan et al., 2008). In this study, the syllable

evoked cABR (studied in chapter8) will be denoted ABR, as the division between a

“complex” and “non-complex” stimulus is difficult to define.

To summarize, important parameters for the AEP generation are generation site,

electrode montage, onset latency, amplitude range, subject attention and plasticity1,

as well as stimulus characteristics like duration, intensity, frequency content and

variation over time. Table2.1 summarizes the differences in the characteristics

between the different types of responses. The responses have been grouped to aid

clarity. The ASSR has not been included in the table as the modulation frequency

alters both the generation site and the dependence on subject arousal. At high

modulation rates, the ASSR would belong in the column alongside the ABR whereas

at lower modulation rates, the ASSR would behave as the CAEP.The first chapters

(3, 4, 5 and6) of this study focus on the transiently-evoked ABR, becausethese are

reproducible and largely unaffected by subject arousal. Chapter7 investigates the

low modulation rate 40-Hz ASSR (i.e. an ASSR belonging in theCAEP column).

Besides being an interesting clinical tool, the 40-Hz ASSR challenges the developed

AEP model of the present study, as it includes higher-stage neural processing and

adds potential complications of subject arousal to the model. Chapter8 investigates

the syllable-evoked ABR (cABR). This challenges the model further, as it has been

suggested in the literature that the syllable-evoked ABR issubject to plasticity.

1 physiological changes of the nervous system due to e.g. learning
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CM CAP / ABR / MLR CAEP / ALR
FFR / cABR

Generation site Cochlea Auditory nerve (AN) Cortex
and brainstem

Typical electrode Within ear canal Vertex and mastoid Multiple electrodes
montage

Onset latency < 1 ms 1 to 50 ms > 50 ms

Amplitude range µv nv µv

Subject arousal Unaffected Largely unaffected. Eliminated in
Subjects can sleep sleeping subjects

Plasticity Unaffected Experience slightly Experience alters
alters the AEP the AEP

Stimulus intensity no latency shifts latency shifts latency shifts

Table 2.1: Differences between groups of AEPs.

2.2 Auditory models

Several models of the (human and animal) auditory pathway have been proposed.

Some of which aim at modeling cochlear mechanics and the underlying physiology

as strictly as possible while others model the observed responses without having the

intention of strictly modeling each stage of the physiological pathway. The latter

is called a phenomenological model. This section describestwo well-established

phenomenological auditory models, the auditory nerve (AN)model and the dual-

resonance non-linear (DRNL) model. The AN model is used as the basis for the

AEP model developed in this study. The DRNL model, is considered as an alternative

AEP model (Rønne et al., 2011, chapter4).
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2.2.1 The AN model

The AN model is a phenomenological model developed over manyyears (1993 - to

present), designed to simulate AN responses of cats. The original AN model (Carney,

1993) simulates single-fiber responses which are linked to a specific place on the BM

with a specific characteristic frequency (CF). Even though the model only simulates

responses from one fiber at a time, the simulation of the response to broad-band stimuli

is possible, as the BM filter stage of the model simulates the contributions from both

on- and off-frequency stimulation to the single-fiber response. This ensures that the

simulated single-fiber responses can be compared to experimental single-fiber AN

recordings (in this model from cats). The first stage of the original AN model is a

time-varying BM filter, implemented as a symmetric gamma-tone filter, with a feed-

back control path simulating broadening tuning with increasing stimulus level. The

output is delayed in time to simulate the traveling-wave delay on the BM. The signal

path of the model does further contain an inner hair-cell (IHC) non-linearity that gives

a physiologically-inspired half-wave rectification. Combined with a low-pass filter,

this simulates the transition between responses followingthe fine-structure of the

stimulus at low stimulus-frequencies and responses following the stimulus-envelope

at higher stimulus-frequencies. The IHC-AN stage producesadaptation (similar to

Westerman and Smith, 1988) resulting in an onset emphasis and a slight suppression

of the late part of a long duration response. The last stage inthe model simulates the

refractoriness of the neural AN responses. The refractory stage is not included in the

AEP model developed on basis of the AN model.

The AN model has been modified several times.Zhang et al.(2001) exchanged

the feed-back control path of the BM filtering with a feed-forward control path.

Further, the control path filter was made broader than the signal path filter, and

the tip was shifted slightly towards a higher CF. These updates made the model

capable of simulating two-tone suppression, asymmetricalgrowth of suppression

and the offset of suppression tuning curves (compared to excitatory tuning curves).

TheZhang et al.(2001) cat-version of the AN model was transformed into a human

version byHeinz et al.(2001) which was later used byDau(2003) to develop a human

ABR model.
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Tan and Carney(2003) implemented a middle-ear filter and exchanged the gamma-

tone BM filters by chirping BM filters. The latter was done to simulate best frequency2

shifts with stimulus level and frequency glides in the impulse responses independent

of stimulus levels. Experimentally, the best frequency hasbeen observed to shift

upwards with increasing stimulus levels. The frequency glides, also accounted for

by theTan and Carney(2003) AN model, is based on the experimental observation

that the early part of the impulse response of a BM filter is notdominated by the same

frequency components as the later part of the impulse response (Carney et al., 1999).

The frequency glide was found to be independent of stimulus level, such that the zero-

crossings of the fine structure was independent of level whereas the envelope of the

response changes with level.

Zilany and Bruce(2006) and Zilany and Bruce(2007) modified the model to be

able to account for the effect of high stimulus levels. Tonespresented at high

stimulus levels have been shown to be subject to a sharp transition of up to 180◦

of the phase-level function (Kiang, 1990). This transition is called the component 1

(C1)/component 2 (C2) transition, where C1 is the response to low stimulus-levels

and C2 the response to high stimulus levels. At the levels of the C1/C2 transition,

approximately 90 to 105 dB SPL, “peak splitting” occurs (Kiang, 1990). Peak splitting

describes the phenomena that the phase-locked response to ahigh-level tone can result

in a doubling of the number of peaks in the recorded time histograms. In this case,

peaks in-between the phase-locked peaks appear when the stimulus-level approaches

95 dB SPL and grows with stimulus-level until they completely dominates above 105

dB SPL, resulting in a 180◦ phase shift (C1/C2 transition). These two related effects,

the C1/C2 transition and peak splitting, were implemented in the model as a parallel

C2 filter path, complementing the regular (C1) signal path.

The latest version of the model (Zilany et al., 2009) exchanged the double log-

arithmic adaptation with a combined logarithmic and power-law adaptation which

have been shown to provide a more realistic IHC-AN adaptation behavior. Among

the achieved improvements were a more accurate prediction of forward-masking, an

2 The best frequency was defined as the frequency at which the fiber response is strongest at a certain
stimulus level, whereas the CF can be defined as the frequency where the threshold of the fiber is lowest
(Tan and Carney, 2003)



2.2 Auditory models 11

improved recovery of the AN response after stimulus-onset and improved predictions

of the response-synchrony to amplitude-modulated tones. In table2.2, the differences

between the AN model versions are shown with respect to the phenomena they can

simulate.

TheZilany and Bruce(2007) AN model was used here as basis for the ABR model

discussed in chapters3, 4, 5 and6. TheZilany et al.(2009) AN model was used as

basis for the ASSR model and the ABR model presented in chapters 7 and8.

2.2.2 The DRNL model

Another well established auditory model is the DRNL model which build upon the

DRNL filter. The DRNL filter (Meddis et al., 2001) resembles the BM stage of the AN

model such that it also is a phenomenological model that simulates the response of a

single place on the BM. Furthermore, the original DRNL model(Meddis et al., 2001)

was also evaluated on animal data (chinchilla and guinea pig). The input to the model

is stapes velocity and the output BM motion. Although the model is implemented in

a different way as the AN model (the DRNL filter is implementedas the sum of two

parallel processes, one linear and one nonlinear, whereas the AN model uses a feed-

forward control path to control the BM filter), it is capable of simulating many of the

same BM related phenomena, such as compressive input/output functions, two tone

suppression and frequency glides3. Lopez-Poveda and Meddis(2001) exchanged the

animal-fitted parameters of theMeddis et al.(2001) DRNL model with human-data-

fitted parameters, and added an outer- and middle-ear filter stage before the DRNL

filter. In the model presented byMeddis (2006)4 an advanced model of the IHC

functionality was added to the DRNL model5. Furthermore, a spike generating AN

stage which includes refractoriness was implemented. The output of the peripheral

part of the DRNL model, including stages from the outer ear tothe AN, were used as

3 Tan and Carney(2003) argued that the frequency glides of the DRNL model are level-dependent,
contrary to experimental data

4 parts of the work was presented inSumner et al.(2002) andSumner et al.(2003)
5 this far more complicated model is sometimes referred to as the “model of the auditory periphery”,

however, to avoid confusion the term DRNL model are used here.The term DRNL model has to be
distinguish from the DRNL filter described previously
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Auditory function / Carney Zhang Tan Zilany Zilany
processing stage 1993 2001 2003 2007 2009

Middle ear
Middle ear filtering + + +

Basilar membrane filtering
Broadening tuning with stim. level + + + + +
Compressive input/output functions + + + + +
Traveling wave delay + + + + +
Two-tone suppression + + + +
Assym. growth of suppression + + + +
Frequency glides + + +
Best frequency shifts + + +
C1/C2 transition + +
Peak splitting + +

IHC transduction
Physiological rectification + + + + +
Upper limit of phase locking + + + + +

IHC-AN synapse
Double logarithmic adaptation + + + + +
Power law adaptation +

Spike generator
Refractoriness + + + + +

Table 2.2: Overview of the AN model development, with respect to the phenomena simulated by the
respective version of the model. The corresponding papers correctly referenced are;Carney(1993),
Zhang et al.(2001), Tan and Carney(2003), Zilany and Bruce(2007) and Zilany et al. (2009). The
Heinz et al.(2001) model is similar to theZhang et al.(2001) only human- instead of cat-fitted parameters
are used.
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input to a neural model of a single cochlear nucleus chopper neuron, effectively being

a decision making stage that compares inputs from several modeled AN responses

(tuned to different CFs).

2.3 Modeling AEPs

In this section, a convolutive approach to simulating AEPs is described. This

convolutive approach has been used in the present study to develop an ABR model, as

convolution between single fiber responses produced by the AN model and a so-called

unitary response (UR).

2.3.1 Convolutive approach

Elberling(1976) defined a “unit function” as the recorded electrical waveform that is

synchronous to a single event (one spike) in one neuron. Given the assumption that

the same waveform is generated by all types of neurons,deBoer(1975) developed

a model of CAP generation. The CAP model was based on linear BMfiltering,

half-wave rectification and envelope extraction. The output of this peripheral part

of the model was the firing rate function. To model CAPs, recorded in the ear

canal,deBoer(1975) proposed a unit function describing the waveform recordedin

the ear canal when a distal AN neuron discharges. Theoretically the summation of

contributions from all AN neurons would lead to the CAP, assuming that there are no

other interfering electrical potentials. However, as summation of all neurons were not

computationally viable,deBoer(1975) suggested to use 64 representative neurons,

each related to a different BM filter tuned to a specific CF. Thesummed activity

pattern, from the 64 channels, convolved with a (calibrated) unit function provided

the simulated CAP. Following this concept,Melcher and Kiang(1996) suggested, in

a more general description, that the potential produced at surface mounted electrodes

by any cell in the auditory pathway, including higher neuralstages, can be described

by the convolution of the instantaneous discharge rate witha unitary response (UR).

This concept was adopted byDau(2003) who developed an ABR model.Dau(2003)
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Figure 2.1: The UR derived byDau(2003) and corresponding click evoked ABR.

used the AN model byHeinz et al.(2001) to produce instantaneous discharge rates

and a summed activity pattern. AsdeBoer(1975), this was done using independent

channels tuned to different CFs. InDau (2003), 500 channels between 100 Hz and

10 kHz were considered. The summed activity pattern represented the activity at

the distal end of the AN and was inDau (2003) convolved with a UR representing

not only contributions from wave-I (the CAP) of the ABR (as the unit function of

deBoer, 1975), but also contributions from wave-II to wave-VII, i.e. components

spanning the first 7 ms of the neural processing. The UR idea was thus that a single

spike in IHC-AN traveling up the auditory pathway, will elicit potentials at several

places, each delayed and scaled compared to the previous one. Dau(2003) assumed

the UR to be a linear function independent of stimulus, thus arguing that convolving

the instantaneous discharge rate functions with the UR and adding the contributions

after wards, yields the same result as convolving the summedactivity pattern with

the UR. The UR was calculated as the deconvolution between the summed activity

pattern evoked by a click stimulus, and an experimentally recorded ABR evoked by

an identical click stimulus. Figure2.1 shows the derived UR and the recorded click

evoked ABR (reprinted with permission fromDau, 2003). The UR bears a large

resemblance to the recorded click evoked ABR, and waves corresponding to wave-

I, -III and -V can be detected.

In contrast to thedeBoer(1975) model, not only the CAP component but also later

waves of the ABR response was considered inDau(2003). Furthermore, the effect of
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nonlinear BM processing on the potential pattern was considered, whiledeBoer(1975)

used a linear model. However, both models were based on the same assumptions

that, 1) the complete set of AN fibers can be replaced by a limited set of simulated

fibers (channels), each corresponding to a representative place on the BM tuned to a

specific CF. 2) The individual channels creating the instantaneous discharge rates act

independently of one another. 3) The UR is linear. Meaning that it is invariant to the

type of stimulation, subject and the type of neurons involved.

The third assumption was evaluated byChertoff (2004), who found that his

unit function was slightly dependent on both stimulus-frequency and stimulus-level;

however, the stimulus-dependencies were small and no general description was

attempted.

Regarding the simulation of steady-state responses,Bohorquez and Oezdamar

(2008) presented a convolution approach to predict the 40-Hz ASSR. This

convolution approach has little resemblance to the UR method described above.

Bohorquez and Oezdamar(2008) modeled the 40-Hz ASSR as a convolution between

a click-train and the single-click evoked MLR, thus modeling the ASSR as a linear

convolution between two linear functions. The click-evoked MLR consist of three

main peaks, the ABR wave-V thePa and thePb, each of which are typically separated

by approximately 25 ms. When a click-train at a rate of 40 Hz is presented to the

auditory system, the components of the MLR were argued to addup in phase, such

that theNa peak of one click will add up in phase with theNb peak of the previous

click. A convolutive approach thus seems to be modeling the 40 Hz ASSR well.

2.3.2 Dipole modeling and ABR physiology sources

Scherg and von Cramon(1985a) developed a spatio-temporal dipole model of AEP

generation. The model was focusing on the electrical dipolecomponents in the brain,

and had therefore no model of the auditory periphery. The basic assumption was that

scalp potentials result from the superposition of all charges within the brain. Further,

it was argued that, as the net charge in the brain is zero, onlypairs of positive and

negative charges exist. Each pair is thus producing a dipolefield. The primary idea
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was that the scalp potentials result from the superpositionof the far fields of many

microscopic dipoles, i.e. the same assumption asdeBoer(1975), Elberling (1976),

Melcher and Kiang(1996) andDau(2003) used to argue for the UR idea. The main

difference between the approaches was the use of multi-channel recordings in both

Scherg and von Cramon(1985a) andScherg and von Cramon(1985), and the fact that

the UR of Dau (2003) includes neural processing whereasScherg and von Cramon

(1985a) only considers the propagation from the dipole to the electrodes. The aim of

Scherg and von Cramon(1985) andScherg and von Cramon(1985a) were to provide

a full description of the waveforms at all electrodes simultaneously. By searching for

the minimal number of equivalent dipoles sufficient to explain the scalp potential, each

dipole source (defined by stationary location and orientation) could be associated with

a hypothesized anatomical source. This approach led to the conclusion that the spread

of local potential to the electrodes was only dependent on the location and orientation

of the recording electrodes and dipole sources. The UR of, e.g., Dau(2003) can thus

be seen as the special case, where the electrode locations where at vertex and mastoid

(giving the orientation as direction between them), and where only the dipole sources

in the brain aligned with this orientation (or weighted according to their misalignment)

were effective.Scherg and von Cramon(1985) found that the generation of wave-I of

the classic ABR was located to the distal end of the auditory nerve. Wave-III of the

ABR, was located to be in, or near to, the cochlear nucleus. Wave-IV and wave-V

could not be located precisely; however, an origin in the early parts of the brainstem

was suggested.

2.4 Background summary

This chapter reviewed the literature on some of the key aspects of this study. It was

outlined how this study models the transiently evoked ABR, the 40 Hz ASSR and the

syllable-evoked ABR. Furthermore, the present study develops an AEP model based

on the convolutive approach, where the AN model produces a summed activity pattern,

that is convolved with a linear UR, to produce the simulated AEP. The following
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chapter is based onRønne et al.(2012), which develops and evaluate the ABR model,

designed to simulate transiently evoked ABRs.
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3
Modeling auditory evoked brainstem

responses to transient stimuli

This chapter develops an ABR model. The theoretical modeling framework is

presented, as is the main implementation details on how the AN model has been

humanized. Both the theoretical framework and the humanization is used throughout

this thesis. This chapter can thus be read both as an independent study of modeling

transiently evoked ABRs, and as the method section for the rest of this thesis. The

chapter is based onRønne et al.(2012).

3.1 Abstract

A quantitative model is presented that describes the formation of auditory brainstem

responses (ABR) to tone pulses, clicks and rising chirps as afunction of stimulation

level. The model computes the convolution of the instantaneous discharge rates

using the “humanized” nonlinear auditory-nerve (AN) modelof Zilany and Bruce

(2007) and an empirically derived unitary response function which is assumed to

reflect contributions from different cell populations within the auditory brainstem,

recorded at a given pair of electrodes on the scalp. It is shown that the model

accounts for the decrease of tone-pulse evoked wave-V latency with frequency but

underestimates the level dependency of the tone-pulse as well as click-evoked latency

values. Furthermore, the model correctly predicts the nonlinear wave-V amplitude

behavior in response to the chirp stimulation both as a function of chirp sweeping

rate and level. Overall, the results support the hypothesisthat the pattern of ABR

19
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generation is strongly affected by the nonlinear and dispersive processes in the

cochlea.

3.2 Introduction

When sound is presented to the ear, it is possible to record auditory evoked potentials

(AEPs) on the surface of the human scalp. AEPs represent the summed electric

potential from many remotely located neurons firing in response to the stimulus

applied. They are typically grouped in terms of time of occurrence after stimulus

onset and are thus denoted as auditory brainstem responses (ABRs) with latencies

between 1 and 7 ms, middle-latency responses (MLRs) with latencies in the range of

15-50 ms, and auditory late responses (ALRs) with latenciesin the range of about

75-200 ms.

AEPs have been used to asses the neural encoding of sound bothfor clinical and

research purposes. Various types of stimuli have been considered, such as transients

like clicks, chirps and tone-bursts (e.g.,Jewett and Williston, 1971; Dau et al., 2000),

steady-state signals such as amplitude modulated (AM) tones (e.g.John and Picton,

2000; Galambos et al., 1981; Kuwada et al., 1986; Picton et al., 1987; Rees et al.,

1986), but also more complex signals like speech (e.g.,Warrier et al., 2004;

Agung et al., 2006; Swaminathan et al., 2008; Aiken and Picton, 2008; Akhoun et al.,

2008; Lalor and Foxe, 2010; Chandrasekaran and Kraus, 2010). Tone-burst evoked

ABRs have been studied to objectively estimate frequency-specific hearing sensitivity,

for example in newborn and young children (e.g.Ribeiro and Carvallo, 2008)

or to estimate effects of cochlear group delay as a function of frequency and

level of stimulation (e.g.Gorga et al., 1988; Harte et al., 2009; Neely et al., 1988;

Murray et al., 1998). Broadband rising chirps have recently been developed forABR

recordings to maximize synchronous firing of nerve fibers across frequency, leading

to an increase of ABR wave-V amplitude and a higher signal-to-noise ratio compared

to traditional click stimulation (e.g.Dau et al., 2000; Elberling and Don, 2008;

Fobel and Dau, 2004; Junius and Dau, 2005; Shore and Nuttall, 1985). It is argued

(Dau et al., 2000), that these broadband chirp stimuli compensate for the frequency-
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dependent group delay seen in the basilar membrane (BM) velocity/displacement

traveling waves. In a recent study,Elberling et al.(2010) presented five chirps with

different frequency-delay functions and investigated theresulting wave-V amplitude

of their responses at stimulation levels of 20, 40 and 60 dB normal hearing level

(nHL). Their results demonstrated that the dispersion function, or sweeping rate, of

the chirp that evoked the largest wave-V amplitude was a function of stimulation level.

With increasing level, the “optimal” chirp that created thelargest wave-V response

was found to become progressively shorter (Elberling et al., 2010), i.e. to have the

fastest sweeping rate.

It is well known that thefrequencydependency of wave-V latency is related to

the tonotopical coding of frequency on the BM in the cochlea.High-frequency

stimulation excites basal parts of the BM and thus produces ashorter delay than

low-frequency stimulation that mainly excites apical parts of the BM (Gorga et al.,

1988; Greenwood, 1990; Harte et al., 2009; Neely et al., 1988; Murray et al., 1998).

Theleveldependency of wave-V latency is not so well understood. Cochlear tuning is

known to be level dependent, where an increase of the stimulus level results in broader

auditory filters and thus a broader excitation pattern on theBM (Glasberg and Moore,

1990; Recio and Rhode, 2000). This means that regions of the BM with characteristic

frequencies further away from the stimulus frequency are also excited. Elberling

(1976) andFolsom(1984) reasoned that the broadening of excitation with level might

result in shorter latencies, as more basal regions of the BM are activated that are

associated with shorter implicit delays. Another inherentfeature of the filter tuning is

the change in the envelope of the BM impulse response at a given location, as level is

increased. The timing of the individual peaks of the physiological impulse response

are level independent but the amplitude of the earlier peaksare more emphasized

as the stimulus level increases (e.g.,Kiang (1965), Recio and Rhode(2000)). This

change in the envelope, as stimulus level is increased, results in an onset emphasis

that could result in a decrease of the wave-V latency. Adaptation in the inner-hair

cell (IHC)-AN synapse similarly enhances the onset of a signal while attenuating later

parts (Westerman and Smith, 1988) in the stimulus. Thus, adaptation in the IHC-AN

synapse might also contribute to the level-dependence of wave-V latency.
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The wave V amplitude is both stimulus frequency and stimuluslevel dependent.

The general shape of the frequency dependence is consideredto be mainly controlled

by the transfer functions of the outer and middle ear effectively acting as a band-

pass filter (Pascal et al., 1998; Puria, 2003), with maximal transduction at 1-2 kHz.

The level dependence of the wave-V amplitude results from the summation of

the individual neural responses after the non-linear processing through the BM at

the individual characteristic frequencies (CFs), where compressive behavior has

been found for medium-level stimulation at the CF while linear behavior has been

found for low-level stimulation (e.g.Ruggero et al., 1997). The chirp-evoked ABRs

obtained in Elberling et al. (2010) demonstrated non-monotonic level-dependent

behavior, assumed to result from the broadening of neural excitation with increasing

level (Harte et al., 2010). At low levels, each frequency component of the chirp

might excite a narrow region on the BM and, given the timing associated with each

component, might add up in phase (e.g.Dau et al., 2000). At high stimulus levels,

each frequency component excites a broader region on the BM,due to upwards spread

of excitation (Rhode and Recio, 2000). Thus, a specific location on the BM is excited

by a broader range of frequency components. These differentcomponents contribute

with different timing which results in desynchronization and a reduction of ABR

wave-V amplitude (Elberling et al., 2010).

However, while it appears obvious that cochlear processingaffects ABR amplitudes

and latencies, only very few studies have actually attempted to provide quantitative

predictions of ABR data. In the present study, a computational model is presented that

simulates evoked responses to tone pulses of various frequencies and levels, upward

chirps with different sweep rates and levels as well as clickstimuli. The key stages

in the model are (i) the nonlinear processing in the cochlea,including key properties

such as compressive basilar-membrane filtering, inner hair-cell (IHC) transduction,

and IHC-AN synapse adaptation, and (ii) the (linear) transformation between the

neural representation at the output of the AN and the recorded potential at the scalp.

This approach was inspired byGoldstein and Kiang(1958), who described evoked

responses as a linear convolution of an elementary unit waveform of a given neuron,

called the unitary response, with the instantaneous auditory nerve (AN) discharge rate
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in response to a given stimulus. This approach was applied tosimulate cat compound

action potentials (CAP) bydeBoer(1975).

Based on the work ofGoldstein and Kiang (1958), deBoer (1975) and

Melcher and Kiang(1996), Dau (2003) proposed a model for the generation of

ABRs and frequency following responses (FFR) to tones. InDau(2003), the unitary

response was estimated empirically based on measured ABR data, via deconvolution

of average click-evoked responses and the simulated neuralactivity pattern at the

output of an AN model.Dau(2003) demonstrated that the auditory periphery strongly

affects the simulated ABR patterns and could account for some of the key features

observed in the recordings of chirp- versus click-evoked responses. However, while

that study provided a proof of concept, it did not consider a more detailed analysis

of the responses as a function of stimulation frequency and level. Furthermore,

significant discrepancies between the predicted and measured wave-V latencies were

observed but not further evaluated. Here, the original modeling framework ofDau

(2003) was extended to include current advances in AN modeling, such as linear

BM filters at high stimulus levels, peak splitting (Kiang, 1990) and a shift of best

frequency with level. The AN model developed byZilany and Bruce(2007) was used

here which is based on current knowledge derived from both behavioral and objective

measures of cochlear processing. The model was originally developed for cat but also

adopted by the same authors for humans including corresponding middle-ear filtering

and BM filter tuning (Ibrahim and Bruce, 2010).

3.3 Model for ABR generation

3.3.1 Convolution model of ABR generation

Melcher and Kiang(1996) described the generation of ABR in cats as a summation of

individual brainstem cell potentials,vi , in response to a given stimulus,s;

ABR(t, x̄1, x̄2,s) = ∑
i

vi(t, x̄1, x̄2,s) (3.1)
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where ¯x1 and ¯x2 are the locations of the electrodes on the scalp. The potential, vi , in

response to a given acoustic stimulus, can be determined by aconvolution between

the instantaneous firing rate of theith cell, r i(t,s), and a unitary response function,

u(t, x̄1, x̄2). This latter function is defined as the potential produced between the

electrode positions on the scalp, ¯x1 and ¯x2, each time the cell discharges;

vi(t, x̄1, x̄2,s) = r i(t,s)⋆ui(t, x̄1, x̄2) (3.2)

where⋆ denotes the convolution operation. To obtain an ABR with this method, all

cells need to be considered individually, which would be computationally prohibitive.

To avoid this,Melcher and Kiang(1996) suggested the use of the cell population

potential,V. Cells can be grouped by the physio-anatomical type of the cell, p, where

P is the number of different cell types:

ABR(t, x̄1, x̄2,s) =
P

∑
p=1

Vp(t, x̄1, x̄2,s) (3.3)

It is reasonable to assume that all cells of the population described have the same

unitary response (UR),u(t,x1,x2), as they have the same morphological and electrical

properties (Melcher and Kiang, 1996). The combination of eqn. (3.2) and (3.3) yields

a general expression for ABR generation:

ABR(t, x̄1, x̄2,s) = u(t, x̄1, x̄2)⋆
P

∑
p=1

Np

∑
i=1

rpi(t,s) (3.4)

where Np is the total number of cells of type,p. The three main peaks in the

click-evoked ABR are waves I, III and V.Dau (2003) made the assumption that the

instantaneous firing functions in the medial superior olive(MSO), anterior ventral

cochlear nucleus (AVCN) are the same as in the AN, following the suggestion by

Melcher and Kiang(1996). Thus, the instantaneous firing functions for the different

cell populations are given byr i,MSO = r i,AVCN = r i,AN = r i , simplifying Eqn.3.4to:
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ABR = u(t, x̄1, x̄2)⋆
N

∑
i=1

r i(t,s) (3.5)

The generation of an ABR is thus represented as the sum of the instantaneous firing

from all cells, convolved with a UR that is dependent on the electrode location on the

scalp but assumed to be independent of cell type, efferent influence and stimulus.

3.3.2 Model structure

The structure of the ABR model is shown in Fig. 1. The AN model calculates the

instantaneous discharge rate for individual AN fibers, in response to a given acoustic

stimulus defined in pascals. Each AN fiber is tuned to a specificcharacteristic

frequency (CF). The CFs chosen were spaced according to the human cochlear map

of Greenwood(1990). The number of fibers included was a trade-off between

computational time and model accuracy. Throughout this study, 500 fibers ranging

from 100 Hz to 16 kHz were used in all simulations. The fibers were chosen so they

were spaced equally on the BM according to the human cochlearmap (Greenwood,

1990). The output of the AN model, the instantaneous firing rate ofall the AN fibers,

were summed and convolved with the UR function.

The AN model ofZilany and Bruce(2006) is shown schematically in Fig. 2. The

input to the AN model is the instantaneous pressure waveformof the stimulus in

units of pascals. The output of the AN model is the spike rate in response to the

stimulus pressure. The model includes a number of key functional stages: a middle-

ear filter; a feed-forward control path; a primary signal-path filter (C1) representing

the basilar membrane (BM) filtering adapted by the control path; a parallel-path filter

(C2) for high-level stimuli; an inner-hair cell (IHC) section followed by a synapse

model and a stochastic AN spike discharge generator. In Fig.2, the following

abbreviations are used: outer hair cell (OHC), low-pass (LP) filter, static nonlinearity

(NL), characteristic frequency (CF) and inverting nonlinearity (INV). COHC andCIHC

are scaling constants that indicate the OHC and IHC status, respectively. The black

and gray curves in the filter stages represent the tuning at low and high sound pressure
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Figure 3.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually
simulated by the AN model. The summed activity, integrated across frequency, is then convolved with a
unitary response and represents the simulated ABR to a given stimulus.

levels, respectively. The wide band C2 filter shape is fixed and is the same as the

broadest possible C1 filter. The black and gray functions in the stage following the

C1 filter indicate the nonlinearity in the IHC input/output functions in normal and

impaired (scaled down according toCIHC) hearing, respectively. Details about the

model implementation can be found inZilany and Bruce(2006). In the present study,

the spikes/s output from the synapse model was used, rather than the stochastic output

from the spike generator. The stochastic spike generator requires averaging over many

repetitions before it becomes repeatable and thus usable toABR modeling.

3.3.3 Features of the humanized AN model

The parameters of the AN model ofZilany and Bruce(2006) andZilany and Bruce

(2007) were originally fitted to cat AN data. Later, the model was modified to estimate

human responses by the same authors. First, the original catmiddle-ear transfer

function was replaced by a human middle-ear transfer function, based on the linear
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Figure 3.2: Diagram of the auditory-nerve model developed byZilany and Bruce(2006). Reprinted from
Zilany and Bruce(2006) with permission from the Acoustical Society of America (©2006). The input to
the AN model is the instantaneous pressure waveform of the stimulus in units of pascals. This waveform
is band pass filtered by a middle-ear filter. A feed-forward control path filter determines the characteristics
of the main C1 filter path which is mainly active at levels below approximately 96 dB SPL. A parallel C2
filter path is mainly active at higher stimulus levels. The two filter paths are followed by a nonlinear inner
hair-cell (IHC) stage and a nonlinear synapse model. The output of the AN model, used in this study, is the
instantaneous discharge rate obtained at the output of the synapse model.

circuit model ofPascal et al.(1998). Second, the cat BM tuning was replaced by

human BM tuning (seeIbrahim and Bruce, 2010, for details). Two prominent and

different estimates of BM tuning exist in the literature, hence the relative broad tuning

by Glasberg and Moore(1990) and the sharper tuning byShera et al.(2002). In this

study, the tuning fromShera et al.(2002) was used. It has been argued that humans

have this significantly sharper BM mechanical tuning than experimental animals such

as cats and guinea pigs (Shera et al., 2002, 2010; Bentsen et al., 2011). The sharper

human tuning is also probable in light of the recent findings by Joris et al.(2011) who

showed that macaque monkeys have sharper tuning than rodents and cats. Further, the

simulations using the ABR model produced the best results with theShera et al.(2002)

tuning compared to the alternative broader tuning presented by Glasberg and Moore

(1990). To incorporate the sharper tuning, the model equivalent rectangular bandwidth

(ERB) quality factor,QERB, for cochlear tuning was modified to be:

QERB = 12.7

(

CF
1000

)0.3

(3.6)

where CF is the center frequency of the BM filter. According toShera et al.(2002),
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Figure 3.3: Filter bandwidths,QERB, derived from the output of the C1 filter path (from Fig. 2). The dashed
curve showsQERB estimates based onShera et al.(2002)’s data obtained at a stimulation level of 40 dB pe
SPL.

this function is applicable to humans at frequencies at and above 1 kHz. To map the

QERB to theQ10 estimates used by the AN model the following mapping function was

used (Ibrahim and Bruce, 2010):

Q10 = 0.2085+0.505QERB (3.7)

Fig. 3.3shows the quality factor, Q, for the model’s filters for different levels and CFs

derived from simulated responses. The Q-values were derived from tuning curves

by evaluating the magnitude response at CF to a number of puretones with equal

amplitude covering the frequency range around CF. The output from the C1 filter path

was used for this calculation.

Third, cochlear suppression tuning curves have been found to have a peak at a

higher frequency than the tip of an excitatory tuning curve (Delgutte, 1990), i.e.,

maximum suppression has been observed when stimulating at ahigher frequency

than CF. This was implemented in the originalZilany and Bruce(2006) model by
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basally shifting the CF of the so-called control path filter by 1.2 mm on the BM. The

1.2 mm basal shift was retained in the humanized model, butGreenwood(1990)’s

human frequency-place mapping was implemented to link the 1.2 mm shift to the

corresponding characteristic frequency.

3.4 Method

3.4.1 Estimation of the unitary response

The unitary response (UR) was obtained by deconvolving a “template” click-evoked

ABR with the summed neural activity pattern generated by theAN model in response

to a click stimulus. Given the assumed superposition, any stimulus should in theory

be usable. In this study, a click stimulus was chosen as it is most commonly used in

clinics. The deconvolution is an ill-posed mathematical problem and has an infinite

number of solutions. A stable and probable solution was, like in Dau (2003), found

using Tikhonov regularization (Tikhonov, 1963) as implemented in the MATLAB

Regularization Tools ofHansen(1998). The UR is subject dependent. In an attempt to

employ a general UR,Elberling et al.(2010)’s grand average ABR data (left panel of

Fig. 4) was used for the deconvolution. The resulting general UR was advantageous

as the simulations presented in this study were compared to reference data, typically

averaged across many subjects.

The grand average ABR (Elberling et al., 2010) was made by aligning wave-V

peaks across recordings from 20 ears. The stimulus was a 100µs standard click

presented at 60 dBnHL (≈ 95.2 dB pe SPL, see section III.B.3 for conversion factor).

The alignment procedure created a standardized click-evoked ABR that had the

disadvantage that the wave-V amplitude was smaller than in an individually measured

ABR, due to inter-subject variability of the individual wave-forms. The UR was

therefore scaled such that the simulated click-evoked ABR at 40 dBnHL had the

same amplitude as the mean ABR amplitudes (rather than the amplitude of the grand

averaged waveforms) fromElberling et al.(2010). The right panel of Figure3.4shows

the UR, obtained with the grand averaged ABR (from the left panel) as the target. The



30 3. Modeling auditory evoked brainstem responses to transient stimuli

2 4 6 8 10
−200

0

200

400

Time [ms]

A
B

R
 a

m
pl

itu
de

 [n
v]

I

III

V

2 4 6 8 10
−2

−1

0

1

2

3
x 10

−8

Time [ms]
A

m
pl

itu
de

 [m
od

el
 u

ni
ts

]

Figure 3.4: Left panel: Grand average ABR evoked by 60 dBnHL click (Elberling et al., 2010). Right panel:
The derived unitary response function used throughout thisstudy. This was calculated as the deconvolution
of the grand average ABR and the summed neural activity patterngenerated by the AN model in response
to an identical click stimulus.

UR function is similar to the one obtained inDau (2003). The ABR model using

this UR is also capable of simulating the latency of wave-I. Given the linearity of the

UR function the wave-I to wave-V interval will remain constant. Simulated wave-I

amplitudes will however be smaller due to the way the UR was derived from the grand

average ABR. If the model were to simulate wave-I amplitudes, the UR should either

be scaled according to a representative wave-I amplitude, or be recalculated based on

a click-response where the wave-I is more faithfully represented. In the present model,

linear superposition was assumed above the level of the AN synapse; thus, the derived

UR function was applied to any input stimulus at any level.

3.4.2 Stimuli

Tone bursts

Hanning-windowed tone bursts as inHarte et al.(2009) were used as stimuli. The tone

bursts with center frequencies of 2 kHz and above included approximately 10 cycles

and therefore ranged from 5 to 1.25 ms (see Table3.1). The number of cycles during

the rise time period was reduced to 7.5 at 1.5 kHz and 5 at 1.0 kHz. These durations

represent a trade-off between having an equal number of cycles across frequencies and
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Frequency Total Length
kHz ms cycles
0.5 10 5
0.75 7 5.25

1 5 5
1.5 5 7.5
2 5 10
3 3.4 10.2
4 2.5 10
6 1.7 10.2
8 1.25 10

Table 3.1: Tone burst stimuli used, with durations represented in ms and as number of cycles.

a relatively narrow spread in their spectrum. Levels of 40 to100 dB peSPL were used,

in steps of 10 dB.

Broadband chirps and clicks

Five chirps with different delay functions were used as defined in Elberling et al.

(2010). The frequency-dependent delays of the chirps were definedas:

τ = k ·CF−d (3.8)

whereτ represents the latency associated with frequency CF, andk andd are paired

constants. Table3.2 lists the parameters representing the individual chirps, following

the choices ofElberling et al.(2010). The delay difference between 710 and 5700 Hz

for the chirps 1 to 5 were thus 1.86, 2.56, 3.32, 4.12 and 5.04 ms, respectively. For

comparison, a “standard” click stimulus of 100µs duration was presented at 20, 40

and 60 dB nHL. The five chirps were calibrated such that they had the same spectrum

level as the click.
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k d Chirp
0.4501 0.6373 5
0.2207 0.5468 4
0.1083 0.4563 3
0.0531 0.3658 2
0.0260 0.2753 1

Table 3.2: Values of the paired parameter, k and d, which definethe delay-frequency function (eq.3.8)

Calibration of the stimuli

As the experimental data were described in dB pe SPL or dB nHL,it was necessary

to acoustically calibrate the transient stimuli used in this study with an IEC 60711

coupler. The tone bursts and the click were measured acoustically with an Etymotic

ER2 earphone connected to an IEC 60711 coupler (Brüel and Kjær 4157) through a

Brüel and Kjær external ear simulator DB 2012. For each stimulus in the tone burst

simulation (6 tone bursts and 1 click), the amplitude was adjusted until the acoustically

measured peak-to-trough amplitude was similar to the peak-to-trough amplitude of a

reference 1-kHz pure tone signal. A scaling factor was foundto calibrate the numerical

model.

As in Elberling et al.(2010), the chirps were adjusted to have the same spectrum

level (rather than dB pe SPL) as the calibrated click.Elberling et al.(2010) provided

the click and chirp levels in dB nHL, and the stimuli needed tobe converted

to dB peSPL at the eardrum before being presented to the model. The correct

conversion factor was found to be 35.2 dB1 (Richter and Fedtke, 2005), and hence

1 The ISO 389-6:2007 standard specifies that the peak-to-peakreference equivalent threshold sound
pressure level (peRETSPL) is 43.5 dB peRETSPL, for an ER2 earphone connected to an IEC 60711
coupler through the external ear simulator DB 0370. Unfortunately, the tube diameter for the
standard ear tip for the ER2 earphone (ER1-14) is 1.37mm whereas it is 3mm for the DB 0370.
This mismatch creates an acoustic horn effect which affects the spectrum (Richter and Fedtke, 2005;
Elberling et al., 2012) and thus the level.Richter and Fedtke(2005) also measured the peak-to-peak
reference equivalent threshold sound pressure level (peRETSPL) for an ER2 earphone connected to a
head and torso simulator (HATS) and found it to be 35.2 dB. The change of the external ear simulator
from the DB 0370 (ISO 389-6:2007) to the HATS (Table 7Richter and Fedtke, 2005), results thus in a
8.3 dB change in the peRETSPL. As the acoustic horn effect is not present in human fittings, the ISO
389-6:2007 does not represent the pe SPL at the eardrum. For the modeling presented in the present
study, the HATS measurements fromRichter and Fedtke(2005) were therefore used as the reference.
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the levels corresponding to 20, 40 and 60 dB nHL were found to be 55.2, 75.2 and

95.2 dB peSPL, respectively.

3.5 Results

3.5.1 Simulation of tone-burst evoked wave-V latencies

Figure 3.5 shows the simulated tone-burst evoked ABR wave-V latenciesobtained

with the ABR model (symbols connected with solid lines). Fordirect comparison,

functions fitted to measured data fromNeely et al.(1988) are indicated as dashed

lines.Neely et al.(1988)’s fitted lines were described by:

τb = a+bc−(i/100)(CF/1000)−g (3.9)

where i is the tone-burst intensity in SPL (divided by 100), CF is the tone burst

center frequency in Hertz, anda = 5 ms,b = 12.9 ms,c = 5.0 andg = 0.413 were

fitted constants. Additionally, measured data obtained inHarte et al.(2009) at a level

of 66 dB peSPL are shown as a dotted line. The differences betweenNeely et al.

(1988) andHarte et al.(2009)’s stimuli resulted in negligible differences in simulation

results, therefore onlyHarte et al.(2009)’s stimuli are simulated here. The inter-

subject variability (the standard deviation) on theHarte et al.(2009) data is 1.36 ms

for 1 kHz, 0.93 ms for 2 kHz, and 0.71 ms for 8 kHz.Neely et al.(1988) does not

explicitly state any inter-subject variability. The clickdata (Elberling et al., 2010)

showed an inter-subject variability of 0.61 ms, 0.92 ms and 0.91 ms for hence 20 dB

HL, 40 dB HL and 60 dB HL stimulus level.

The simulated and measured ABR wave-V latencies decrease exponentially as a

function of frequency. At the highest stimulation levels, the simulated latencies

are close to those observed inNeely et al.(1988). With decreasing level, the rate

of change of latency with frequency increases both in the simulations and the

measured data. However, the dynamic range of latencies across levels is smaller in

the predictions than in the data. This effect is dominant towards higher tone-burst
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frequencies where latencies of about 6-7 ms were predicted in contrast to 6-8 ms in

the measured data. The squared correlation coefficient (thezero lag of the normalized

covariance function) between tone-burst data and simulations is found to beR2 = 0.90,

showing a nice covariance between simulations and data. Thesimulated click-evoked

latencies are indicated by the symbols next to the 8-kHz tone-pulse results. The

filled circles on the right show the corresponding measured click data taken from

Elberling et al.(2010). The stimulus levels used for the simulations were the sameas

those for the tone-burst simulations, whereas the levels ofthe click in the experimental

study ofElberling et al.(2010) are stated next to the respective data points. As for the

high-frequency tone pulses, the model predicts a reduced dynamic range of wave-V

latencies across levels compared to the measured values.

3.5.2 Simulation of broadband chirp-evoked wave-V amplitudes

and latencies

The black lines in Fig.3.6 shows the simulated wave-V amplitudes obtained for the

five chirps described inElberling et al.(2010), at the three levels tested. In addition,

click-evoked wave-V amplitudes for the same stimulation levels are shown on the

left. The “change of delay” abscissa refers to the delay differences between the 5700-

Hz component to the 710-Hz component of the stimulus. This reflects that a chirp

with a faster sweeping rate has a shorter duration. The clickis represented by a

0-ms change of delay as all the frequency components have thesame delay. The

gray lines of Fig. 3.6 shows the corresponding measured data fromElberling et al.

(2010). The squared correlation coefficient between data and simulations isR2 = 0.90,

demonstrating good covariance between simulations and data. The measured data

shows that, for the highest stimulation level of 60 dB nHL, the chirp with a relatively

short duration (chirp 2) i.e. a small delay difference between the low- and high-

frequency stimulus components, had the largest wave-V amplitude. Chirp 2 thus

represents the stimulus that is most effective at synchronizing the neural output across

frequency. In contrast, for the stimulation levels of 40 dB nHL and 20 dB nHL, the

corresponding maxima were found with chirp 3 and chirp 5, respectively, suggesting

that other sweeping rates provided maximal synchronization across frequency. These
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Figure 3.5: Simulated (solid curves) and modeled (dashed curves based on eq.3.9, dotted curve, based on
Harte et al., 2009) ABR wave-V latencies as a function of tone-burst center frequency and level. Each line
fitted toNeely et al.(1988)’s empirical data corresponds to one simulated level. Open symbols to the right
show simulated click-evoked ABR wave-V latencies, filled symbols showElberling et al.(2010) measured
click latencies. All levels are given in dB pe SPL.

key features observed in the measured data are also reflectedin the simulations. The

click-evoked responses show a smaller amplitude than thoseobtained with all chirps

both in the data and the predictions. However, the maxima in the simulated functions

are slightly shifted towards chirps with shorter durations. Overall, the correspondence

between simulations and measured data is remarkable and theresults support the

hypothesis that the dynamic nonlinear processes in the cochlea strongly affect ABR

formation.

Figure 3.7 shows wave V latencies simulated (black lines) by the ABR model

and measured (gray lines) byElberling et al.(2010) in response to the click and

the five chirps. The squared correlation coefficient betweendata and simulations is
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found to beR2 = 0.96, indicating covariance of simulations and data.R2 does not

tell anything about the agreement between absolute latencyvalues, it only shows

that the data and simulation co-vary to a large degree. The measured latencies can

probably be explained in terms of upwards spread of excitation (Elberling et al., 2010)

and the fact that the frequency region dominating the ABR response is 2 to 4 kHz

(Eggermont and Don, 1980) for the lower levels of 20 and 40 dB HL (for higher levels

the region broadens towards higher frequencies). As stimulus level is increased, the

BM filters broaden and lower frequency parts of the stimulus will excite the main

frequency region. The longer the chirp is, the earlier is thelow frequency part of the

stimulus presented and an early excitation of the main frequency region is possible.

Thus, at high levels (e.g. 60 dB HL) and long chirp delays (e.g. chirp 5), the latency

will be very short due to the early presentation of low frequencies and the upward

spread of excitation. The simulated results show the same trends, i.e. that the shortest

duration is observed for high stimulus levels and long chirpdelays. However, the

level-dependence seems, as in the previous simulation of tone bursts and clicks, much

compressed.

3.6 Discussion

This study evaluated the developed ABR model by comparing simulations with

literature data, using clicks, tone-bursts and chirps as stimuli. The wave-V amplitudes

simulated in response to a click presented at three stimulus-levels showed good

correspondence to literature data, demonstrating that theoverall calibration of the

model was correct. Further, the correct level-dependence indicates that cochlear

compression was well implemented. The latencies of the simulated tone-burst

evoked ABRs showed good frequency-dependence, whereas thelevel-dependence was

somewhat compressed. First, this shows that the traveling wave delay (the frequency-

dependence) was modeled well. Second, the compressed level-dependence suggests

that either the level-dependence of the BM tuning or the adaptation of the AN-IHC

synapse was modeled imprecisely, or alternatively, that the assumptions underlying the

UR were too extensive. This will be further discussed below.The chirp simulations
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Figure 3.6: Black lines: Simulated ABR wave-V amplitudes evoked by click and 5 chirps with different
frequency-delay functions at three different stimulus levels. gray lines: ABR wave-V amplitudes evoked by
the click and five chirps (Recorded byElberling et al., 2010). All simulations are well within one standard
deviation of the measured value. Note that the error bars in the figure represents one standard error.

showed a good correlation with literature data. The simulations of the five chirps

with different sweeping rates at three different levels demonstrated that the current

model was capable of simulating responses to complex stimuli and that the interaction

between the traveling wave delay and the level-dependent BMtuning seems to be

working well.
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Figure 3.7: Black lines: Simulated ABR wave-V latencies evoked by click and 5 chirps with different
frequency-delay functions at three different stimulus levels. gray lines: ABR wave-V latencies evoked
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3.6.1 Limitations of the conceptual approach

The assumption that all nonlinearity is restricted to the BMand AN and that

the remaining processing is linear is an obvious over-simplification given the high

complexity of neural processing within the brainstem. Specifically, the assumption

that the rate functions in the MSO and AVCN within the brainstem are the same as

in the AN is most likely erroneous (Dau, 2003). For example, it has been shown

that neural synchronization in the AVCN can be enhanced compared with AN fibers,

due to the convergence of inputs from two or more AN fibers on anAVCN cell and
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postsynaptic cells that require coincident input spikes before firing (Joris et al., 1994).

Furthermore, even though the human ABR may be largely generated by brainstem

cells in the spherical cell pathway (Melcher and Kiang, 1996), there is probably also

some contribution from other cell types such as globular andmultipolar cells. There

is still some controversy about the exact generating sites of the ABR peaks beyond

wave I. The whole modeling approach should therefore be considered as a rough

approximation of the real neural mechanisms involved in thegeneration of brainstem

potentials. Nevertheless, it appears that the chosen approach represents an effective

approximation since major characteristics of the measureddata can be accounted for.

These major characteristics include the wave-V amplitude,the frequency dependence

of the wave-V latency and, to a lesser degree, the level-dependence of the wave-V

latency.

3.6.2 Effects of the unitary response function

In the present study, the UR was empirically obtained by deconvolving a grand average

click ABR with the discharge rate function at the output of the AN model. The UR

was only obtained once, for this 95.2 dB SPL click evoked grand averaged ABR,

and all other stimulus conditions made use of this UR. Only using one UR derived

from a single waveform ensured that the generality of the modeling framework could

be tested. Simple linear convolution of a UR might be an over-simplification for

several reasons. First, the UR can be assumed to be subject dependent. In the

present study, all simulations were rerun using individually estimated UR functions

from three different subjects (not shown explicitly). However, this only resulted in

a change to the overall simulated response amplitudes, and introduced an individual

latency offset. The differences were minimal and reflected inter-subject differences,

keeping the same broad dynamics as observed for the grand averaged UR. Second,

Chertoff (2004) investigated the level and frequency dependency of a UR used to

model compound action potentials (CAP) in Mongolian gerbils. He showed that the

UR has both a slight level and frequency dependence in this species (the first peak of

the CAP-UR shifts up to 0.1 ms). However, no general formulation of the dependency

was stated and no formulation of a level-dependent UR for humans has yet been
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attempted in the literature. Further, the interval betweenwave-I and wave-V peaks

has been shown to be remarkably robust across stimulus levelin ABR recordings

(Don and Eggermont, 1978; Eggermont and Don, 1980), indicating that a level-

dependent UR is not required. Contradictory to this, however, Chertoff et al.(2010)

measured compound action potential (CAP) latency in humans, and demonstrated that

CAPs could have a smaller latency change with level than whathas been reported for

ABR wave-V latency (Serpanos et al., 1997; Dau, 2003; Elberling et al., 2010). This

would tend to suggest that the wave-I (which is believed to have the same origin as the

CAP) to wave-V interval, and thus the UR, should be level-dependent. It is unclear

from the literature whether a level-dependent UR is in fact needed.

3.6.3 Wave-V latency dependency on frequency and level

Taking the variability on the measured data into account, the simulated tone-burst

evoked response latencies showed reasonable agreement with the measured data

(Harte et al., 2009; Neely et al., 1988) for the frequency range 1 - 8 kHz and for a

level range of 40 - 100 dB SPL. In particular, for a given stimulation level, the change

of latency with frequency can be accounted for quite well by the model. However, the

latency change with level was smaller in the simulations than in the data, particularly

at high frequencies. Click-evoked ABRs were also simulatedto test the model’s

performance when considering broadband excitation. The simulated click-evoked

latencies of the present study decreased by only 0.6 ms for a 40 dB increase of stimulus

level (from 55 to 95dB pe SPL), corresponding to -0.015 ms / dB, which is in contrast

to the decrease of a little less than 2 ms observed in theElberling et al.(2010) data,

corresponding to -0.043 ms / dB. Other literature studies report latency decreases in

the order of -0.043 ms / dB (Serpanos et al., 1997) and -0.046 ms / dB (Dau, 2003)

for similar stimulus ranges. Even though the variability onthe individual data set

was high (a standard deviation of 0.81 ms on average forElberling et al., 2010), the

discrepancy between model and data is noticeable.

BM filter tuning and IHC-AN synapse adaptation determine thelevel dependency of

ABR wave-V latency in the model. The ABR model latency changeof -0.015 ms / dB
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is a small improvement over the earlier modeling study byDau(2003) who obtained

latency changes of -0.005 ms / dB for a similar stimulus levelrange. Additional

simulations, where the BM tuning was altered (and reported in Rønne et al., 2011),

demonstrated that the improvement was the result of the use of the humanized

version ofZilany and Bruce(2007)’s AN model instead of the model byHeinz et al.

(2001). The humanized AN model uses the sharper tuning estimates fromShera et al.

(2002) (seeIbrahim and Bruce, 2010) while Heinz et al.(2001) used the estimates

of Glasberg and Moore(1990). The filters ofShera et al.(2002) (derived at only

40 dB SPL) are more sharply tuned than those described inGlasberg and Moore

(1990) since they were estimated based on behavioral forward-masking data and

otoacoustic emission data. In contrast, the estimates ofGlasberg and Moore(1990)

are based on behavioral simultaneous masking, which is affected by peripheral

suppression (Shera et al., 2002; Bentsen et al., 2011). However, there is still a

substantial discrepancy between the simulated and the measured latency-level range.

As shown in Fig.3.3, the model incorporates a level dependence in the C1 filter tuning

factor. While the empirical evidence for the frequency dependence of the tuning factor

(Shera et al., 2002, 2010; Bentsen et al., 2011) is well documented, there is little data

existing for the level dependence in humans. This quality factor level dependence

will strongly affect wave-V latency and could be one reason for the underestimation

observed in the simulations. Additionally, neural adaptation in the IHC-AN synapse

enhances the onset and leads to shorter delays. For analysispurposes (data not shown

in this paper, seeRønne et al., 2011), click-evoked wave-V latencies were simulated

using an altered version of the ABR model where the IHC outputof the AN model was

used, thus not including any adaptation process. However, while adaptation affected

the absolute value of the wave-V latency in the framework of the present model, it

did not have a major impact on the latency variation with level. A possible level-

dependence of the UR, though not implemented in the model, could also affect the

ABR wave-V latency. As discussed above, the literature is inconclusive on this matter.

Further,Chertoff et al.(2010)’s CAP latencies decrease by -0.030 ms / dB over the

level range of 75 to 105 dB SPL. So, even if a level-dependent UR was implemented

to account for the difference in latency change betweenChertoff et al.(2010) and

Elberling et al.(2010), the AN model would still under predict the wave-V latency.
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It thus remains unclear why the model fails to account more accurately for the level-

dependent behavior of wave-V latency.

3.6.4 Across-frequency synchronization for broadband stimula-

tion

When considering effects of level-dependent neural synchronization across frequency,

the simulations illustrate the crucial role of nonlinear cochlear processing for the

formation of brainstem responses to transient stimuli. Thechirps presented in

Elberling et al.(2010) were considered here as “critical” stimuli to challenge and

evaluate the model. The results support the hypothesis thatthe dynamic behavior

of ABR generation is mainly due to peripheral mechanisms as all processing at higher

neural stages beyond the level of the AN was essentially considered as a linear filter.

Further, the results reinforce the need to have level dependent chirp stimuli to get

maximum wave-V amplitude clinically (Elberling and Don, 2010).

3.6.5 Perspectives

The model might be useful as a tool for studying consequencesof different types

of cochlear hearing impairment on the evoked potential waveform, provided that

pathology can be adequately simulated in the model. Furthermore, brainstem

responses to complex stimuli (cABR), such as consonant-vowel utterances, have

been considered as an objective index of the neural transcription of features (e.g.

temporal, spectral) that are important for speech understanding in quiet and noise

(e.g. Anderson et al., 2011). The model could be used to analyze which spectro-

temporal characteristics of the speech-evoked patterns can be accounted for by

cochlear processes. Finally, an important step would be to consider ”steady-state”

responses (SSR) obtained with temporally fluctuating stimuli such as complex tones or

amplitude modulated tones or noises. These responses are assumed to be generated by

units in the auditory brainstem and in the primary auditory cortex (e.g.Kuwada et al.,

1986). Therefore, the corresponding unitary response would have to be extended



3.7 Summary and conclusion 43

by a middle-latency component. It is not clear, to what extent such a convolution

approach can be successfully applied to middle-latency responses (MLR), to transients

as well as amplitude modulation following responses. Regarding MLRs, at least, it

has been shown that the “classical” SSR to click trains presented at a 40 clicks/sec

repetition rate can be modeled reasonably well using a linear convolution approach

(Bohorquez and Oezdamar, 2008; Junius and Dau, 2005).

3.7 Summary and conclusion

A computational model for the generation of ABRs to transient stimuli was pre-

sented. The model was based on the assumption that an ABR can be simulated

as the convolution between an instantaneous discharge ratefunction and a unitary

response. The instantaneous discharge rate function was obtained from a state-of-the-

art nonlinear AN model (Zilany and Bruce, 2006). The UR was derived “empirically”

as the deconvolution between the simulated instantaneous discharge rate AN function

in response to a click stimulus and measured average click-evoked ABR.

The model was evaluated by comparing the predicted responses to measured ABR

data from the literature. It was shown that a realistic simulation of the level-dependent

signal processing in the cochlea is essential for the interpretation of ABR to tone

pulses, clicks and chirps presented at various stimulationlevels. In particular, the

model could account reasonably well for the nonlinear wave-V amplitude behavior as

a function of chirp stimulus level and sweeping rate which supports the strong role

of cochlear nonlinearities, such as compression and level-dependent tuning, for the

formation of ABR. However, the model clearly underestimated the level dependence

of the response (wave-V) latency and it remained unresolvedin the framework of

the modeling work presented here what mechanisms are responsible for the relatively

large latency changes with level observed in the data.

Overall, the developed model can provide insight into the complex nature of ABR

generation. It can be used to investigate the representation of other types of stimuli

(such as speech in noise) or to study effects of (different types of cochlear) hearing
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impairment on the predicted potential patterns. Furthermore, the modeling approach

might provide a basis for the investigation of longer-latency responses, such as steady-

state responses to amplitude modulated tones and noises.

The ABR model including, grand average ABR, UR, and key simulations, is

included in the Auditory Modeling (AM) toolbox (Søndergaard et al., 2011) and

can be downloaded from:http://amtoolbox.sourceforge.net/ (date last

viewed 02/14/12).

http://amtoolbox.sourceforge.net/


4
Modeling the level-dependent latency of

the auditory brainstem response

This chapter is based onRønne et al.(2011). In the framework of the thesis, this is an

expanded discussion on why the level-dependent latency of the click-evoked ABR is

under predicted by the ABR model.

4.1 Abstract

Auditory brainstem responses (ABR) are used for both clinical and research purposes

to objectively assess human hearing. A prominent feature ofthe transient evoked ABR

is the level-dependent latency of the distinct peaks in its waveform. The latency of

the most prominent peak, wave-V, is about 8 ms at a peak equivalent sound pressure

level of 55 dB, and reduces for increasing level by approximately 1 ms / 20 dB. A

classical explanation for this finding asserts that an increasing stimulus levels lead

to a broadened excitation pattern on the basilar membrane. This results in further

activation of the basal regions of the cochlea. Given the physical properties of the

basilar membrane, increased basal activation is believed to cause a decreasing ABR

latency. An Auditory Nerve (AN) model and the Dual ResonanceNon-Linearity

(DRNL) filter model are considered as separate front-end cochlear models to simulate

ABRs. Even though both models incorporate level-dependenttuning and synapse

adaptation, and thus theoretically should be capable of simulating level-dependent

latencies, both models under-predict the latencies. The failure to produce accurate

simulations suggests, that the level-depending tuning in the models is not accurately

45
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modeled. The level dependency of the basilar membrane filtertuning in humans is not

well described in the literature and could therefore cause the modeling difficulties.

4.2 Introduction

ABRs in response to transient sound stimuli represent the summed electric potential

from many remotely located neurons, recorded via scalp electrodes. The ABR has 7

distinct waves, where wave-V is the most prominent. One key feature of the ABR

wave-V is the peak latency which is dependent on both frequency (Neely et al., 1988)

and level (Dau, 2003). This frequency dependence is due to the tonotopic mapping

on the basilar membrane (BM) with high frequency at base and low frequency at

apex. The result is that high frequency auditory nerve responses occur earlier than low

frequency responses. The level-dependence is not as well understood, but is thought

to be determined by the frequency specificity of the basilar membrane (BM), i.e. its

tuning, and the inner hair cell (IHC) - auditory nerve (AN) synapse adaptation. This

study has investigated the ability of two established auditory models, when used as a

front-end in an ABR model, to simulate level-dependent wave-V latency in response to

click stimuli. Both the Auditory Nerve (AN) model (Zilany and Bruce, 2006, 2007)

and the Dual Resonance Non-Linearity (DRNL) filter model (Meddis, 2006) were

assumed to contain the nonlinear processes required to account for level-dependent

wave-V latency. Two front-end models are used to minimize the potential effect of

implementation errors, and to evaluate whether the individual differences between the

two models are important.

4.2.1 Level-dependent latency theory

Cochlear tuning is level-dependent, where an increase in stimulus level results in

broader auditory filters. On the BM, the broader filters result in broader excitation

patterns, i.e. regions of the BM with characteristic frequencies further from the center-

frequency of a stimulus are recruited.Elberling(1976) andFolsom(1984) discussed

how this broadening in excitation with level results in shorter latencies as more basal
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regions of the BM are activated, i.e. regions with shorter implicit delays. Another

inherent feature of the filter tuning is the change in the envelope of the local BM

impulse response. An increase in level will result in an inherently shorter impulse

response. The delay of the individual peaks will be constantbut the amplitude of the

earlier peaks will be emphasized, and given the associated delay will decrease with

increasing stimulus level.Recio and Rhode(2000) demonstrated that this phenomena

can be physiologically measured on the chinchilla BM, andKiang(1965) showed that

the effect is also measurable in the cat AN. Across many filters, the envelope change

with increasing stimulus level acts as an onset emphasis that results in a decrease of

wave-V latency. The IHC-AN synapse adaptation has similar properties, amplifying

the onset of a signal and attenuating later parts (Westerman and Smith, 1988). This

effect enhances the level-dependent effects on wave-V latency created by the filter

tuning.

4.3 ABR Model structure and unitary response

The structure of the ABR model is shown in Fig.4.1. The ABR model uses either

the DRNL filter model (DRNL-ABR) (Meddis, 2006) or the AN model (AN-ABR)

(Zilany and Bruce, 2006, 2007) as the front-end cochlear model. The AN model

calculates the instantaneous discharge rate for individual AN fibers, in response to

a given stimulus defined in Pascals. Equivalently, the DRNL filter model calculates

the vesicle release probability also for single AN fibers. Each fiber (in both models)

is tuned to a specific characteristic frequency (CF). The CFschosen were spaced

according to the human cochlear map ofGreenwood(1990). The number of fibers

included was a trade-off between computational time and model accuracy. Throughout

this study, 500 fibers ranging from 100 Hz to 16 kHz were used inall simulations. The

output of the front-end cochlear models was summed across all fibers and convolved

with a unitary response (UR) function, derived separately for the two models. The

UR is defined as the potential produced between the electrodepositions on the scalp

each time a cell discharges. The URs, one for each of the models, were obtained by

deconvolving a template 95.2 dB peSPL click-evoked ABRElberling et al.(2010),
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Figure 4.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually
simulated by the AN model. The summed activity, integrated across frequency, is then convolved with a
unitary response and represents the simulated ABR to a given stimulus.

shown in the left panel of Fig.3.4, with the summed neural activity pattern generated

by either front-end model in response to a similar click stimulus. The deconvolution

is an ill-posed mathematical problem and has an infinite number of solutions. A

stable and probable solution was, like inDau (2003), found by using the Tikhonov

regularizationTikhonov (1963), and the MATLAB toolbox fromHansen(1998).

Figure4.2 (right) shows the unitary responses, obtained with a grand averaged ABR

at 95.2dB peSPL as the target. Linear superposition was assumed above the level of

the AN synapse, and thus the calculated unitary response functions given in Fig.4.2

was used for any input stimulus level. As expected, the two derived URs are almost

identical (seeHarte et al.(2010) for further information on the modeling framework).

4.3.1 Cochlear models

The input to the auditory nerve (AN)Zilany and Bruce(2006, 2007) model is the

instantaneous pressure waveform of the stimulus in units ofPa. The output of the

AN model is the spike rate in response to the stimulus pressure. The model includes

a number of key functional stages: a middle-ear filter; a feed-forward control path
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Figure 4.2: Left panel: Grand average template ABR evoked by a95.2 dB peSPL clickElberling et al.
(2010). Right panel: Derived unitary response functions for hence the AN-ABR and the DRNL-ABR
model. Both are calculated as the deconvolution of the grand average ABR and the summed neural activity
pattern generated by the front-end cochlear model in response to an identical click stimulus. The two URs
has for display been shifted in amplitude.

representing the active mechanism; a primary signal-path filter (C1) representing the

basilar membrane (BM) filtering adapted by the control path;a parallel-path filter

(C2) for high-level stimuli; an inner-hair cell (IHC) section followed by a synapse

model and a stochastic AN spike discharge generator. In the present study, the spikes/s

output from the synapse model was used, rather than the stochastic output from the

spike generator. The input to the dual-resonance nonlinear(DRNL) filter model

Meddis(2006) is also the instantaneous pressure waveform inPa. The output from

the model is the vesicle release probability. The modelMeddis(2006) used in this

work consists of an outer and middle ear-filter, the DRNL filter (BM filter stage), an

inner hair cell (IHC) transduction stage and a IHC-AN synapse. The DRNL (Lopez-

Poveda and Meddis, 2001; Meddis et al., 2001) filter is a computational algorithm

which aims at simulating a number of features characteristic of the basilar membrane.

One of many features is a compressive input-output function, and consequently level-

dependent tuning. The output from both models were deterministic and the effects of

refractoriness were thus not considered in this work.
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4.3.2 Stimuli and calibration

As the literature data are described in dB peSPL it was necessary to acoustically

calibrate the transient stimuli used. The click were measured acoustically in an IEC

60711 coupler. The numerical stimulus peak-to-trough amplitude of a reference 1-

kHz pure tone signal was adjusted until the acoustically measured peak-to-trough

amplitude was similar to that of the click. A scaling factor,defined as the ratio

between the stimulus peak-to-trough amplitude of the pure tone and the stimulus peak-

to-trough amplitude of the transient signals, was derived as;

S=
LSignal

LRe f erence
(4.1)

whereS is the scaling factor,LSignal is the stimulus peak-to-trough amplitude of

the transient signal, andLRe f erenceis the stimulus peak-to-trough amplitude of the

reference pure tone. The AN model was calibrated such that the root-mean-square

value of a reference pure tone signal was 1, whereas the DRNL model is calibrated

such that the peak value of a reference pure tone signal was 1.The amplitude of

the numerical click in Elberling et al.Elberling et al.(2010), used as stimuli to the

models, was thus scaled by the derived factorSfor the DRNL model, and by S√
(2)

for

the AN model.

4.4 Results

The left panel of Fig.4.3shows ABRs simulated by the AN-ABR model in response

to clicks at 50, 70 and 90 dB peSPL. A shift in the wave-V peak toshorter latencies

with increasing stimulus level is clearly observed. The right panel of Fig.4.3 shows

simulated click-evoked ABR wave-V latencies as a function of stimulus level. Also

shown are recorded click ABR latenciesDau(2003). Simulations were done with both

the DRNL-ABR and the AN-ABR model. The two models produce similar results

for stimuli levels between 70 and 100 dB peSPL. For lower levels, the DRNL-ABR

model no longer produces a distinct wave-V, thus deriving a latency associated to those
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Figure 4.3: Left panel: AN-ABR model simulations to click stimulus at 50, 70 and 90 DB peSPL. Note
the latency change of the wave-V peak. Right panel: Simulations of click-evoked ABR wave-V latencies
across stimuli levels, using both the AN-ABR and the DRNL-ABRmodel. Both models show compressed
level-dependent latencies compared to DauDau(2003) experimental data.

levels was not possible. As expected, it is seen that both models simulated reduced

wave latency for increasing stimulus level. However, a clear disparity between both

sets of simulations and the recorded reference data is observed. The recorded data

shows a decrease in wave-V latency of approximately 2 ms for a40 dB stimulus

level increase, whereas the models simulates approximately 0.6ms decrease for 40dB

increase in stimulus level.

4.5 Discussion

Fig. 4.3 (right) showed that both models under-predicted the ABR latency. The

classical theoretical explanations of the ABR latency change with stimulus level

says that the IHC-AN synapse adaptation and the cochlear tuning should be the key

features. To quantify whether these features were captured, the impact of the tuning

and the adaptation in the AN-ABR model was investigated. Thefocus was on the

AN-ABR model as it produces the most reliable results over the widest range of input

stimulus levels. To be able to interpret the model correctly, URs for each new version
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of the model were derived. The URs were derived from the same 95.2 dB peSPL

click-evoked template ABR, thus results shown in this section have by default correct

latency estimation at 95.2 dB peSPL.

The key feature producing the level dependency of wave-V latency was the filter

tuning. Fig. 4.4 (left) shows the effect of exchanging theShera et al.(2002)

filter tuning, originally implemented in the AN model, with the less sharply tuned

Glasberg and Moore(1990) filters, on wave-V latency. It is observed that the latency

change with stimulus level is approximately halved. BothShera et al.(2002) and

Glasberg and Moore(1990) describe the frequency dependence of the filter tuning.

Thus, exchangingShera et al.(2002) tuning with theGlasberg and Moore(1990)

tuning makes all the filters broader, independent of level. The reason for the larger

latency change with stimulus level found when usingShera et al.(2002) tuning is that

sharper filters increase the frequency specificity and thus limit the upward spread of

excitation at low levels. At higher levels, there is thus room for a significant increase

in upward spread of excitation, thus creating larger latency changes with level.

Shera et al.(2002) measured the filter tuning using a forward masking paradigm. The

tonal target stimuli was presented at 40dB SPL. Literature data obtained at higher

levels and high frequencies, measured with this paradigm, are however not available.

For the high levels, the lack of data is likely due to the practical limitations of

presenting an off-target masker that does not get uncomfortably loud when measuring

the skirts of the filters. As the sharpness of the tuning was shown to be important

for the level dependency of wave-V latency, the lack of trustworthy data is however a

large uncertainty. Getting the level-dependency of the tuning correctly could prove to

be key when modeling wave-V latencies. Fig.4.5 shows filter bandwidths,QERB, at

different center frequencies and levels, derived from the current AN model. Data to

which these simulatedQ-values could be compared with, would be beneficial.

The right panel of Fig.4.4 shows simulated click-evoked ABR wave-V latencies,

generated by the AN-ABR model where the adaptation of the IHC-AN synapse has

been left out. The removal of the adaptation clearly shows a reduction of latency

change with stimulus level. Note that the UR was calculated based on a 95.2 dB peSPL

click, and that the latency of the simulations around this level by default therefore is
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Figure 4.4: Simulations of click-evoked ABR wave-V latencies across stimuli levels. In both figures are the
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correct. The "correct" picture when removing the adaptation should therefore have

been a curve shifted upwards, as the inclusion of adaptationsharpens the onset and

thus leads to shorter delays. However, the simulated results show that removing the

adaptation approximately halves the latency change with level. This was supported by

an additional simulation (not shown) where the adaptation was removed from the AN-

ABR model based on theGlasberg and Moore(1990) tuning. The IHC-AN synapse

adaptation used in the AN model was revised byZilany et al. (2009). Additional

simulations were performed using this synapse model; however, no effect on the level-

dependent latency was found. The adaptation is thus argued to be important for wave-

V latency but not the reason for the under-estimated latencychange.

Two other modeling features could be thought to affect the ABR latency. The first

is the unitary response (UR).Chertoff (2004) investigated the level dependency of a

UR used to model compound action potentials (CAP) in Mongolian gerbils.Chertoff

(2004) showed that the UR was level-dependent in this species. However, no general

formulation of the dependency was stated, and no formulation of a level-dependent

UR for humans has been found in the literature. It cannot be excluded that a level-

dependent UR would affect the latencies. The interval between wave-I and wave-V,

is however, remarkably robust across stimulus level. The URmodels the auditory

pathway from the wave-I generation site, argued to be the IHC-AN synapse, to the

wave-V generation site. Thus, it is not likely that a level-dependent UR would have a

major impact on the latencies. The second alternative feature that could affect the ABR

latency is the auditory nerve refractory period which was not included in the AN-ABR

model of the present study. This choice was made to make the model computationally

faster. Additionally simulations were carried out where the refractory period was

included. However, no improvement on the wave-V latency change with level was

observed.

4.6 Conclusion

Two ABR models were build, both using a principle where a cochlear front-end

model was convolved with a unitary response (UR). Both ABR models were shown
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to significantly under-estimate the click-evoked ABR wave-V latency change with

stimulus level. The two models should, given classical explanations, be able to model

click-evoked ABR latencies. The fact that they fail leads tothe suggestion that the

cochlear tuning is likely to be imprecise at high levels and high frequencies.
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5
Low-frequency versus high-frequency

synchronization in chirp-evoked
auditory brainstem responses

In chapter3 the ABR model was developed. It was quantified that the model was

capable of simulating ABR wave V latencies and amplitudes toclick, tone bursts

and chirps. First, this chapter develops two tools to illustrate details of the ABR

model simulations. These illustration tools, the AN-spectrogram and the AN-UR-

spectrogram, has proven a valuable tool aiding stimulus creation for experiments, as

well as the understanding of simulations. Here they are usedto motivate the “Low-

frequency versus high-frequency synchronization in chirp-evoked auditory brainstem

responses” study1.

5.1 The ABR model used as an illustration tool

5.1.1 Stimuli

The two stimuli used, a click and a chirp, were both taken fromElberling et al.(2010)

and were thus identical to the click stimulus and the “chirp-3” stimulus in chapter3.

Both stimuli were band-limited from 100Hz to 10 kHz. All simulations were carried

out at 75.2 dB peSPL, corresponding to 40dB HL for the click (see section3.4.2)

1 This study is based onRønne and Gøtsche-Rasmussen(2011)

57



58 5. Low versus high-frequency synchronization in chirp-evoked ABRs

5.1.2 Spectrograms

Fig. 5.1 and5.2 show hence a simulated click and chirp evoked ABR. Wave I, III

and V are clearly visible. The latency and amplitude of the wave V’s were naturally

similar to the ones presented in Fig.3.7 and 3.6. Each simulated ABR was the

summation of 500 channels, each tuned to a different CF. Fig.5.3shows click evoked

AN responses in a AN-spectrogram representation. The Y-axis shows the 500 AN

fibers characterized by their CF. Each horizontal line in thefigure are thus the click

evoked response of the humanizedZilany and Bruce(2007) AN model tuned to a CF.

The color represents the instantaneous discharge rate at a specific time in a specific

fiber. Fig.5.4shows AN-UR-spectrogram representation, created by convolving each

horizontal line in Fig.5.3 with the unitary response (UR, see section3.4.1). As the

convolution was a linear process, the summation over channels of this figure give

the ABR shown in Fig.5.1. The color represents each channels contribution to the

summed ABR potential (unit ofµv).
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Figure 5.1: Simulated ABR evoked byElberling et al.
(2010) click.
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Figure 5.2: Simulated ABR evoked byElberling et al.
(2010) chirp-3.

In the spectrograms, details of the underlying processing can be observed. In the

AN-spectrogram it can be observed that the fine-structure information is available at

low frequencies whereas only the envelope seems to be tracked at higher frequencies.

This is seen as the impulse responses at low frequencies (a single horizontal line)

has multiple peaks, with a periodicity corresponding to thefiber CF. In the AN-UR-
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Figure 5.4: AN-UR-spectrogram visualizing the
components that sums up to form the simulated ABR.
This figure is created by convolving Fig.5.3 line by
line with the UR.

spectrogram the ABR wave III and V are visible as the two red lines occurring around

4 and 6 ms. A clear latency shift from the AN-spectrogram is observed due to the UR.

Fig. 5.5and5.6shows spectrograms evoked by theElberling et al.(2010) chirp-3.

It is clearly observed that much of the activity in the AN-UR-spectrogram is time-

aligned at the discrete values of 4,5 and 6 ms. It is further observed that the impulse

responses have a long duration at low frequencies. This has the consequence that it

is impossible to time-align all of the activity stemming from low frequencies. It is

however observed, that the peaks of the low frequency impulse responses are aligned

with the peaks of the high frequency contributions. A largerwave-V amplitude is thus

observed using a chirp stimulus than a click stimulus.

5.1.3 Motivation for the following study

It was shown that the simulated the low frequency contributions to the click-evoked

ABR was not time-aligned with the high-frequency contributions and were thus

not adding up in phase (Fig.5.4). The chirp evoked ABR showed a much more

time-aligned response at low frequencies (Fig.5.6); however, it was also indicated

that the alignment of high-frequencies was significantly better. This contradicts the
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Figure 5.5: AN-spectrogram showing the simulated
neural activity at the AN in response to an
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common belief in literature (e.g.Shore and Nuttall, 1985; Dau et al., 2000) where it

has been argued that the alignment of the low frequencies wasthe only reason for

the larger wave-V amplitude evoked by a chirp rather than a click. This deviation

between literature explanations and simulations led to thefollowing study, where

it was investigated whether the better alignment of the high-frequencies contribute

significantly to the larger chirp evoked ABR wave-V amplitude.

5.2 Abstract

This study investigates the frequency specific contribution to the auditory brainstem

response (ABR) of chirp stimuli. Frequency rising chirps were designed to com-

pensate for the cochlear traveling wave delay, and lead to larger wave-V amplitudes

than for click stimuli as more auditory nerve fibers fire synchronously. Traditional

click stimuli were believed to only excite high-frequency fibers synchronously. It

is still currently unclear whether the broad-band chirp stimulus leads to increased

synchronization of both low- and high-frequency fibers. It is also unclear if both

these groups of fibers contribute significantly to the overall wave-V amplitude. In

the present study, ABRs were recorded from 10 normal-hearing listeners using low-
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and high-frequency band-limited chirps and clicks (0.1 - 1.5 kHz and 1.5 - 10 kHz)

presented at a level of 40 dB HL. The results showed significantly larger wave-V

amplitudes for both low and high-frequency band-limited chirps than for the filtered

clicks. This demonstrates that the synchronization of nerve fibers occurs across the

entire frequency range at this presentation level, and thisleads to significant increases

in wave-V amplitudes. The increase for the low-frequency chirp was found to be

clearly larger than that obtained at the higher frequencies.

5.3 Introduction

ABRs in response to transient sound stimuli represent the summed electric potential

from many remotely located neurons, recorded via scalp electrodes. The click evoked

ABR has 7 distinct waves, where wave-V is the most prominent.One key feature of

the ABR wave-V is the peak latency which is dependent on both stimulus frequency

(Neely et al., 1988) and level (Dau, 2003). The frequency dependence is due to the

tonotopic mapping on the basilar membrane (BM) with high-frequency at base and

low-frequency at apex (Greenwood, 1990). Each frequency component of a stimulus

is associated with a certain delay, and a click stimulus willthus elicit responses

over a relatively large time span. This limits the synchronyof the response, and

thereby reduces the ABR amplitude evoked by such a stimulus (Elberling et al., 2007).

Frequency rising chirps have been designed to compensate for the cochlear traveling

wave delay. The use of chirp stimulus lead to larger wave-V amplitudes than for click

stimuli as more auditory nerve fibers fire synchronously (seeElberling et al., 2007, for

review). The increase in synchrony has traditionally been argued to occur mainly at

low frequencies, where the peaks of the individual nerve responses are most delayed.

E.g.Shore and Nuttall(1985) andDau et al.(2000) argue that the low frequencies are

the key to the improved wave-V amplitudes, as low frequencies are least synchronous

with the more aligned high frequencies and the room for improvement thus is largest.

However, the impulse responses of the nerve fiber responses at low frequencies are

much longer in time citepKiang1965, and it is thus not possible to align all the

excitation at low frequencies. A chirp is though designed toalign all frequencies
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(Elberling and Don, 2008), and the better alignment of high frequencies, with short

impulse responses, could thus be an alternative hypothesis. It is still currently unclear

whether the broad-band chirp stimulus leads to increased synchronization of both low-

and high-frequency fibers. It is also unclear if both of thesegroups of fibers contribute

significantly to the overall wave-V amplitude. The researchquestions addressed in

this paper are: 1) Is the increased wave-V amplitude (increased nervous synchrony)

observed for both high and low frequencies when stimulatingwith chirps instead

of clicks? 2) Are high or low frequencies key to the increasedwave-V amplitude

observed when stimulating with broad-band chirps?

5.4 Test design

Six stimuli were created. A broad-band click and a broad-band chirp, containing the

frequencies from 100 Hz to 10 kHz, were used as reference. Theclick was a 100

ţs standard click, and the chirp was identical to "chirp 3" in (Elberling et al., 2010).

Further were low-frequency and high-frequency versions ofhence click and chirp

created. The method described by (Elberling et al., 2007) was used. The phase delays

for hence chirps and clicks were the same as used to create thebroad-band stimuli.

Both the high-frequency and low-frequency cut-off frequency was 1500 Hz. Fig.5.7

and Fig. 5.8 shows the time series representation of the three hence click and chirp

stimuli. The power spectra of the two broad-band stimuli were identical. The summed

versions of hence the low-frequency and high-frequency click, and the low-frequency

and high-frequency chirp has also identical power spectra as the broad-band versions.

The power of hence the low-frequency (-3.1 dB relative to broad-band condition) high-

frequency (-0.6 dB relative to broad-band condition) stimulus are thus smaller than the

power of the broad-band versions. Fig.5.9 shows the power spectra of the stimuli,

note that hence the two broad-band stimuli, the two low-frequency stimuli and the

two high-frequency stimuli have identical spectra. The sixstimuli were linked to each

other in terms of the power spectra as described above. Therefore only the broad-

band click was calibrated, and the rest adjusted correspondingly. By inserting ER1-14

ear plug in a B&K Ear Simulator Type 4157 (IEC 60711) using adapter B&K DB
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2012 the click was calibrated to a level of 75.2 dB peSPL. The reference equivalent

threshold sound pressure level (RETSPL) for the click calibrated this way is 35.2 dB

RETSPL (taken from the corresponding head and torso simulator measurement of

Richter and Fedtke(2005), and the measurements are thus carried out at 40 dB HL.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
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Figure 5.7: The three click stimuli.
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Figure 5.8: The three chirp stimuli, all based on
“chirp 3” from Elberling et al.(2010).

5.4.1 Test subjects

The ABR measurements were carried out at the Centre for Applied Hearing Research

(CAHR), Technical University of Denmark. Ten normal-hearing test subjects (10 left

ears) participated in the study. All subjects had normal hearing defined as pure tone

thresholds equal to or better than 20 dB HL in the range from 125 Hz to 8 kHz.

The subjects were all students between 20-30 years old (2 females and 8 males).

The session lasted for maximally 1.5 hours including a shortbriefing and fitting of

electrode cap. Only the left ear was tested.

5.4.2 Measurement procedure

The test subject was placed in an electrically and acoustically shielded booth. The

signals were presented at 48 kHz sampling frequency throughan Etymotic Research

ER-2 insert earphone. The recording of the ABR was done usinga Medical Equipment
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Figure 5.9: Spectra of the different stimuli. The sum of the two hence low- and high-frequency clicks or
chirps have the same power spectrum as the broad-band stimulus.

ApS Synamps2, which sampled the recorded signal at 10 kHz. The electrodes

were placed at vertex (reference), ipsi-lateral mastoid, and forehead (ground). An

impedance between the electrodes below 1 kω was achieved for the majority of the

test subjects. The post-processing was done using MATLAB. The raw data was

averaged, and filtered using a band-pass filter with cut-off frequencies at 100 and

3000 Hz. Wave-V was detected in a time interval from 0 - 7 ms after the offset of

the stimulation. The wave-V amplitude was calculated as thedifference in amplitude

between the maximum amplitude and the minimum amplitude found in the subsequent

2 ms.

5.5 Results

Fig. 5.10shows the mean and one-standard deviation of wave-V amplitudes of the 6

conditions measured. The broad-band click and chirp used inthis study are identical

to the ones presented byElberling et al.(2010). They found an averaged click evoked

wave-V amplitude of 0.368 ţV and an averaged chirp evoked amplitude of 0.645 ţV.

This compares well with the amplitudes measured in this study.
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Figure 5.10: Mean ABR Wave-V amplitude and one standard deviation plotted for each stimulus condition.

The mean amplitudes indicate that the chirp stimuli generate larger ABR Wave-V

amplitude compared to the click stimuli across all conditions. The high-frequency

chirp condition is significantly different from both the broad-band chirp (High6=
Broad: p value = 0.014) and the low-frequency chirp condition (High 6= Low: p value

= 0.005), indicating that both high and low frequencies are adding to the measured

amplitude. It cannot be rejected that the high-frequency click gives rise to the same

amplitude as the broad-band click (High6= Broad: p value = 0.614) indicating that

the broad-band click is entirely determined by the high-frequency contribution. The

p-values were calculated using a two-sample t-test.

The difference between the click evoked and chirp evoked wave-V amplitude was

calculated for each test subject to reduce the influence of the inter-subject variability.

The mean and standard deviation of the improvements from click to chirp are shown

in Fig. 5.11. A t-test was applied to analyze the data (see Table5.1). All three

stimuli types show significantly larger amplitudes for chirps over clicks, supporting

the hypothesis that the increased synchrony happens over the entire frequency range.

It is also shown that the high-frequency improvement was significantly different from

the broad-band improvement, and thus the high frequencies cannot be the entire

explanation for the larger amplitude measured with a chirp instead of a click. It cannot
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Figure 5.11: Improvement in wave-V amplitude from click to chirp evoked responses. The mean and one
standard deviation are plotted.

Hypothesis P-value
Low > 0 « 0.001
High > 0 0.006
Broad > 0 « 0.001

Low 6= Broad 0.237
High 6= Broad 0.004

Table 5.1: Statistical analysis of data in Fig.5.11. The three upper P-values are calculated using a one sided
one-sample t-test. The two lower using a two-sample t-test.

be rejected that the improvement measured with the low-frequency stimuli are equal to

the improvement of the broad-band conditions. These results will be further discussed

in the discussion section.

5.6 Discussion

This study investigated the frequency regions contributing to the chirp ABR Wave-V

amplitude. It was found that an increase in ABR wave-V amplitude when stimulating

with a chirp stimulus rather than a click, was observed both at lower and higher

frequencies, indicating that the increased synchrony of the nervous responses takes
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place across the entire frequency range. It was also shown that the high-frequency

region cannot explain the improvement from click to chirp when stimulating with

the broad-band stimuli. However, the improvements observed at the low-frequency

conditions and the broad-band conditions were not significantly different, indicating

that the lower frequencies can explain all the improvement from the click to chirp

condition. This contradiction in the results, that the high-frequency improvement

is significantly larger than zero, and that the low-frequency improvement is not

significantly different from the broad-band improvement, would likely be clarified

if more test subjects had been used.

Fig. 5.10shows that high frequencies were the main contributor to theformation

of ABR Wave-V amplitudes for both clicks and chirps. This waslikely due to

the fact that the high-frequency stimuli contains more power, and to the fact that

the high-frequency basilar membrane responses have short impulse responses that

were inherently better aligned than the longer impulse responses at low frequencies.

However, the improvement from click to chirp at high frequencies was small.

In Fig. 5.12 the amplitudes of the low-frequency and high-frequency responses

were added for each test subject and compared to the broad-band evoked amplitudes.

It is clearly observed that the summed amplitude is larger than the broad-band

evoked amplitude. This shows that the auditory pathway behaves nonlinearly. The

explanation is that the outer-hair-cells (OHC) amplifies weak sounds more than louder

sounds (compression) and the fact that the filtered responses gives rise to spread of

excitation on the basilar membrane in the region surrounding the 1500 Hz cut-off

frequency. The 1500 Hz region would in the broad-band conditions have been masked.

The low level "off-frequency" excitation will be amplified by the OHC and the

summed response of the two frequency limited conditions will thus be stronger than

the one measured with the broad-band stimulus. The increased amplitudes observed

with the summed low and high responses, are though equally large for both click

and chirp stimulus. This leads to a very limited effect on thewave-V improvements

shown in Fig.5.11, and the possible uncertainty regarding the unmasked off-frequency

effects were thus negligible.
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Figure 5.12: ABR Wave-V for filtered stimuli are added for eachsubject and compared to data for broad-
band. The mean and one standard deviation are shown.

5.7 Conclusion

This study examined the influence of frequency range on chirpevoked ABR at a

presentation level of 40 dB HL. It was shown that both low and high frequencies

contribute to the increase in wave-V when using a chirp stimulus instead of a click

stimulus. This demonstrates that synchronization of nervefibers occur across the

entire frequency range. However, the largest increase in wave-V is observed at lower

frequencies.



6
Modeling human tone-burst and

click-train evoked ABRs

This chapter is based on the paper called “Modeling human auditory evoked brainstem

responses based on nonlinear cochlear processing” (Harte et al., 2010), and describes

simulations of tone bursts and click-train evoked ABRs. Thesimulation of click-train

evoked ABRs represents the first step, in this thesis, towards simulating responses to

longer-duration stimuli. In the following two chapters the40-Hz ASSR and speech-

syllable evoked ABRs are simulated. Compared to the original publication, the

description of the theoretical framework, which already was described in chapter3,

has been taken out from the method section to avoid repetition.

6.1 Abstract

The aim of this study was to accurately simulate auditory evoked potentials (AEPs)

from various classical stimuli such as clicks and tones, often used in research and

clinical diagnostics. In an approach similar toDau (2003), a model was developed

for the generation of auditory brainstem responses (ABR) totransient sounds and

frequency following responses (FFR) to tones. The model includes important cochlear

processing stages (Zilany and Bruce, 2007) such as BM tuning and compression, inner

hair-cell (IHC) transduction, and IHC auditory-nerve (AN)synapse adaptation. To

generate AEPs recorded at remote locations, a convolution was made of an elementary

unit waveform (obtained empirically) with the instantaneous discharge rate function

for the corresponding AN unit. AEPs to click-trains as well as to tone pulses at

various frequencies were both modeled and recorded at different stimulation levels

69
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and repetition rates. The observed nonlinearities in the recorded potential patterns

with respect to ABR wave latencies and amplitudes could be largely accounted for by

level-dependent BM processing as well as effects of short-term neural adaptation. The

present study provides further evidence for the importanceof cochlear tuning and AN

adaptation on AEP patterns and provides a useful basis for the study of more complex

stimuli including speech.

6.2 Introduction

For sounds which convey information, such as speech and music, much of the

information is carried in the changes in the stimulus, rather than in the parts of the

sound which are relatively stable. Through the last decadesboth psychoacoustic and

physiological studies have investigated how the auditory system analyzes the temporal

modulations of sounds. When various sounds are presented to human subjects, it is

possible to record auditory evoked potentials (AEPs) on thesurface of the human

scalp. Auditory evoked potentials are the summed response from many remotely

located neurons recorded via scalp electrodes. They can be recorded from all levels of

the auditory pathway, from the auditory nerve, the brainstem up to the cortex. They

are typically grouped in terms of time of occurrence after stimulus offset and thus

are known as; auditory brainstem responses (ABRs) recordedbetween 1 and 7 ms

after stimulus offset; middle latency responses (MLRs) recorded in the interval 15-50

ms after acoustic stimulus; and auditory late response (ALR) recorded in the interval

75-200 ms after stimulus.

Hearing deficiencies often lead to difficulties in understanding speech, especially in

noisy and reverberant environments. Auditory evoked potentials are a powerful tool

used to diagnose and assess classical hearing deficiencies.This has led to a trend in the

literature of assessing and investigating speech and complex speech-like stimuli with

AEPs (e.g.Aiken and Picton, 2008; Akhoun et al., 2008; Chandrasekaran and Kraus,

2010; Lalor and Foxe, 2010). AEPs are relatively well understood for basic stimuli,

i.e. transients, tone bursts and tones. However, for more complex stimuli, which

include amplitude and frequency modulations as well as sharp on-set and off-set
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transients, it is still relatively poorly understood how the various neurophysiological

processing along the auditory pathway gives rise to the AEP recorded at surface

electrodes. A clearer understanding of how the underlying neurophysiology in the

auditory system leads to surface-recorded scalp potentials could help to assess hearing

impairment, or to evaluate how well this has been compensated for with an auditory

prosthesis (Aiken and Picton, 2008), such as a hearing aid or cochlear implant.

The long-term goal of this study is to model and simulate speech evoked and

complex (non-speech) sound evoked AEPs originating in the auditory nerve and

brainstem, based on current knowledge of neural auditory signal processing. Dau

(2003) developed a model for the generation of early AEPs, including auditory

brainstem responses (ABR) to transient sounds like clicks and frequency following

responses (FFR) to tones. Both of these AEPs are generated byneurons in the

auditory nerve (AN) and subsequent stages along the auditory brainstem. The model

included important cochlear processing stages such as basilar-membrane filtering with

a compressive feedback loop, inner hair-cell (IHC) transduction, and IHC-AN synapse

adaptation. The instantaneous AN discharge rate from the model was convolved with

an empirically obtained elementary unit waveform, to simulate AEPs.

In the present paper, theDau(2003) model is extended to include current advances

in AN modelingZilany and Bruce(2007) and is humanized. The originalDau(2003)

model used theHeinz et al.(2001) AN model fitted to experimental cat AN data. Here,

theZilany and Bruce(2007) AN model will be adapted for humans by ensuring that

the model has appropriate thresholds, tuning curves, BM traveling wave latencies

etc., based on current state-of-the-art knowledge derivedfrom both behavioral and

objective measures where possible. This study will presenta comparison of the model

output with basic transient, tone-burst and click-train data, in an attempt to build up

stimulus complexity towards the final goal of speech. Thus itis possible to challenge

the model with relatively basic stimuli, before increasingcomplexity. This study

focuses on the role of basilar membrane tuning and the adaptation mechanism of the

AN model and looks at the consequences for AEPs generated. Neural adaptation is

the phenomenon where the neural output is reduced due to prolonged or repeated

stimulation, in each stage of the auditory pathway.
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The role of adaptation in AEPs, and more specifically ABRs is important because

in clinical practice it is highly desirable to obtain accurate recordings of ABRs

quickly, particularly from uncooperative subjects and neonates. Any morphological

differences, such as amplitude and latency, from normativedata caused by stimulus

rate adaptation could interfere with diagnosis. The desirefor quicker acquisition time

has led to the use of rapid rates of stimulation via so-calledpseudo-random binary

sequences or maximum length sequences (e.g.Burkard et al., 1990; Jewett et al.,

2004). The response to these pseudo-random pulse trains needs tobe deconvolved

to obtain an estimate of the ABR. The higher rate of the sequence leads to typically

smaller ABR amplitudes. This is believed to be a result of neural adaptation.

6.3 Methods

6.3.1 Model for AEP generation

The structure of the ABR model is shown in Fig.6.1. Within the overall ABR model,

a parallel bank of AN fibers is individually modeled. Each AN fiber is tuned to a

specific CF. The number of fibers included is a trade off between computational time

and model precision. Throughout this study 500 fibers were used for each simulation,

representing a range of 0.1 to 10kHz. The output of the AN model, the instantaneous

firing rate of all the AN fibers, is summed and convolved with the unitary response

function.

A humanized AN model

Zilany and Bruce(2006, 2007)’s AN model was fitted to cat AN data, and has thus

been modified to better model human AN response here. The following changes to

the original cat AN model were implemented by Bruce and co-workers:

The original cat middle-ear transfer function has been replaced by a human middle

ear. This was based on the linear circuit model ofPascal et al.(1998) of human

cadavers. The model magnitude response function is shown inFig. 6.2.
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Figure 6.1: Structure of the ABR model. 500 AN fibers tuned to different CFs are individually modeled by
the AN model. The summed instantaneous firing rate is then convolved with a unitary response to create
the modeled ABR.
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Figure 6.2: Frequency response of the human middle ear implemented in the AN model.
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It has been argued that humans have significantly sharper BM mechanical tuning

than cats and other experimental animals (Shera et al., 2002). To incorporate this, the

model equivalent rectangular bandwidth quality factor,QERB, for cochlear tuning was

defined to be,

QERB = 12.7

(

fc
1000

)0.3

(6.1)

where fc is the center frequency of the BM filter. This function was taken from

Shera et al.(2002) and is applicable to humans at frequencies at and above 1 kHz.

The choice of QERB will be further discussed later.

The tip of a suppression tuning curve is at a slightly higher frequency than the tip

of the excitatory tuning curve (Delgutte, 1990). This is implemented in the original

Zilany and Bruce(2007) model by shifting the CF of the so-called control path filter

by 1.2 mm on the BM. Without sound knowledge of how this mechanism works in

humans, the default is retained here. However, a human frequency-place mapping

for the BM is needed and has been updated from the original to the human fit from

Greenwood (1990):

fc = A(10ax−k) (6.2)

wherex is the distance on the BM apex in mm, and the constants are;A = 165.4,a =

0.06 andk = 1.

Two additional changes to theZilany and Bruce(2007) model was made here. In

Zilany and Bruce(2007), the synapse gain, which describes the relationship of the

inner hair cell potential to the synaptic release rate, varies as a function of CF to ensure

that the model thresholds match empirical data from cats. Without such physiological

data available, human behavioral monaural absolute thresholds (Killion , 1978) were

used to fit the model. Thus, the synapse gain function fromZilany and Bruce(2007)

was changed to be;
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Figure 6.3: Model example tuning curves (solid curves) for representative CFs and simulated (dashed curve)
and reference (dotted curve) absolute thresholds.

KCF = 0.91·min{4000,100.1 fc/103+0.4} (6.3)

where the characteristic frequency,fc, is in units of hertz.

Figure 6.3 (solid curves) shows example tuning curves of AN fibers across a

range of CFs for the revised AN model. The same procedure fromZilany and Bruce

(2007) andChintanpalli and Heinz(2007) was used to adaptively determine the tuning

curves. Absolute thresholds are also shown on the figure as the lower dashed line, as

well as the reference behavioral thresholds (dotted curve)from Killion (1978).

Fig. 6.4shows theQERB versus CF measured from theQ10 from the model tuning

curves, via the transformation fromIbrahim and Bruce(2010):

QERB=
Q10−0.2085

0.505
(6.4)

Also shown in Fig.6.4 are theQERB from Shera et al.(2002) used to set the BM

tuning in the model.

As described above and shown in Fig.6.3and6.4, the AN model tuning properties
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Figure 6.4:QERB values vs CF, measured from the model tuning curves and reference fromShera et al.
(2002).

are determined by the frequency dependentQERB in Eq. 6.1. However, an additional

delay function exists in the primary C1 filter path of the AN model. This acts as a so-

called signal-front delay (seeRuggero and Temchin, 2007). This has been altered in

the present model, to ensure that the model produces overalldelays (signal front and

traveling wave group delays) similar to the estimated BM delay reported inShera et al.

(2002). To achieve this, each AN impulse response function was determined, the

envelope was extracted (via low pass filtered Hilbert envelope), and the latency of the

peak of the enveloped recorded. The following logarithmic function was then fitted

to the difference between the model output latencies and those reported inShera et al.

(2002):

τCF = 10−3 ·max{0,−10.09· log10( fc)+29.23} (6.5)

By using this additional delay, it is hypothesized that physiologically plausible BM

latencies can be approximated in the model. This is vital as it is well known that

cochlear processing and delay has a strong influence on recorded brainstem evoked

potentials (Dau, 2003; Dau et al., 2000; Wegner and Dau, 2002).
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The unitary response

The unitary response describes the transformation of the output of the auditory nerve

to the potential measured at electrodes placed on the scalp.The unitary response,

like in Dau (2003), was obtained by deconvolving an experimentally recordedclick

ABR with the summed neural activity pattern for the click, generated by the AN

model. The deconvolution is an ill posed mathematical problem and has an infinite

number of solutions. A stable and probable solution was found by using Tikhonov

regularization (Tikhonov, 1963). The calculations were carried out in Matlab using a

toolbox provided byHansen(1998).

6.3.2 Tone-burst simulation

Auditory evoked potentials have been used historically to obtain indirect estimates of

cochlear delay in humans. Tone-burst evoked ABRs have been studied extensively

in the literature as a means of estimating BM delay (Gorga et al., 1988; Neely et al.,

1988; Harte et al., 2009). Thus, this was a logical choice of basic stimuli to test

if the AN model in the present study adequately modeled cochlear delay. In

order to test if the BM delay introduced within the present model is reasonable, a

simulation was run using Hanning windowed tone bursts as stimuli, with CFs and

durations given in table 1. Levels of 40 to 100 dBpe SPL were used, in 10 dB

steps. The choice of stimuli was inspired by the experimentsfrom Norton and Neely

(1987) and Serbetcioglu and Parker(1999). The tone-burst durations represent a

trade-off between having an equal number of cycles for all frequencies and a

relative narrow spread in their spectrum. The organizationof frequency along the

cochlear partition is roughly logarithmic and tone bursts with a fixed number of

cycles result in uniform energy splatter in log-frequency.The stimulus rise time is

responsible for the simultaneous neural activation leading to the brainstem responses

(Suzuki and Horiuchi, 1981) and to obtain a detectable ABR response. A sharp

stimulus onset (i.e., a short rise time) produces a large amount of synchronized neural

activity, but also decreases the frequency specificity of the stimulus. Rise times for

frequencies of 2 kHz and above include approximately 5 cycles and therefore ranged
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Frequency Total Length
kHz ms cycles
0.5 10 5
0.75 7 5.25

1 5 5
1.5 5 7.5
2 5 10
3 3.4 10.2
4 2.5 10
6 1.7 10.2
8 1.25 10

Table 6.1: Tone burst stimuli used, with length in ms and number of cycles.

from 2.5 to 1.25 ms. Below 2 kHz it was felt that the reduced energy spread, by

keeping a fixed number of cycles, would make it almost impossible to record a wave-V

response. Therefore, a compromise was struck, similar toGorga et al.(1988), between

the need for rapid stimulus onsets and reduced energy spreadin the choice of rise

time. The number of cycles in the rise time were reduced to 3.25 at 1.5 kHz and

approximately 2.5 for 1.0 kHz.

ABR wave V is the wave with the largest amplitude and hence themost easily

detectable. In the simulation, the ABRs for the tone burst stimuli were generated and

the wave V latency calculated and plotted againstNeely et al.(1988)’s empirically

determined model of latency derived from tone burst simulations:

τwaveV= a+bc−i
(

fc
1000

)−d

(6.6)

where i is the tone-burst intensity (divided by 100),fc is the tone burst center

frequency in Hertz, anda = 5 ms,b = 12.9 ms, c = 5:0 and d = 0:413 were fitted

constants toNeely et al.(1988)’s data.
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6.3.3 Experimental methods

A total of four normal hearing test subjects (four female) participated in the experi-

mental part of this study, and were aged between 22-26 years.The experiments were

conducted in an electrically and acoustically shielded audiometric booth (IEC 268-

13). The basic stimulus used in this experiment was a 5 sampleduration impulse

played at 44.1 kHz. Five sets of stimuli conditions were presented at a constant inter-

epoch rate of≈ 8 Hz (i.e. a duration of 125 ms). The first stimuli set was a single

impulse to evoke s standard ABR used to empirically determine the unitary response

functions. The remaining sets were trains of impulses with awithin-train rate of 40,

80, 190 and 250 Hz. A total of 4000 averages were made per stimulus type and

repeated twice (three times for the single impulse condition) to ensure repeatability

of results. The stimuli were all presented at a level of 80 dB pe SPL, to ensure

reasonable SNR and test subject comfort. The stimuli were generated in MATLAB

and A/D conversion made through an RME ADI-8 Pro 24-bit soundcard. The levels

were set via a TDT PA5 programmable attenuator. The stimuli were presented to the

left ear of the test subject via an ER-2 insert earphone. EEG activity was recorded

differentially between the vertex and ipsi-lateral mastoid, with the ground electrode

placed on the forehead. Silver/silver chloride electrodeswere used, and an inter-

electrode impedance was maintained below 5kW. EEG activitywas recorded on a

SynAmps2 amplifier at a sampling rate of 10000 Hz, and band-pass filtered between

0.05 and 2000 Hz. After recording, the EEG-data were epochedand filtered again

from 100 to 1500 Hz using a 200 tap FIR filter with zero phase delay. The epochs

were averaged using an iterative weighted-averaging algorithm (Riedel et al., 2001).

6.4 Results

6.4.1 Auditory brainstem response and unitary response

Single transient evoked potentials were averaged across 12000 epochs (all 3 runs) for

subject ML and are shown by the dotted curve in Fig.6.5. The recorded ABR shows
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Figure 6.5: Recorded (dotted line) and simulated (solid line) auditory brainstem response to single transient
stimuli.

the typical pattern with clear waves I, III, and V at latencies that are consistent with

the literature. The wave V peak is the largest occurring at≈ 6.5 ms.

Figure6.6shows the calculated unitary response obtained from a deconvolution of

the recorded potential with the AN model. The unitary response function obtained in

the present study is similar to and consistent withDau (2003). There is significant

subject dependence of the unitary response, but the essential morphology remains the

same. The interested reader is referred toDau(2003) for a detailed discussion of the

form of the unitary response and comparisons with previous studies.

The simulated AEP obtained from the convolution of the AN model output with

the unitary response is indicated by the solid curve in Fig.6.5. There is a very good

agreement between the recorded and the simulated potentials, over the length of the

unitary response calculated (10 ms). The unitary response was not calculated for

longer durations as this would have included evoked potential contributions higher

than the brainstem, which are not of interest in the present study. In the present study,

linear superposition is assumed above the level of the AN, and thus the calculated

unitary response function given in Fig.6.6 was used for any input stimulus at any

level.
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Figure 6.6: Unitary response function, calculated via deconvolving the recorded potential with the output
of the AN model.

6.4.2 Tone-burst simulation

Figure6.7 shows the wave V latencies for the ABR model simulations to tone-burst

stimuli, with center frequencies from 1 to 8 kHz and excitation levels 40 to 100 dB

pe SPL in 10 dB steps. Also shown are dotted lines representing the empirically fitted

latency model ofNeely et al.(1988) given in Eq. 6.6. Both the simulated ABR and

modeled latencies show exponentially decreasing delays asa function of frequency.

At the lowest levels of excitation, the simulated ABR latencies have a slope similar to

that seen inNeely et al.(1988)’s modeled latencies. This is logical as the AN model

tuning and delay was based onShera et al.(2002)’s stimulus frequency otoacoustic

emission delay estimates, made at 40 dB SPL. Further, as excitation levels increase

the simulated ABR rate of change of latency with frequency decreases. The overall

spread of simulated ABR latencies with level is reasonable at lower frequencies(1-

2 kHz), but seems compressed at higher frequencies relativeto Neely et al.(1988)’s

results.
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Figure 6.7: Simulated (solid curves) and modeled (dashed curves, based on Eq.6.6) ABR wave V latencies
as a function of tone-burst center frequency and level.

6.4.3 Click-train ABR

Figure6.8 shows the recorded (dot-dashed curve) and simulated (solidcurve) ABR

to a single click and click-train stimuli with within-trainrates of 40, 80, 190 and 250

Hz for one illustrative subject. The noise floor for the recorded ABR is shown by the

vertical bar near 0 ms on each trace. The vertical line to the right of the single click

ABR indicates the scale on the figure.

As the within-train rate increases the smaller waves that make up the click ABR

(waves I, II, III and IV ) become more difficult to distinguishand only the wave V

seems to be visible. As the within-train rate increases, thepeak amplitudes of the

wave V decrease for rates higher than 80 Hz. The first peaks aretypically the largest,

and these then decrease as rates increase. The modeled ABR seems to accurately

predict the recorded ABR at moderate within-train rates of 40 Hz. Wave V amplitude

seems unchanged within trains and latencies seem well modeled. As the within-train
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Figure 6.8: Recorded (dot-dashed line) and simulated (solidline) auditory evoked brainstem potentials to
click-train stimuli at 40, 80, 190 and 250 Hz within-train rates.

rate increases, the modeled ABR amplitude seems to decreasefaster than the recorded

ABR. In addition, the timing of the peaks of modeled ABR are faster for higher

rates than for the recorded potentials at the same rate. For the highest rate stimuli,

the simulated ABR wave V peaks drop in magnitude seemingly exponentially for

successive stimuli. The recorded ABR on the other hand tendsto have a sharp initial

drop in magnitude and does not demonstrate such an exponential decrease. Similar

trends were observed for all of the subjects tested, though the magnitudes and timing

of the responses demonstrated some subject-dependent variability.
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6.5 Discussion

6.5.1 Frequency-dependent delay

The intrinsic relationship between frequency and travel time in the cochlea is fairly

well represented by the AN and the ABR model.Gorga et al.(1988), in the original

study on tone-burst evoked ABR wave V latency, did not specify the earphones they

used to present the stimuli nor the coupler used to calibratethem. Therefore there is

some ambiguity as to the exact levels used byNeely et al.(1988) to model these, and

reproduced here in Eq.6.6. With that in mind, one could not expect an exact fit of the

present simulated ABR wave V latencies with those modeled byEq. 6.6. The range

of latencies across level and frequency, should be covered however. As mentioned

earlier, the simulated ABR latencies at higher frequenciesseem compressed relative

to those seen within the literature. This could be an indication that the level-dependent

bandwidth is not well implemented in the AN model.

At low excitation levels, the simulated ABR wave V latenciesaccurately reproduces

the latencies across frequency seen in the literature. The frequency dependent delay

in the AN model used here arose due to the cochlear tuning,QERB, incorporated.

This was given in6.1 and the additional delay in6.5. There is some contention in

the literature about accurate estimates ofQERB in humans (Bentsen et al., 2011). In

the present study,QERB estimates fromShera et al.(2002) were used. TheseQERB

values were obtained by averaging objective (based on stimulus frequency otoacoustic

emission group delay) and behavioral (forward masking) estimates. In theseQERB

values, as seen in Fig.6.4, the auditory filters are very sharp and become effectively

sharper as frequency increases. Alternative estimates ofQERB suggest much broader

tuning, and a near frequency independence. These estimatescome from objective

stimulus frequency otoacoustic emission iso-suppressiontuning curves (Keefe et al.,

2008), and behavioral simultaneous masking (Glasberg and Moore, 1990).

Ruggero and Temchin(2007) offered an alternative novel estimate of in vivo

cochlear delay in humans using post-mortem delay estimateswith the post-mortem

effects compensated for via comparison with experimental animal data.Bentsen et al.
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(2011) showed thatRuggero and Temchin(2007)’s cochlear delay estimates led to

QERB estimates similar to those obtained with simultaneous masking and stimulus

frequency otoacoustic emission iso-suppression tuning curves. If QERB were much

smaller than those used in the present model (whereRuggero and Temchin(2007)’s

were approximately 2.5 times shorter thanShera et al.(2002)), then the latency

estimates of the modeled wave-V’s seen in Fig.6.7 would be much shorter. Thus

a greater degree of disparity would be seen between the modeled and historically

reported latencies. This provides some indirect evidence to supportShera et al.

(2002)’s estimates ofQERB.

An alternative source of error lies with the unitary response function. In the present

ABR model, the only frequency dependent delay is due to the BMfiltering in the AN

model. It is implicitly assumed that linear-superpositionholds at higher stages in the

model, with the frequency- and level-independent unitary response function. If the

unitary response function were to be strongly frequency- orlevel-dependent, then the

wave V latencies simulated in Fig.6.7would be significantly altered. However, there

is good physiological evidence to suggest this is not the case. Wave-V latency is often

considered to be composed of the sum of the synaptic delay, synaptic, the neural delay,

τneural, as well as the cochlear delayτBM (Neely et al., 1988). The synaptic delay is

the time between the inner hair cells activity and the auditory-nerve fibers firing. It

is typically around 1 ms (Burkard and Secor, 2002; Kiang, 1975; Kim and Molnar,

1979; Mø ller and Jannetta, 1983) and frequency- and level-independent (Don et al.,

1998). The neural conduction time (neural delay) is the time between the auditory-

nerve activity and the place generating the ABR wave. Synaptic delay and cochlear

delay are both included in the AN model. However, the neural conduction time

is not, and is implicitly in the unitary response function. There is no historical

neurophysiological evidence to suggest that the neural conduction time is frequency

dependent (Don and Eggermont, 1978; Don and Kwong, 2002; Eggermont and Don,

1980). However, it would still be prudent to investigate both thefrequency and level

dependence of the unitary response function in future studies.
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Figure 6.9: Summed auditory nerve model output for within-click train rates of (a) 40 Hz, (b) 80 Hz, (c)
190 Hz and (d) 250 Hz.

6.5.2 Click-train ABR and neural adaptation

The simulated ABR were successful at modeling the recorded ABR for within-train

rates of 40 Hz, as seen in Fig.6.8. At these relatively slow rates, little or no neural

adaptation was expected. Figure6.9a shows the output of the summed AN model in

the present study, for the 40 Hz within-train rate stimuli.

The model output clearly reverts to baseline (50 spikes/s, AN spontaneous rate)

after each click, and the peak of the response for each new stimulus click within the

train does not decrease significantly.Thus the stimuli do not interfere with each other
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within the AN model. As the within-train rate increases, theABR wave V tends

to dominate the response due to the convolution of smaller peaks and the reduction

in amplitude of the spikes in the summed AN model output, as seen in Fig. 6.9.

For the higher-rate stimuli the summed AN model output neverreturns to baseline,

and the peak magnitudes reduce. The model does not return to baseline due to the

ringing of the filters in the AN model. The reduction in the peak spike rates is linked

with adaptation and appears to follow an exponential decrease with each new click.

Zilany and Bruce(2007)’s rate adaptation at the synapse between IHC and AN fibers

was a purely exponential model, albeit with multiple short and long time constants.

Zilany et al.(2009) have suggested a new rate adaptation model incorporating both

exponential and power-law dynamics. Incorporating this model revision into the

present model might help to improve the under-predicted wave V amplitudes at high

rates. This will be investigated in future versions of the ABR model.

6.5.3 Outlook

It was stated in the introduction that the role of neural adaptation in AEP recording

was important to understand, due to the clinical use of high rate stimuli. In

addition to this, there is a trend in AEP studies to use steadystate signals, where

neural adaptation will play an even greater role. Auditory steady state responses

(ASSR) are typically responses to carrier signals with amplitude modulation (AM)

imposed on them at different rates. Such ASSRs give excellent frequency specificity

as the response will mainly contain energy at the AM from a narrow band of

AN fibers at the carrier frequency (John and Picton, 2000). This is obviously an

advantage clinically to test auditory function at specific frequencies. Invasive animal

studies and magnetoencephalographic (MEG) source analysis studies in humans

have shown that the ASSR is generated in different brain regions, depending on

the modulation frequency of the stimulus (Kuwada et al., 2002; Schoonhoven et al.,

2003). For low rates of AM, around 40 Hz, a number of studies have demonstrated

that the ASSR can be predicted from the convolution of singlemiddle-latency and

brainstem transient responses with a click train with the appropriate repetition rate

(Galambos et al., 1981; Picton et al., 1987; Hari et al., 1989; Gutschalk et al., 1999;
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Bohorquez and Oezdamar, 2008). This is further supported by the finding in the

present study, that little or no interaction occurs in the ANmodel for the different

clicks in the 40 Hz click train, as seen in Fig.6.9a. For modulation rates above

80 Hz, ASSRs are typically argued to be generated by neurons in the brainstem

that both respond to transient stimuli and are locked to the envelopes of AM tones

(John and Picton, 2000; Kuwada et al., 2002; Sininger and Cone-Wesson, 2002). The

different within-train rates were chosen in the present study to span the AM rates

investigated in the literature. The present study has the potential to help understand

the brainstem contribution to ASSRs. This is an advantage assources due to the

brainstem are hard to investigate using classic dipole source modeling (Scherg, 1990),

due to the brainstem sources depth and small signal strength.
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Investigating the potential of auditory
steady-state responses to assess loss of

cochlear compression

This chapter is based upon the submitted paperRønne et al.(2012a). It is mainly a

study of the possibility of using ASSRs to assess cochlear compression in humans.

This is investigated using both a simple analytical model, experimental work with

human subjects and simulations using an extended version ofthe ABR model, called

the ASSR model. It can thus be read as an independent study, oras another step in the

development and evaluation of the modeling work in this thesis.

7.1 abstract

In this study, it is investigated whether the auditory steady state response (ASSR)

can be used as a tool to estimate human cochlear compression.First, a simplified

analytical model is presented, for amplitude modulated tones passing through a static

nonlinear system. The approximate closed-form solution derived from this analysis is

used to construct two hypotheses for ASSR level growth as input level and modulation

depth are varied. Two experiments are then presented measuring ASSR modulation

and level-growth functions in human subjects. Finally, a more complex nonlinear

numerical model for ASSR generation is presented. This second model is capable of

accurately simulating the complex processing carried out in the auditory periphery,

and is used here to evaluate the assumptions of the simple static model and to interpret

the experimental ASSR findings. The study demonstrates thatboth the level- and

89
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modulation growth functions can be used to measure cochlearcompression. However,

the clear recommendation is to measure level-growth functions due to their larger

accuracy and efficiency. A secondary finding, based on the experimental modulation-

growth function, is the indication of an effective compression, seemingly independent

of cochlear compression. This second compressive mechanism remains unexplained

by both the analytical and the numerical ASSR model.

7.2 Introduction

The human auditory system is able to perceive root-mean-square (RMS) fluctuations

in air pressure from as low as 20µPa, corresponding to a dynamic range of about 106

or 120 dB. To achieve this, the local mechanical vibration ofthe basilar membrane

(BM) in the cochlea, excited at its natural frequency, growsin a nonlinear or

compressive fashion with increasing sound pressure level (Ruggero, 1992; Harte et al.,

2005). A number of studies and reviews (Sellick et al., 1982; Nuttall and Dolan, 1996;

Rhode and Recio, 2000; Robles and Ruggero, 2001) have investigated and reported

BM input-output level curves in experimental animals, where the 120 dB input

dynamic range is mapped to 30-40 dB output range usable for neural encoding. The

compressive input-output level curve for humans is estimated to have linear growth

at excitation levels below sound pressure levels (SPL) around 40 dB, i.e. a 10 dB

increase in input leads to a 10 dB increase in output. Between40 and 90 dB SPL,

sharp compression is observed, where an increase in 10 dB only leads to about 3

dB increase in the response. Above approximately 90 dB, the level curve tends to

become linear again. This is often explained in terms of the active mechanism within

the cochlea supplying significant amplification at low excitation levels and saturating

at mid-levels. At high levels, this mechanism becomes exhausted and is unable to

further contribute to the BM response. This compressive behavior will be termed

cochlear compression throughout this study. The local input-output compressive non

linearity depends on the integrity of the outer hair cells (OHC) (Ruggero, 1992;

Robles and Ruggero, 2001). Damage to OHCs, common in many forms of sensori-

neural hearing losses, reduces or completely eliminates the active amplification of
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low-level sounds, leading to a linearized input-output level curve. Sensory-neural

hearing loss thus often leads to loss of cochlear compression. It is desirable to have

an objective physiological metric sensitive to cochlear compression and its loss. Such

a measure will necessarily be sensitive to local BM vibration and could be used as

a further objective audiometric tool for neonates or uncooperative subjects, where

subjective methods are challenging. The auditory steady-state response (ASSR), being

a robust objective measure already used clinically for other purposes, could be an

interesting and suitable choice for such a metric.

When transient sounds are presented to human subjects, the summed response from

many remotely located neurons can be recorded via scalp (non-invasive) electrodes.

These auditory evoked potentials (AEPs) can be recorded from all levels of the

auditory pathway, from the auditory nerve (compound actionpotential, CAP); the

brainstem (auditory brainstem response, ABR); up to the cortex (cortical auditory

evoked potential, CAEP). These classical AEPs are obtainedby presenting transient

stimuli at slow repetition rates. At more rapid rates, the responses to each stimulus

overlap with those evoked by the preceding stimulus to form asteady-state response

(Picton et al., 1987). Typically, such auditory steady-state responses (ASSR)are

evoked by sinusoidally amplitude modulated (AM) tones (Kuwada et al., 1986;

Rees et al., 1986; Picton et al., 1987), and are argued to give excellent frequency

specificity as the stimulus only contains energy at the carrier frequency and the side-

bands due to the modulation (John and Picton, 2000). The ASSR is therefore typically

analyzed in the frequency domain, where the amplitude of theFourier component at

the AM rate is used as the ASSR response magnitude. AM rates ofaround 40 Hz

have been shown to produce the largest ASSR response amplitude (Kuwada et al.,

2002, 1986). Although the ASSR has been heavily studied, the effect of cochlear

compression on the ASSR is still unclear.

The amplitude of a recorded ASSR is necessarily dependent oncochlear mechanical

processing and reflects the variation in level of the amplitude modulated sinusoid

used to elicit it. Thus, one might expect to see cochlear compression reflected in the

ASSR amplitude, as either the depth of amplitude modulationor the stimulus level is

systematically varied. However, the recorded ASSR is a compound potential arising
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from the summation of many neural fibers along the auditory pathway. Intuitively,

fibers along the tonotopic axis tuned close to the carrier frequency will typically have

the largest contribution, and thus one might expect to see evidence of local cochlear

compression.

Only a few studies have examined ASSR magnitude as a functionof modulation

depth for sinusoidally amplitude modulated stimuli (Kuwada et al., 1986; Rees et al.,

1986; Picton et al., 1987; Boettcher et al., 2001). The ASSR modulation-growth

functions (defined here as the log. ASSR response magnitude plotted as a function

of the log. modulation depth) generally seems to grow in a slightly compressive

fashion. Typical slopes vary between 0.5 and 0.8 dB/dB as modulation depth is

varied. This might support the assertion that they reflect local cochlear compression.

However, the degree of compression estimated is significantly less than expected, of

the order of 0.2 to 0.3 dB/dB as seen in other physiological estimates of compression

(e.g. Prieve et al., 1996; Ruggero et al., 1997; Moore et al., 1999). Unfortunately,

there is also significant variation in absolute amplitudes across the historical studies,

probably due to variations in electrode placement, excitation level used and the

limited number of test subjects used. It is not clear whetherthe limited compression

seen in the ASSR modulation-growth function truly reflects cochlear compression,

or some other property of the ASSR generation mechanism. Cochlear compression

could also be estimated using ASSR by varying the stimulus level. Typical slopes

of compression were historically reported to be≈ 0.2 dB/dB (Kuwada et al., 1986;

Picton et al., 1987). These slopes are similar to those observed when measuring

cochlear compression psychoacoustically, with oto-acoustic emissions (OAE) or in

vivo in animals (e.g.Prieve et al., 1996; Ruggero et al., 1997; Moore et al., 1999).

It is, however, difficult to establish whether the ASSR leveland modulation-growth

functions reflect cochlear compression, and not effective compression applied at

higher, retro-cochlear, stages of the auditory pathway.

This study develops two models to investigate the role of cochlear compression

on ASSR generation. The first, provided in section7.3, is a highly simplified

analytical model, used to explain how amplitude modulated stimuli are processed

through simple static nonlinear systems. This is used to derive experimentally testable
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predictions on the nature of modulation-growth and level-growth functions. A second,

more physiologically plausible, nonlinear numerical model is also developed (section

7.5) by extending an existing model of ABR generation (Dau, 2003; Harte et al.,

2010; Rønne et al., 2012) to be able to account for the ASSR. Two experiments,

using normal-hearing test subjects, were carried out and reported here (section7.4),

measuring ASSR magnitude growth functions as modulation depth and level are

varied. The numerical ASSR model and the simple analytical model make reasonable

predictions of the experimental results and are used to argue that local cochlear

compression can indeed be estimated using both ASSR modulation-growth and level-

growth functions. However, care should be taken with modulation-growth estimates

as they are more prone to experimental uncertainty, and it isrecommended that level-

growth functions be employed in future studies.

7.3 Analytical model for AM tones passing through a

static nonlinear system

The physiology underlying the generation of auditory steady state responses is

complex. A sinusoidal amplitude modulated tone consists ofa carrier with two

side tones, whose equal frequency separation from the carrier equals the modulation

frequency. Cochlear mechanical processing spatially filters the stimulus to yield

a place-specific excitation pattern. This will necessarilybe subject to cochlear

compressive non linearity. The inner hair-cells (IHC) in the cochlea are responsible for

mechanoelectrical transduction, and act like a half-wave rectifier and a low-pass filter

(Russell and Sellick, 1978). This processing extracts the envelope for stimuli with a

high enough carrier frequency,fc & 1.5−2 kHz (Palmer and Russell, 1986). Thus, the

nonlinearities in the peripheral processing and mechanoelectrical transduction process

effectively ensure that AN fibers firing patterns reflect the compressed envelope of

an amplitude modulated stimulus. Additionally, the transmission of neural spike

trains from the brainstem to surface potentials acts like another low-pass filter stage,

effectively ensuring that only the compressed envelope canbe recorded.
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To illustrate how AM signals are represented after such processing, a simple

analytical model is presented. It is explored what happens to a sinusoidally amplitude

modulated tone when it is passed through a static compressive nonlinear system.

Specifically, an approximate closed-form solution is derived for the amplitude of the

first harmonic of the AM frequency, after passing through thenonlinear system. It

is argued that this could reflect the experimentally recorded ASSR, and yield testable

hypotheses for the experimental part of the study.

The basic stimuli used in the present study are sinusoidallyamplitude modulated

tones, defined as;

st = S·sin(2π fct) ·
(

1+m·sin(2π fmt)
2

)

(7.1)

where fc = 1 kHz is the carrier frequency,fm = 40 Hz the modulation frequency,

m the modulation depth andS defines the overall stimulus level. The subscriptt

represents a variable with time dependency throughout the paper.

7.3.1 Static nonlinear model of compression

Static or memory less nonlinearities are defined such that the current output time

series,yt , is a function only of the current input time series,xt , i.e.

yt = f (xt) (7.2)

A simple example of a static nonlinear system is a power-law non linearity, given

by

yt = |xt |αsgn
[

xt
]

(7.3)

where compression is ensured if the power,α, is less than unity. The signum

function, defined by
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sgn[xt ] =







−1, for xt < 0,

+1, for xt ≥ 0
(7.4)

ensures asymmetry in the nonlinear characteristic.

Figure7.1illustrates a SAM tone (bottom left) passing through a static compressive

power-law non linearity (eqn.7.3) with compression ratioα = 1/3. Also shown is the

instantaneous characteristic function (top left),y(x), of the compressive non linearity

and the output time series (top right). The variation of the input envelope is mapped

to a reduced range in the output, indicted by the dashed lines.

Figure 7.1: Illustration of a SAM tone passing through a static compressive non linearity (withα = 1/3)
and resulting output time series. The envelopes of the input an output are shown in black curves.

7.3.2 Approximate closed-form solution for envelopes processed

through a compressive non linearity

It is assumed that the envelope varies at a much slower rate than the carrier frequency.

This means that it is possible to treat the envelope and the carrier components of the

stimulus passing through the nonlinear characteristic as separate. Assuming that the
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stimulus is given by

st = χt ·sin(2π fct) (7.5)

with the input envelope given by

χt = S

(

1+m·sin(ωmt)
2

)

(7.6)

wherem is the modulation depth,ωm = 2π fm the angular modulation frequency, and

S defines the level. Passing this sinusoidally amplitude modulated tone through the

instantaneous power-law non linearity, given by Eq.7.3, and noting thatχt > 0 then

it can be shown that

yt = χα
t · |sin(2π fct) |αsgn

[

sin(2π fct)
]

(7.7)

The two last terms on the right hand side constitute the carrier of the output time series

and can be considered a harmonic tone complex ofnωc(with minimal contribution to

the overall envelope as it was assumedωm << ωc). Thus, in the present analysis only

the output envelope,ηt , will be considered:

ηt = χα
t , for χt > 0

ηt = Sα ·
(

1+m·sin(ωmt)
2

)α
(7.8)

For a compressive non linearity, 0< α < 1. It is clear that the output envelope’s

dependence on the overall levelS is a simple power law.

Special attention is needed for the right-hand term in eqn.7.8, which is defined in

the range from 0 to 1, with

ζ α
t =

(

1+m·sin(ωmt)
2

)α
(7.9)
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It is possible to expandζ α in terms of a Taylor series about the arbitrary pointζ̂ :

ζ α = ζ̂ α





∞

∑
k=0

(

α
k

)

(

ζ
ζ̂
−1

)k


 (7.10)

= ζ̂ α



1+α

(

ζ
ζ̂
−1

)

+
α(α −1)

2!

(

ζ
ζ̂
−1

)2

+ · · ·





where
(α

k

)

represent generalized binomial coefficients, defined as

(

α
k

)

:=
α(α −1)(α −2) · · ·(α −k+1)

k!
(7.11)

It is possible to representηt , the output envelope, in an alternative form as an infinite

sum of harmonics of the fundamental modulation frequency:

ηt =
∞

∑
p=0

Apsin(p(ωmt +β0)) (7.12)

whereAp are Fourier coefficients,p is the order of the infinite sum, andβ0 is some

phase offset.

Using the method of harmonic balance (Nayfeh and Mook, 1995), each term in the

power series in Eq.7.10 is expanded and factored by sin(qωm+ φ0), whereq is an

integer and represents harmonics of the modulation frequency. Finally combining

equations7.6, 7.8 and 7.10, allows the derivation of an approximate closed-form

solution for the first harmonic,A1, corresponding to the Fourier coefficient ofωm:

A1 =

(

S

2ζ̂

)α
[

m

(

∞

∑
k=0

(

α
k

)

k(1− ζ̂ )k−1

ζ̂ k

)

+m3 (·)+m5 (·)+O(m2n−1)+ . . .

]

(7.13)

Thus,A1 is represented as an infinite power series in terms of the modulation depthm,

comprising only odd-orders(2n−1) of m. The terms for the orders ofm higher than
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1 are not shown here for brevity. Assuming thatm is small, i.e.m<< 1, it is possible

to ignore the higher-order terms, such that:

A1 ≈
(

Sζ̂
2

)α

·m
(

∞

∑
k=0

(

α
k

)

k(1− ζ̂ )k−1

ζ̂ k

)

(7.14)

It can be shown that the infinite summation in the right hand set of brackets is equal

to αζ̂−α , and thus

A1 ≈
(

S
2

)α
·mα (7.15)
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Figure 7.2: Comparison of approximate closed form solution (dotted line) for 1st-Fourier component and
numerically simulated (solid line) result, forα = 1/3 andS= 1.

Eq. 7.15 represents a simple approximate closed-form solution for the response

amplitude at the amplitude modulation frequency after passing through a compressive

static non linearity. To test this simple model, a numericalsimulation was carried

out in MATLAB, passing a SAM tone withS= 1 through a static non linearity

with α = 1/3, and taking the Hilbert envelope. Figure7.2 shows the numerically

determined value of the Fourier coefficient (solid curve) atthe modulation frequency

ωm as the modulation depthm was varied between 0 and 1. The approximate closed-

form solution of eqn.7.15is shown by the dotted curve, and is a good approximation

for the true value for smallm.
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According to Eq. 7.15, the amplitude of the first harmonic in the response is

dependent on the input levelS via a power-law relation. Therefore, given a fixed

modulation depth, the slope ofA1 as a function of the excitation level on double log

axes yields a straight line with slopeα. This can be used to estimate the degree

of compression in the input/output level-curve, i.e. cochlear compression. If the

excitation level is fixed, while varying the modulation depth, A1 will yield a straight

line with slopeα(S/2)α , if plotted on a linear axis. Again, this could lead to an

estimate of the local compression. On a log-log axis, this simple analytical model

predicts a slope of 1. Thus BM compression can be obtained from experimental data

via:

1. the slope,α, of the ASSR level-growth function, plotted on a double logarithmic

scale.

2. via the slope,α(S/2)α , of the ASSR modulation-growth function plotted on

linear scales. The easiest method to deriveα from the slopeα(S/2)α is to

vary excitation level and derive the parameter estimate, rather than by directly

inverting1.

1 It is possible to invert eq.7.15solving for the compression ratioα, by recasting the equation as

α log

(

S
2

)

eα log( S
2 ) =

A1

m
log

(

S
2

)

This has the formx(α) = w(α)ew(α) and its solution forα is given by the Lambert W function
(Corless et al., 1996), also known as the product logarithm, i.e.

α =
W
(

A1
m log

(

S
2

)

)

log
(

S
2

)

whereW(·), the Lambert W function, is a multi-valued function that can becomplex. Care must
be taken to pick the appropriate branch of this function for aphysically realistic solution and in this
application this is not necessarily trivial. Therefore twomethods are later proposed to experimentally
fit/approximateα from the slope of the ASSR-level growth function (plotted ondouble log. axes) and
via the slope of the modulation growth function (on linear axes).
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7.4 ASSR experiment: Evoked response growth as a

function of modulation depth and stimulus level

7.4.1 Methods

Subjects

In experiment A, the left ear of eight normal hearing subjects were tested. In

experiment B, both ears of a total of ten normal hearing test subjects were tested,

yielding a total of 20 data sets. All subjects had hearing thresholds≤ 25 dB HL

between 0.5 and 6 kHz in both ears. The experiments were conducted in an electrically

and acoustically shielded audiometric booth (IEC 268-13).To control the subjects

attention and prevent them from sleeping, they remained supine and watched a silent

subtitled movie during the recording session.

Stimuli

In both experiments, the subjects were presented with sinusoidally amplitude mod-

ulated tones (eqn.7.1). In experiment A, the stimulus level was varied between

55, 65, 75 and 85 dB SPL, with the modulation depth held constant at m= 0.75.

These stimulus levels were chosen to be within the expected compressive region of

the cochlear input/output function. Experiment B variedm (in Eq. 7.1) between 0.25,

0.5, 0.75 and 1.0. A constant stimulus level of 55 dB SPL was used. The stimuli

were calibrated to have identical RMS values. This resultedin actual post calibration

modulation depths of 0.3, 0.58, 0.81 and 1.0. On a logarithmic scale, relative to

a modulation depth of 1.0, this corresponds toMdB = −10.41,−4.77,−1.81,0 dB,

respectively.

The starting and end phases of the stimuli were matched to ensure that it could

be repeated continuously without audible discontinuities. Each epoch lasted 375 ms,

corresponding to 375 cycles of the carrier and 15 cycles of the modulation frequency.

In experiments A and B, a total of 1200 and 2000 averages were made for each test
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condition, respectively. All stimuli were generated in MATLAB and playback was

made through an RME ADI-8 Pro 24-bit sound card at a sampling frequency of 44.1

kHz. Stimulus levels were set via a TDT PA5 programmable attenuator. The stimuli

were presented to the subjects via ER-2 insert earphones.

ASSR recording and data analysis

EEG activity was recorded differentially between the vertex and the ipsi-lateral

mastoid, with the ground electrode placed on the forehead. Ag/AgCl electrodes were

used, and an inter-electrode impedance was maintained below 5kΩ and within 1kΩ of

each other. EEG activity was recorded on a SynAmps2 amplifierat a sampling rate

of 10 kHz (experiment A) and 5 kHz (experiment B), and band-pass filtered between

0.05 and 500 Hz. After recording, the EEG-data were epoched and filtered again

from 10 to 300 Hz, using a 40 tap FIR filter with zero phase delay. The epochs were

averaged using an iterative weighted-averaging algorithm(Riedel et al., 2001). The

recorded averaged time series were transformed to the frequency domain using a Fast

Fourier transform. The amplitude of the complex vector of the 40-Hz component was

calculated.

A frequency domain F-ratio test (John and Picton, 2000) was used to detect if an

ASSR was present in the recorded signal. The energy at 40 Hz was compared with

the background noise, estimated from 7 neighboring spectral bins where no evoked

response would be present (Dobie and Wilson, 2001). This yielded an F-distribution

with [2,14] degrees of freedom with a critical value of 6.51 at the 1% significance

level. Responses were only included in the study if their F-value exceeded the critical

value. Data sets from an individual ear were only included ifmore than 1 data point

was accepted. These acceptance criteria resulted in one subject being removed from

experiment A, and one ear of one subject being removed from experiment B.

An analysis of covariance (ANOCOVA) was performed on the ASSR modulation-

growth functions. The ANOCOVA assumes linear regression. In the log.-log. plots

this was obtained by taking the logarithm on both variables.An estimate of the
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slope of the best fitted single line and a standard deviation on the slope estimate was

obtained. Each ear were treated as a separate data set in the analysis.

7.4.2 Experiment A - Results

Averaged ASSR magnitude and standard errors for all 7 subjects are shown in Fig.

7.3 (diamonds), as a function of stimulus level (dB SPL). The spectral magnitude

of the 40-Hz component is given relative to 1µV rms. Error bars with±1 standard

error are also shown and reflect the large individual differences. For each recording

from a given subject, the ASSR magnitude increases monotonically as stimulus level

increases.
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Figure 7.3: ASSR amplitude versus stimulus level averaged over the 7 normal-hearing subjects. Modulation
depth was 75%, and the error bars show±1 standard error. The estimated slope (compression ratio) is
indicated as well as the±1 standard deviation on the slope estimate. Also shown are literature data derived
from Kuwada et al.(1986) (dotted curve).

An ANOCOVA analysis was carried out on the ASSR magnitudes (solid line in
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Fig. 7.3). The slope estimate was found to be 0.20 dB/dB with a standard deviation of

0.06. A slope of 1 would indicate linearity, and a slope of< 1 implies compression.

The low uncertainty on the slope estimate from the ANOCOVA confirms that the

individual differences, indicated by the error bars, were mainly offsets of the overall

ASSR amplitude in the individual recordings, rather than variations of the slope. For

comparison, Fig.7.3 also reproduces the data fromKuwada et al.(1986) (triangles).

Kuwada et al.(1986) measured ASSR with similar electrode placements, modulation

depth, and stimulus modulation- and carrier-frequency. The slope of the level-growth

function fromKuwada et al.(1986) obtained by linear regression on the log. variables

was 0.18. The same slope (0.18) was found for a similar data set presented by

Picton et al.(1987) (not shown on figure). Thus the estimates reported in the present

study are similar to historically published ones. The slopeof the ASSR level-growth

function thus show compression of an amount similar to cochlear compression, as

previously discussed in section7.3.

7.4.3 Experiment B - Results

Averaged ASSR magnitude and standard errors for all ten subjects (19 ears) measured

at 55 dB SPL are shown in Fig.7.4(diamonds), as a function of log. modulation depth

relative to 100%. As in the level-growth functions from Fig.7.3, the magnitudes

increase monotonically as modulation depth increases. A direct comparison with

historical data is difficult due to differences in stimulus level and calibration,

carrier and modulation frequency, electrode placement and, in some cases, a very

limited number of subjects. However, the ASSR RMS-amplitudes reported here

are in agreement with those reported byKuwada et al.(1986); Rees et al.(1986);

Picton et al.(1987); Boettcher et al.(2001).

The ANOCOVA analysis, carried out on the ASSR magnitudes (solid line in Fig.

7.4), gave a slope estimate of 0.78 dB/dB with a standard deviation of 0.09. For

comparison, Fig.7.4 also reproduces the data fromBoettcher et al.(2001) (upwards

and downwards pointing triangles). The dotted curve was fitted to log. ASSR

amplitudes recorded in response to AM tones, with carrier frequency of 520 Hz,
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a modulation frequency of 40 Hz, and a stimulus level of 65 dB SPL. The dashed

curve (also fromBoettcher et al., 2001) was obtained at a carrier frequency of 4 kHz.

Slope estimates obtained by linear regression of the two curves are 0.73 (fc = 520

Hz) and 0.62 (fc = 4 kHz). Slope estimates were also derived fromKuwada et al.

(1986) and Picton et al.(1987) (not reproduced here to aid clarity) for comparison

and were found to be 0.62 and 0.61, respectively. Thus, the estimates reported in

the present study are in reasonable agreement with historically published results, even

though stimulus conditions varied significantly across studies. The ASSR modulation-

growth functions are not consistent with the theoretical predictions from section II. In

the theoretical predictions ASSR growth functions had a slope of 1, when plotted on

double logarithmic scales.
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Figure 7.4: ASSR amplitude versus modulation depth averaged over the 10 normal hearing subjects and
left and right ears. Stimulation level was at 55 dB SPL, and theerror bars show±1 standard error. The
estimated slope (compression ratio) is indicated as well as the±1 standard deviation on the slope estimate.
Also shown are literature data derived fromBoettcher et al.(2001) (dotted and dashed curves), see the text
for details.

The closed-form solution derived in the section7.3predicted that the compression
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could be estimated from the slopes of the modulation-growthfunction, as long as

two independent data sets of different stimulus levels weremeasured. For this

reason, three of the subjects included in experiment B were retested and their ASSR

modulation-growth functions measured at a higher level of 71 dB SPL. Unfortunately

the uncertainty on the slope estimates from the ANOCOVA was almost 50% of its

value, probably due to the few test subjects available. Due to this large uncertainty,

an estimate of the compression coefficient,α, based on the simplified closed form

solution, could not be obtained.

7.4.4 Experiment summary

In summary, the ASSR level-growth function showed compressive behavior, with

a slope estimate in the order of 0.2 dB/dB and thus corresponded well to both

ASSR literature slopes, theory predictions and cochlear compression estimated using

alternative psychoacoustic or OAE measures. The modulation-growth function,

demonstrated a slope of 0.78 dB/dB. On double logarithmic scales, this suggests a

power-law relation withm not predicted by a simple instantaneous compressive non

linearity (Sec.7.3). If cochlear compression should have been derived, two estimates

of the ASSR modulation-growth function slope (estimated atlinear scales) at different

excitation levels would have been needed. However, due to the high variability of

the ASSR magnitudes, the variation in the slope estimates, for the small number of

subjects (three) measured at two levels, rendered this impossible to fit.

The most serious inconsistency between the analytical model predictions and the

experimental recordings is the slope of the ASSR modulation-growth function being

less than unity. In an attempt to investigate this further, the next section develops a

more physiologically plausible numerical model of ASSR generation.
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7.5 ASSR model

7.5.1 Modeling framework

This section derives an ASSR model, which is used to predict how local BM

compression is reflected in ASSR magnitudes. The ASSR model is inspired by the

work of Goldstein and Kiang(1958), who described evoked responses as a linear

convolution of a single fiber instantaneous auditory nerve (AN) discharge rate in

response to a given stimulus with an elementary unit waveform, called the unitary

response (UR). The UR describes the contributions made to the AEP each time a cell

discharges. Following this idea,Dau (2003) proposed a model for the generation of

ABRs using the instantaneous discharge rate for single nerve fibers summed across

frequency at the level of the AN to create a neural activity pattern. Harte et al.

(2010) andRønne et al.(2012) updated and evaluated an ABR model, following the

principles ofDau(2003). This model was shown to be successful in simulating ABR

responses to varies stimuli as clicks, tone bursts and chirps. A number of studies (e.g.

Galambos et al., 1981; Hari et al., 1989; Plourde et al., 1991; Gutschalk et al., 1999;

Bohorquez and Oezdamar, 2008) have demonstrated that the ASSR, at modulation

rates around 40 Hz, can be predicted from the convolution of single middle-latency

transient responses with a click train with the appropriaterepetition rate. Thus, the

predominant response in the ASSR is due to the Na - Pa and Nb - Pb components of

the middle-latency response (MLR), originating in the early auditory cortex, and a

smaller contribution due to the ABR. Given the success of theABR model, and the

argument that the ASSR can be modeled as a linear superposition of the ABR wave

V and the Na - Pa and the Nb - Pb components of the MLR, an ASSR model was

created in this study. The ASSR model was, likeRønne et al.(2012), based on the AN

model (Zilany and Bruce, 2007; Zilany et al., 2009) and a linear, subject and stimulus

independent UR. The model distinguishes itself from simpler convolutive models (e.g.

Sparacino et al., 2004; Bohorquez and Oezdamar, 2008), in the nonlinear front end

AN model.

In Fig. 7.5, a schematic diagram of the ASSR model is shown. The ASSR model

builds upon theZilany et al.(2009) auditory nerve (AN) model, which simulated the
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instantaneous discharge rate from a single AN fiber tuned to aspecific frequency. The

AN model, and thus the ASSR model, includes key properties ofnonlinear cochlear

processing, such as compressive BM filtering, inner hair-cell (IHC) transduction, and

IHC-AN synapse adaptation. The ASSR model simulates AN responses from 500

different characteristic frequencies (CFs), in the range from 100 Hz to 16 kHz. The

responses were summed to form the neural activity pattern and convolved with a

unitary response to produce the simulated ASSR. The stimulipresented to the ASSR

model were defined in Pascals and calibrated such that the root-mean-square value

equaled 1.

The ASSR model is similar to theRønne et al.(2012) ABR model. However, three

modifications were undertaken. First, theZilany and Bruce(2007) AN model was

replaced withZilany et al.(2009). This was done, since the latter AN model includes

an updated synapse stage that simulates effects of neural adaptation more realistically.

This is highly important for longer-duration signals (theZilany et al.(2009) AN model

was “humanized” in an identical manner as done inRønne et al.(2012)). Second, the

response of low spontaneous rate fibers (0.1 spikes/s) of theAN model was simulated,

as opposed to the high-spontaneous rate (50 spikes/s) used in Rønne et al.(2012).

This change was made as high-spontaneous rate fibers saturate for the relatively high-

level and long-duration AM stimuli, and the response is thuslikely dominated by low

spontaneous rate fibers (Sumner et al., 2002; Zilany et al., 2009). Third, the unitary

response (UR) was recalculated to include the contributionfrom the middle latency

response (MLR). As discussed above, the ASSRs generated using a modulation rate

of 40 Hz have contributions from neurons in the AN, brainstemand up to the early

auditory cortex. By incorporating the MLR into the UR function, the higher-stage

contributions could be modeled to a first approximation. TheUR was only calculated

once as the deconvolution between the summed neural activity pattern produced by

the AN model (in response to a 60dB pe SPL click), and a recorded MLR (Harte,

2007) using the identical click stimulus and electrode positionas in the recordings

presented in Sec.7.4. Once obtained for the 60 dB pe SPL click, the UR was fixed for

all further numerical simulations carried out in this paper.
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Figure 7.5: Schematics diagram of the ASSR model. A stimulus is presented to the AN model tuned to a
single frequency. The signal is then processed through the AN model stages of middle-ear filtering, BM
filtering, IHC transduction and IHC-AN synapse. The sum of 500 individual simulation with the AN model
tuned to different frequencies produces the summed neural activity pattern. This pattern is then convolved
with the UR to produce the ASSR.
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Figure 7.6: Left: A 60 dB pe SPL click evoked MLR (data fromHarte(2007)). Right: The unitary response.
Derived as the deconvolution of the click evoked MLR and the summed neural activity pattern obtained as
the summed responses of the humanized AN model given the identical stimulus.
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7.5.2 Simulations

ASSRs were simulated as a function of the stimulus modulation depth (m= 0.25, 0.5,

0.75 and 1) and stimulus level (15 dB SPL to 95 dB SPL in steps of10 dB). The

ASSR components were derived from the amplitude of the 40-Hzcomponent in the

spectrum of the simulated ASSR time series. Figure7.7 (left) shows modulation-

growth functions simulated at varying stimulus levels (10 to 75 dB). A regression line

was fitted to the 55 dB SPL curve and a slope estimate of 1.04 wasobtained. This

is close to a linear slope of 1 as predicted by the static non linearity, but deviates

from the experimentally measured slope of 0.78. Figure7.7 (right) shows the level-

growth function for the 75% modulated ASSRs. It is observed that the nonlinear

model produces a slope of 0.48 in the compressive region above 35 dB SPL stimulus

level, and a close-to-linear slope below this stimulus level.
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Figure 7.7: Left: Simulated ASSR amplitudes of the 40Hz component as a function of stimulus modulation
depth and stimulus level, plotted on log.-log. axes. Compressive growth, of similar magnitude as expected
from cochlear compression is observed as function of level. Whereas linear processing is observed as a
function of modulation depth. Right: Simulated ASSRs as function of stimulus level. The modulation
depth is kept at 75% and the stimulus level is varied from 15 to 95 dB SPL in steps of 10dB.

In Fig. 7.8 (left panel), the same simulated results are shown on linearscales. For

each modulation-growth function, a regression line was fitted and a slope estimate

obtained. In section7.3 it was shown that, for a static non linearity, the compression

ratio, α, can be estimated from two adjacent modulation-growth functions (n =1,2).
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Based on Eq.7.15, the slope of the modulation-growth function,kn, can be described

as:

kn =

(

Sn

2

)α
·α (7.16)

whereS is the stimulus level. Assuming that the compression affecting two different

modulation-growth functions is the same, an estimate of thecompression ratio can be

found as:

α =
log10(

k2
k1
)

log10(
S2
S1
)

(7.17)

The right panel of Fig.7.8shows compression ratios calculated based on Eq.7.17

and two adjacent slope estimates from Fig.7.8. The abscissa represents the average

stimulus level, such that the compression ratio derived based on the 55 dB SPL and

65 dB SPL slopes are plotted at 60 dB SPL. The compression ratios amounts to 1 at

low levels, and decreases towards the dotted line representing the compression ratio,

CR = 0.48, found in Fig.7.7(right).

7.5.3 ASSR model discussion

The ASSR model includes a dynamic compression function which differs significantly

from the simple static compression function used in the theoretical model, introduced

in Sec.7.3. Additionally, the numerical model includes other key stages in auditory

processing important for the generation of evoked potentials, such as IHC transduction

and IHC-AN synapse adaptation. The numerical ASSR model simulates contributions

to the ASSR from 500 parallel channels reflecting AN fibers across the tonotopoic

axis. For channels with center frequencies close to the carrier frequency of the AM

stimulus, the response was compressive. For off-frequencychannels, the contributions

showed linear growth. The numerical model is capable of describing far more details

than the simple analytical treatment in Sec.7.3.
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Figure 7.8: Left panel: Simulated ASSR amplitudes of the 40Hz component as a function of stimulus
modulation depth plotted on linear scales. The different curves show the results of different stimulus levels.
Right panel: CRs calculated using Eq.7.17 and data from two adjacent curves in the left panel. The
stimulus level on the abscissa represents the average stimulus level for two adjacent curves. The CR is 1 for
low stimulus levels, and close to the 0.48 (dotted line) corresponding to the slope in Fig.7.7 (right panel),
at higher stimulus level.

The numerical model showed that realistic cochlear mechanical filters, IHC

mechanoelectrical transductions and IHC-synapse adaptation resulted in the same

ASSR modulation growth functions and level-growth functions as a static compressive

nonlinear function processing the amplitude-modulation of the stimulus. Plotted

on log.-log. axes, the model predicts a modulation-growth function slope of 1.04

which is nearly linear and thus does not reflect cochlear compression, whereas the

simulated level-growth function in the compressive regionabove 35 dB SPL shows a

compression ratio of 0.48. In Sec7.3, it was argued that a compression ratio could

be derived for the modulation-growth functions plotted on linear axes (Fig. 7.8).

The numerical simulations supported the theoretical modeland found a compression

ratio close to 0.48. This method of estimating the compression ratio, from two slope

estimates from two stimulus levels, is fine for the numericalsimulations here, as the

results were entirely noise free. Any variation or uncertainty on the slope estimates,

k1,2, as one would see in experimental data, would be increased asthe ratio is taken.

Thus, this is not considered to be the preferred method for obtaining estimates of

compression.
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The simulated cochlear compression ratio was found to be 0.48, i.e. considerably

larger than the experimentally measured ratio of 0.2 dB/dB.To investigate the cause

of this, an additional simulation was made (not shown) with only the 30 fibers

closest to the stimulus frequency, i.e. the frequency region of 868 Hz to 1158 Hz.

This eliminated off-frequency contributions, which wouldbe expected to have linear

growth (Rhode and Recio, 2000). The simulation yielded a level-growth function with

linear growth below 35 dB and compressive growth above 35 dB with a slope of 0.19.

A similar compression of 0.20 can be observed for simulated single fiber response to a

pure-tone stimulus level growth. This follows the experimental findings better where

a compression ratio of 0.20 was estimated. Thus, the numerically simulated broad

band level-growth function does not strictly show local cochlea compression, but

rather exhibits a slope that is the result of a mixture of on-frequency compression and

off-frequency linearity. In human measurements, a similareffect might be expected.

However, it is unknown to what extent the off-frequency contributions linearize the

human level growth. Further, the human cochlear compression has been measured

using both OAEs and psychoacoustics both showing compression ratios between 0.2

and 0.3. Thus, while the numerical model seems to be capable of capturing the

key physiological generator mechanisms for ASSRs, it does not correctly model

the contributions across different nerve fibers precisely.The numerical model

seems to give more weight to linear off-frequency contributions than is observed in

experimental data. Further work to look at the model nonlinear mechanical filters

sharpness of tuning (or Q-factor); and/or contributions from parallel high-, medium-

and low-spontaneous rate fibers (only low-spontaneous ratewere simulated here),

might shed light on this disparity.

It is important to emphasize that the ASSR model shows the same compression

obtained using either of the two techniques developed in section 7.3. This supports the

hypothesis that it is cochlear compression that are measured using these techniques.
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7.6 Overall discussion

7.6.1 Summary

This study investigated the potential for ASSRs to estimatecochlear compression.

Based on a closed-form solution of how the envelope of an AM signal would be

affected when processed by a static nonlinear compressive system, two testable

hypotheses of how to obtain estimates of cochlear compression were made. First,

the compression ratio can be obtained as the slope of the ASSRlevel-growth function

plotted on double log. axes. Second, the compression ratio can be obtained from the

slopes of two modulation-growth functions measured at two different levels plotted

on linear scales. A numerical model of ASSR generation was also presented; it

consisted of a phenomenological AN model capable of accurately describing the outer

and inner ear; nonlinear cochlear mechanical filtering, IHCprocessing (half-wave

rectification and low-pass filtering) and IHC-AN synapse adaptation. The output of

the AN model was convolved with an empirically derived unitary response function,

used to model auditory pathway processing and propagation of cell discharge potential

to the recording electrodes. The numerical model demonstrated that local cochlear

compression could be estimated by the two methods inspired from the simple analytic

model, provided care is taken to limit off-frequency contributions to the ASSR.

Two experiments were carried out. In one experiment, ASSR level-growth

functions were measured in a total of 8 subjects, and a compression ratio of 0.20 was

obtained. In another experiment, using 10 subjects and a total of 20 ears, modulation-

growth functions were measured. A slight compression of 0.78 was observed, when

plotted on double logarithmic axes. This is not consistent with the analytical and the

numerical model both predicting a linear behavior in this condition. The modulation-

growth functions of three subjects were additionally measured at a higher stimulus

level. However, the variability was too large to derive a meaningful compression ratio

based on the second hypothesis.

The numerical ASSR model predicted a compression ratio of 0.48 for both the

level-growth function and the modulation-growth functions. It was found that the
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reason for the the decreased amount of compression in the simulations results from

the contributions of the off frequency fibers where the signal is processed linearly,

such that the overall resulting response becomes less compressive than in the region

around the stimulus frequency.

7.6.2 Best practice for estimating cochlear compression using

ASSR

This study demonstrated that cochlear compression can be estimated using ASSR,

by either measuring level- or modulation-growth functions. However, estimating

cochlear compression from ASSR modulation-growth functions requires double the

number of measurement points as two slope estimates have to be obtained. Any

experimental recording of a physiological parameter will necessarily be noisy, i.e.

have an associated uncertainty. To estimate the compression ratio, the ratio of the

two modulation-growth functions needs to be taken. This hasthe effect of adding

the two variances or mean-square errors for the individual slope estimates to give the

uncertainty on the compression ratio. This makes the estimate of compression ratio

implicitly more uncertain than via the level-growth functions. This was confirmed

by the difficulty in deriving a useful compression ratio fromthe modulation-growth

experiments. The clear recommendation is thus to measure level-growth functions if

cochlear compression is to be estimated from the ASSR. A single measurement point

can be measured using 1200 epochs of each 375ms length, giving a measurement time

per stimulus level of 7.5 minutes. An estimation of a compression ratio can thus be

done by measuring ASSRs at 3 or 4 different levels, and would require less than 30

minutes of recording time. This is still a lengthy procedureand does not lend itself as

a clinically viable option at this stage.
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7.6.3 Is cochlear compression reflected in experimental logarith-

mic modulation-growth functions?

Plotting the experimental modulation-growth functions ondouble log. axes (Fig.7.4)

demonstrated a small degree of compression, with a slope of 0.78± 0.09. This is

at odds with the simple theoretical predictions and the results from simulations with

the physiologically inspired numerical model, both predicting linear growth, i.e. a

slope of 1.0. The experimental modulation-growth functions were obtained from

only 10 normal-hearing subjects, so this disparity could beascribed to experimental

uncertainty. However, the ANOCOVA fitting of the data yielded a low uncertainty on

the slope estimate of only±0.09.

It could be argued that the small degree of compression seen in the experimental

data might arise from a compressive stage in auditory processing independent of local

cochlear compression. If one considers the AN model employed to give an accurate

description of peripheral processing and non linearity, then the IHC-AN synapse or

early brainstem might contain the additional stage. An effect that could give rise to

such an independent compression could be the modulation gain (e.g.Joris and Yin,

1992; Frisina et al., 1996; Joris et al., 2004; Malone et al., 2010).

Joris and Yin(1992) measured the ability of cat AN fibers to synchronize their firing

to AM stimuli. They normalized the synchrony by the modulation depth employed to

derive a modulation gain function. Using a stimulus level of49 dB SPL,Joris and Yin

(1992) found a modulation gain of≈ 9 dB at 10% modulation depth, monotonically

decreasing to≈ 2 dB at 100% modulation depth. No exact physiological mechanism

was suggested as being responsible for the gain. In the AN model employed here,

Zilany et al.(2009) demonstrated that it is capable of simulating the modulation gain

from Joris and Yin(1992) for the cat. There is no way of ensuring that this is correctly

modeled in humans for the present study.Malone et al.(2010) described how the gain

was increased in the rostral field and even further increasedin the auditory cortex,

indicating that the ascending auditory pathway privilegeslow amplitude modulation

depths, and indicating that higher stages of the auditory pathway also influence the

modulation gain.Joris and Yin(1992) showed that synchrony and, consequently, the



116 7. Cochlear compression effects on ASSRs

modulation gain are also stimulus level dependent in a non monotonic way. The non

monotonic stimulus level dependency and the increasing magnitude with ascending

place in the auditory pathway lead to the conclusion that theunderlying mechanism

might be independent from cochlear compression. However, the modulation gain

does not seem to be the major cause of the small degree of compression seen in the

modulation-growth function. This conclusion is based on the fact that the simulations

using the ASSR model do not show a compressive slope even though the modulation

gain is modeled by the underlying AN model. The reason could be that the modulation

gain in all literature studies (and the AN simulation) were measured in single nerve

fibers of different species of animals. It has not been studied how the modulation gain

would be expected to affect a real ASSR, which naturally consists of the response of

numerous on- and off-frequency tuned fibers.

The apparent compression observed in the logarithmically analyzed modulation-

growth function is thus still unexplained. It might be reflecting a compression

independent of the regular cochlear compression, i.e. at a retro-cochlear stage, which

is not reflected in the model provided here.

7.7 Conclusion

This study evaluated the potential of using ASSR as a tool to estimate cochlear

compression. Two different methods were evaluated, from measurements of the

modulation- and level-growth functions. To evaluate thesemethods, three different

approaches were taken, a simple analytical model based on a static non linearity,

experimental measurements and a numerical nonlinear ASSR model. The two

modeling approaches illustrated that both level and modulation growth functions

could be used to estimate cochlear compression. However, the level-growth function

was found to be superior as it requires less measured data andhas less uncertainty.

The level-growth function was experimentally measured in seven subjects and a

compression ratio of 0.20 was found, corresponding to compression ratios found in

literature using both ASSR and psychoacoustic measures. Additionally, the measured

modulation-growth function, when plotted on double logarithmic scales, showed a
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small degree of compression, contradictory to the model predictions. It was argued

that this was evidence for an effective compressive stage independent of cochlear

compression.
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8
Modeling auditory evoked brainstem

responses to speech syllables

This chapter presents work that, in cooperation with coauthors James Harte and

Torsten Dau, is in preparation for submission to the Journalof the Acoustical Society

of America.

8.1 Introduction

Auditory evoked potentials (AEP) have been used to assess the neural encod-

ing of sound both for clinical and research purposes. Various types of stimuli

have been considered, such as transients like clicks, chirps and tone-bursts (e.g.

Jewett and Williston, 1971; Neely et al., 1988; Dau et al., 2000, and chapter3);

steady-state signals such as amplitude modulated (AM) tones (e.g.Galambos et al.,

1981; Picton et al., 1987; Rees et al., 1986, and chapter7), but also more complex

signals like speech (e.g.,Warrier et al., 2004; Agung et al., 2006; Swaminathan et al.,

2008; Chandrasekaran and Kraus, 2010). Most studies have focused on the auditory

brainstem response (ABR) as they are less affected by attention and sleep than

potentials with origin at higher neural stages. The ABR has also been observed to

be unaffected by training. However, a number studies have recently investigated

and found plasticity1 of the ABR, both considering short term training effects

(e.g. Russo et al., 2005; Song et al., 2008) and long-term experience effects (e.g.

Krishnan et al., 2005; Johnson et al., 2008a, seeChandrasekaran and Kraus(2010) for

1 physiological changes of the nervous system due to e.g. learning

119
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review). Russo et al.(2005) recorded brainstem responses to the stimulus-syllable

/da/ in learning-impaired children. The responses of the learning-impaired children

were recorded before and after an eight week period containing 35-40 one-hour

sessions of auditory training. The authors showed that the correlation between

the ABR to the clean /da/ syllable and the response to /da/ in noise, improved

for the learning-impaired children over this relatively short training period, thus

demonstrating plasticity in the brainstem. This result suggested that features of the

brainstem-response might reflect the ability to comprehendspeech and speech in

noise.Johnson et al.(2008a), Hornickel et al.(2009) andSkoe et al.(2011) measured

brainstem responses to the synthetically created syllable-stimuli /ba/, /da/ and /ga/,

in normal and learning-impaired children. Both groups of children were reported

to have normal audiometric thresholds and ABR wave-V latencies. Hornickel et al.

(2009) measured stop consonant differentiation scores, comparing the latencies of

the major peaks of the three ABRs evoked by the different syllables, and reading

abilities and speech-in-noise perception. They reported acorrelation between the

stop consonant differentiation score and the two behavioral measures, such that large

differences between peak-latencies (large consonant differentiation score) correlated

with good performance in the speech-in-noise test and the test of reading ability.

Hornickel et al.(2009) argued that this result showed plasticity in the brainstem, as

the group with the good behavioral performance had undergone long-term learning

and that the better performance was an indication of that learning had affected both

the behavioral performance and the electrophysiological brainstem recordings. The

observed differences, between the learning-impaired and the normal-learning subject

groups in the ABR measures of stop-consonant differentiation scores, were thus

argued to be the result of efferent (top-down) neural processes, and not the result

of peripheral auditory afferent processing.

Johnson et al.(2008) presented similar syllable-evoked ABR recordings from 22

normal-hearing children. They measured the latency of the major peaks for each of

the three syllable-evoked ABRs and found that, although thethree recorded time-

series were much alike, the peaks of the time-series response to /ga/ had shorter

latencies than the peaks of /da/ which again had shorter latencies than /ba/. The three

syllables only differed in the frequency content of the second formant, f2, and the
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third formant, f3. Hornickel et al.(2009) andSkoe et al.(2011) used almost identical

stimuli. Due to the difference in the frequency content of the syllables and due to

the tonotopic mapping of frequencies to places on the BM, thepeaks of the ABR

responses were represented early for the /ga/ (f2 = 2480 Hz), later for the /da/ (f2 =

1700 Hz) and latest for the /ba/ (f2 = 900 Hz). The underlying processes accounting

for the findings ofJohnson et al.(2008) thus appears to be afferent (bottom-up).

However, since the stimuli were similar, any efferent processing that affected the

recordings fromHornickel et al.(2009) should also have affected theJohnson et al.

(2008) recordings.Skoe et al.(2011) developed a “cross-phaseogram” from the time-

varying cross-power-spectral-density between two ABR recordings. When analyzed

in time-frames, the outcome was a spectrogram-like representation of the phase-lag

as a function of time and frequency. It allowed for a more detailed investigation of

which part of the stimuli caused the peak-latency difference observed byJohnson et al.

(2008).

A crucial stage in simulating ABR latencies is the cochlear filter stage and its

tuning within the model (Rønne et al., 2012, and3). Broad cochlear filter tuning,

often associated with loss of OHC functionality, is believed to lead to shorter

wave-V latencies (e.g.Elberling, 1976; Folsom, 1984). However, in subjects with

an audiometric threshold within “normal hearing” (<20 dB HL) there is still a

considerable variation in tuning. In a recent studyElberling et al.(2010) showed that

the traveling-wave delay is highly individual. The traveling wave delay is also believed

to be dependent on the cochlear tuning, and it can be shown (see calculation in section

8.2.5) that subjects with broader tuning in a group of normal-hearing subjects can have

Q-values that are less than half the Q-values of subjects with sharper but still normal

tuning. The possible consequence of different filter tuningon the simulations of the

syllable-evoked phase-shifts will be investigated in thisstudy.

In the present study, a phenomenological ABR model was developed based purely

on bottom-up afferent processing. The developed ABR model was similar to the

model ofRønne et al.(2012) (developed in chapter3); however, the AN model used

to create the summed activity pattern was updated fromZilany and Bruce(2007) to
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Zilany et al.(2009), as the IHC-AN synapse adaptation of the latter AN model is more

precise for long-duration syllable-stimuli.

Using the ABR model to simulate syllable-evoked ABRs, two questions were

addressed in the study: a) Can the ABR model, being purely afferent, simulate key

features of the syllable-evoked responses, and b) can the difference in the recorded

cross-phaseogram between normal and learning-impaired children (Skoe et al., 2011)

be explained by potential cochlear tuning differences between the groups? To

evaluate the first questionSkoe et al.(2011)’s cross-phaseograms was used to assess

three hypotheses that can be deduced from experimental observations made by

Johnson et al.(2008). First, differences in the frequency content off2 between the

syllable-stimuli, should results in components of the evoked-ABRs being differently

delayed due to the tonotopic mapping. This should be seen as phase-shifts in the

cross-phaseograms. Second, as the differences inf2 diminish over the course of the

response, the phase-shifts observed in the cross-phaseogram should vanish completely

when steady state is reached. Third, due to the phase-locking properties of the IHCs

(upper limit of phase-locking), neural encoding consists largely of phase-locking to

frequencies belowf2. This leads to phase-locking to the envelope rather than thefine-

structure at and above thef2 frequencies. This should result in phase-shifts observed

in the cross-phaseogram at frequencies well below thef2.

The second question will be addressed by changing the tuningof the model and

evaluating the simulations based on models with broad versus sharp tuning, however

still representing limits of normal hearing. The cross-phaseograms will be used

to evaluate whether a systematic change in the phase-shift between the syllable-

evoked ABRs can be obtained by altered tuning such that, for instance, broad tuning

systematically leads to smaller phase-shifts between the syllable-evoked ABRs.
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8.2 Method

8.2.1 ABR model

Figure 8.1 shows the structure of the ABR model used in this study. The model

was similar to the model ofRønne et al.(2012) (see also chapter7). However,

the AN model used to compute the summed activity pattern was updated such that

the Zilany et al.(2009) AN model was used instead of theZilany and Bruce(2007).

This update was made as theZilany et al. (2009) has an improved IHC-AN stage

producing more realistic adaptation properties. As the syllable-stimuli are of longer

duration, a precise adaptation is beneficial. The change of the AN model required a

recalculation of the unitary response (UR). Fig.8.2shows the UR (based on standard

cochlear filter tuning) calculated similar inRønne et al.(2012) as the deconvolution

of a 95.2 dB peSPL grand average click-evoked ABR recording (Elberling et al.,

2010; Rønne et al., 2012) and the summed activity pattern obtained by simulating the

response to an identical click-stimulus.

The simulated ABRs were at the output filtered with a 2nd orderband-pass filter

with cutoff frequencies at 70 Hz and 2 kHz. These filter settings were identical to the

output filters ofHornickel et al.(2009) andSkoe et al.(2011).

8.2.2 Stimuli

Synthetic /ba/, /da/ and /ga/ syllables (Hornickel et al., 2009; Skoe et al., 2011) was

used, that only differ in the frequency content of the secondformant, f2, of the first 60

ms, corresponding to the consonant part of the stimuli. The second formants decrease

in the [ga] stimulus from 2480 Hz, in the [da] from 1700 Hz and increased in the [ba]

stimulus from 900 Hz, reaching a steady-state frequency (corresponding to the /a/ part

of the syllable) of 1240 Hz in all 3 stimuli. The /a/ vowel-part of the syllables was the

same for the three syllables, consisting of the formant frequenciesf0 = 100 Hz, f1 =

720 Hz, f2 = 1240 Hz, f3 = 2500Hz, f4 = 3300 Hz, f5 = 3750 Hz andf6 = 4900 Hz.

All three stimuli were calibrated to have a root-mean-square (RMS) level of 1, and
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Figure 8.1: Schematic structure of the ABR model. 500 AN fibers tuned to different CFs are individually
simulated by the AN model. The summed activity pattern is convolved with a unitary response and
represents the simulated ABR to a given stimulus.
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Figure 8.2: The unitary response, calculated as the deconvolution of the summed activity pattern and the
Elberling et al.(2010) grand average click. The cochlear tuning of the AN model is the Shera et al.(2002)
tuning.
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were presented to the model at a level corresponding to 80 dB SPL, which was also

used int the study bySkoe et al.(2011).

8.2.3 Cross-phaseogram

Skoe et al.(2011) proposed a cross-phaseogram to illustrate the phase-differences and

thus the time delays between two ABR recordings. The first step in the procedure was

to divide the two recordings into time frames of 20 ms, starting with the first frame at

t = -40 ms. Each successive frame started 1 ms later than the previous one, creating an

overlap of 19 ms. A Hanning window of 20 ms length, including 10 ms onset and 10

ms offset ramps was applied to each frame, resulting in a 3 dB main lobe width of 141

Hz. The cross power spectrum density, i.e. the power spectrum density of the cross

correlation, was computed between each pair of frames from the two recordings. An

artificial frequency resolution of 4 Hz was obtained by zero padding, effectively acting

as a smoothing operation. Finally, the unwrapped phase (in radians) was extracted and

plotted as a function of time (midpoint of the 20 ms frames) and frequency.

Skoe et al.(2011) also proposed the average phase-shift to simplify the cross-

phaseogram into a single number that could be compared to other measures, such

as the psychoacoustic speech-in-noise performance. The average phase-shift (inπ
radians) was calculated on the formant transition period (15 to 60 ms) of the syllable-

evoked ABR in the frequency range of 70 to 1100 Hz.

8.2.4 Weighted cross-phaseogram

The cross-phaseogram weights time-frequency bins with little activity as high as bins

with much activity. This limits the use of the cross-phaseogram as it is impossible

to distinguish between time-frequency bins of presumable little importance due to

low activity from bins of major importance due to large activity. A weighted cross-

phaseogram is therefore suggested in this section. The firststep in the procedure was

to derive the energy in similar time-frequency bins as thosechosen in theSkoe et al.

(2011) cross-phaseogram (Fig.8.5). Each of the two syllable-evoked ABRs were thus
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Figure 8.3: The three left panels show cross-phaseogram representations of the three comparisons between
the syllable-stimuli. Warm colors indicate that the syllable mentioned first in the respective title phase-leads
the other. The time axis refers to the center point of the 20 ms time frame. The three right panels, show
weighted cross-phaseograms of the same stimuli-comparisons.

divided into 20 ms frames with 19 ms overlap, and the fast Fourier transform (fft)

was calculated with a frequency resolution of 4 Hz. The two resulting matrices were

summed and normalized with the average bin activity. This matrix was then multiplied

bin-per-bin with the original cross-phaseogram. The reason for the normalization

of the activity matrix was to create a weighted cross-phaseogram that highlights the

phase-shifts and does not just express the overall activity.

Fig. 8.3 displays both the cross-phaseograms (left) and the weighted cross-

phaseograms (right) for the different stimulus pairs. Eachtime-frequency bin

represents the corresponding phase lead (warm colors) or lag (cold colors) of the first

syllable-stimulus in the title over the second. The period from 15 to 60 ms shows the

formant transition period, the period after 60 ms the steadystate part of the response

(Skoe et al., 2011). Both sets of figures (left and right panels) show that the phase-

shifts between the stimuli are in the frequency region above1 kHz.



8.2 Method 127

8.2.5 Variability of cochlear filter tuning

Cochlear filter tuning and BM delay are inherently related (Folsom, 1984; Eggermont,

1979; Bentsen et al., 2011), such that broader filters lead to shorter delays.

Elberling and Don(2008) measured derived-band latencies from a total of 81 normal-

hearing subjects (hearing thresholds < 15 dB HL), at four different band center

frequencies (bCF; 710, 1400, 2800 and 5700). ABR wave-V latency and a inter-

subject standard deviation (SD) were derived. The BM delay was achieved by

subtracting the wave I-V delay (4.1 ms) and the synaptic delay (1 ms), see table8.1.

A representation of the variation of cochlear filter tuning in normal-hearing subjects

can be obtained from the mean latencies± 1 standard deviation. The stimulus of

Elberling and Don(2008) was a click presented at approximately 90 dB peSPL.

Eggermont(1979) derived a theoretical relation between the cochlear filtertuning,

Q10, and the average number of cycles in the impulse response up to the latency (minus

1 ms of synaptic delay) of the derived band CAP,Nav;

Nav =
0.5
π2

(

5(1+ γ)(2+ γ)
12γ

Q10−1

)(

2+ ln
5(1+ γ)(2+ γ)

12γ
+ lnQ10

)

(8.1)

whereNav can be calculated as(CF/1000)∗ τCF, whereτ is the BM latency of at the

CF. In table8.1Nav values derived from the mean latencies and from the latencies±1

standard deviation are shown (±2 SD were also calculated but not shown in the table

due to clarity).γ = 2 is representative of a normal cochlea (Eggermont, 1979), andQ10

values can thus be calculated based on theNav values from table8.1and equation8.2.5.

To convert theQ10 values intoQERB values, the conversion fromIbrahim and Bruce

(2010) was applied:

QERB=
Q10−0.2085

0.505
(8.2)
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bCF (Hz) Mean latency SD Nav Nav (-SD) Nav (+SD)
5700 1.17 0.32 6.7 4.8 8.5
2800 1.86 0.40 5.2 4.1 6.3
1400 2.93 0.56 4.1 3.3 4.9
710 4.57 0.79 3.2 2.7 3.8

Table 8.1: Derived-band latencies and a one standard deviation (SD) fromElberling et al.(2010). The 1
ms synaptic delay has been subtracted from the latencies. Thenumber of cycles in the impulse response up
to the bCF latency,Nav, for the mean latencies and for the mean latency± the standard deviation is also
shown.

Fig. 8.4shows theQERB values derived fromElberling and Don(2008)’s measured

delays±1 SDs and±2 SDs. TheQERB’s calculated the mean delays corresponds

well with the Shera et al.(2002) estimates of tuning (solid curve). New tuning-

curve estimates were obtained from the±1 SD and±2 SD based Q-estimates, by

multiplying theShera et al.(2002) estimates by a constant offset. The broader tuning-

estimates were obtained by multiplyingShera et al.(2002)’s tuning estimates by 0.80

and 0.60, the sharper tuning-estimates by 1.15 and 1.28. Thefour suggested tuning

curves were implemented in the ABR model. For each simulatedcondition, a new UR

was calculated. The URs were almost identical to the ones presented in Fig.8.2 and

are thus not shown explicitly here.

8.3 Results

Figure8.5presents cross-phaseograms and weighted cross-phaseograms derived from

each of the three possible combinations of the simulated ABRs. Figure8.6reproduces

the cross-phaseograms presented inSkoe et al.(2011). These results can thus be

compared to the simulated cross-phaseograms (left panels of Fig. 8.5). Table8.2

shows the average phase-shifts obtained inSkoe et al.(2011) and the corresponding

values obtained from the simulations presented in Fig.8.5. Both experimental results

and simulations show the largest phase-shift between /ga/ and /ba/, which also differs

most in their frequency spectrum. Also, the data and the simulations both show that

the phase-shift between /ga/ and /da/ is smaller than the phase-shift between /da/ and

/ba/.
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Figure 8.4: QERB’s calculated based onElberling and Don(2008)’s measured derived band latencies
(diamonds). In circles and triangles,QERB estimates based onElberling and Don(2008)’s measured
latencies±1 SD an±2 SD. Also shown is theShera et al.(2002) tuning (solid line) which is implemented
in the standard ABR model. The alternative tuning curves (dotted lines) are fitted to theElberling and Don
(2008) based tuning (±1 SD and±2 SD) and also implemented in the model.

Skoe et al. (2011) Simulations Simulations (weighted)
/ga/-/ba/ 0.317±0.040 0.353 3.040
/da/-/ba/ 0.288±0.031 0.243 2.163
/ga/-/da/ 0.208±0.028 0.141 1.660

Table 8.2: Average phase-shifts ofSkoe et al.(2011) recordings (left column), simulated average phase-
shifts (center column), and weighted average phase-shifts (right column). The average is taken across the
region from 15 to 60 ms, and from 70 to 1100 Hz.

The cross-phaseogram in Fig.8.5show that the /ga/ phase leads both /da/ and /ba/

(warm colors in the formant transition period of panel 1 and 3), and that /da/ phase

leads /ba/ (warm colors in panel 2). Further, the only difference between stimuli was

the frequency content off2, and the observed phase-shifts in the cross-phaseograms

can thus be argued to be caused by the stimuli-frequency differences. This is also

confirmed by table8.2presenting average phase-shifts of the consonant period, where

it is seen that /ga/ phase leads /da/ that phase leads /ba/. Further, Fig.8.5illustrates that

the simulated phase-shifts clearly diminishes over time, and that the phase-shifts are

vanished at steady state (>60ms). This shows that the memoryof the peripheral non-

linearity’s, e.g. the IHC-AN synapse adaptation, is short compared to the duration
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Figure 8.5: Cross-phaseogram (left panels) and weighted cross-phaseogram (right panels) representations of
the three comparisons between the syllable-evoked ABRs. Warm colors indicate that the syllable mentioned
first in the respective title phase-leads the other. The time axis refers to the center point of the 20 ms time
frame. It can be observed that the largest phase-shift is found in the /ga/ v. /ba/ plot, and the least phase-shift
is found between /ga/ and /da/.

Figure 8.6: Cross-phaseograms fromSkoe et al.(2011) of the three comparisons between the syllable-
evoked ABRs. Left panels, are calculated based on the top performing group of subjects in a hearing in
noise test (HINT). Right panels, presents the worst performers. Note that the frequency range is different
from the frequency range presented in Fig.8.5. © Journal of Neuroscience Methods.
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Figure 8.7: Weighted cross-phaseograms for each of syllablecombinations, for both broad (x 0.80) and
sharp (x 1.28) tuning.

of the stimuli. In Fig. 8.5 it can also be observed that there are phase-shifts up

to approximately 1500 Hz, i.e. both below and in the second formant frequency

range. However, the weighted cross-phaseograms of Fig.8.5 (right panels) does

not show components at these frequencies, indicating that the high-frequency phase-

shifts reflect time-frequency bins with very little activity, and thus potentially little

importance. The main trend is thus that thef2-frequency-difference between stimuli,

results in phase-differences at frequencies well below thef2. The causes for this

finding in the simulations are discussed later.

Figure8.7shows weighted cross-phaseograms of the syllable pairs, for simulations

of a relatively sharp (x 1.28) and relatively broad (x 0.80) tuning. It can be seen

(more bins with warm colors) that the phase-shift is larger for the sharp tuning. In Fig.

8.8, weighted average phase-shifts for all syllable comparisons and all five different

tuning-curve implementations are shown. Although the growth of the phase-shift with

increasing tuning amount is not monotonic, a trend is observed, where sharp tuning

leads to larger phase-shifts. This confirms that the state ofthe auditory periphery

affects the cross-phaseogram and weighted average phase-shifts. The implications for

theHornickel et al.(2009) andSkoe et al.(2011) studies are discussed further below.
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Figure 8.8: Weighted average phase-shifts for each of the syllable combinations, for both broad (0.60 and
0.80), standard (1.00) and sharp (1.15 and 1.28) tuning.

8.4 Discussion

8.4.1 Unweighted versus weighted cross-phaseogram

The cross-phaseogram and the average phase-shifts was developed by Skoe et al.

(2011) and has proven to be a valuable tool for investigating phase-shifts between

different frequency components of the recorded (or simulated) ABR. However, the

equal weighting of all time-frequency bins limits the valueof the average phase-

shift Skoe et al.(2011), since a bin with little activity will hardly influence the ABR

generation. In fact, a time-frequency bin with little energy is likely to be dominated

by measurement noise, and the average measure might thus emphasize noise.

In the simulations presented in this study, noise is not included. This makes a

comparison between simulations and data in the terms of the average phase-shift

difficult, as a systematic phase-shift at bins with little activity will be included in the

simulated average phase-shift, whereas such a phase-shiftis likely to be influenced

or masked by measurement noise in the data-derived average phase-shift. This could

be solved by adding noise to simulations. However, this would imply that the model

would no longer be deterministic which has not been considered in the present study.
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8.4.2 Explaining the presence of phase-shifts below the second

formant

In section8.3 it was shown that second formant differences between stimuli, result in

phase-differences at frequencies well belowf2. Johnson et al.(2008) argued that this

is due to the phase-locking properties of the IHCs (upper limit of phase-locking), and

that neural encoding consists largely of phase-locking to frequencies belowf2. This

leads to phase-locking to the envelope rather than the fine-structure at and above the

f2 frequencies. However, the IHC stage of the AN model (effectively modeling the

upper limit of phase-locking) consists of a nonlinearity and a low-pass filter with a

cut-off frequency at 3 kHz. It is thus unlikely that the IHC stage should be the cause

of the simulated phase-shifts at frequencies belowf2 in the simulations.

Figure 8.9 visualizes the simulated response to the syllable /da/ in anAN-UR-

spectrogram. Each horizontal line represents the output from one AN model, i.e.

the response to the stimulus at the respective model CF, convolved with the UR.

A summation across CFs will thus yield the simulated ABR (seesection 6 for

introduction to the AN-UR-spectrogram). It can be observedthat most of the energy

in the simulations is centered at the onset response and the frequency regions of 100,

200 and 500 Hz (latter one highlighted by the ellipse). It canbe seen in Fig.8.9

that phase-locking clearly occurs in the frequency range upto 1 kHz (this can be

observed as the number of peaks at, e.g. 500 Hz is 5 peaks per 10ms, i.e. the

corresponding periodicity). The response at larger CFs exhibits primarily a periodicity

corresponding to the fundamental frequency,f0=100Hz, i.e. the envelope of the

response (highlighted by the arrows in Fig.8.9).

To fully explain the presence of phase-shifts belowf2 the stimulus and model has

to be analyzed step by step. The syllable-stimuli formants (e.g. f2) are modulated

at the rate of the fundamental frequency (f0 = 100Hz) and its higher harmonics.

Thus, at the characteristic places on the BM of thef2 frequencies, a signal with an

f2 carrier frequency modulated by anf0 (+ harmonics) modulation frequency will be

processed. Further, the stimulus-level was high (80 dB SPL)causing upwards spread

of excitation. The left panels of Fig.8.10shows the single channel response at the
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output of the filter stage (see Fig.3.2 for diagram of AN model), tuned to CF =

2405 Hz, in response to the /ga/ stimulus. The time-series shows a periodic signal

and its spectrum (shown below it) clearly shows frequency components separated by

f0. Further, is it seen that the energy is centered on the CF, butalso that upwards

spread of excitation results in this channel being excited by contributions from lower

frequencies. The IHC stage applies physiologically inspired half-wave rectification

and low-pass filtering. The output of the IHC stage is shown inthe right panels of Fig.

8.10for the same CF channel and stimulus. It is seen that the half-wave rectification

creates low-frequency energy, as inter-modulation and harmonic distortion products.

However, the majority of energy is still centered on the CF. The synapse adaptation

stage, that occurs after the IHC stage (see Fig.3.2 for AN model), has no significant

effect on the spectrum of the single channel response. However, the UR that is

convolved onto the single channel response effectively acts like a low-pass filter. The

left panels of Fig.8.11show the UR and the spectrum of the UR. As a convolution is

effectively the same as a multiplication in the frequency domain, the UR is effectively

acting as a low pass filter with the frequency response corresponding to the spectrum

shown in the lower left panel. Thus the resulting simulated single channel potential

(shown in the right panels) is limited to low frequencies. The 2405 Hz fiber will

thus contribute with frequency components at low frequencies, which will carry the

traveling wave delay (and thus phase) of the CF of the fiber. The frequency-differences

between stimuli at thef2 frequencies will thus be depicted as phase-differences at the

f0 and corresponding harmonic frequencies in the phaseograms.

The outcome measure predicted by the hypotheses ofJohnson et al.(2008), that

phase-shifts should be found at low frequencies, was thus found in bothSkoe et al.

(2011)’s experimental analysis and in this study’s simulations.However, the simu-

lations showed that the predicted phase-shifts were mainlycaused by a combination

of upwards spread of excitation and the effective low-pass filtering applied by the

UR. Further, it was shown not to be caused by the upper limit ofphase-locking, as

hypothesized byJohnson et al.(2008).

Note, the UR represents the contributions made from local potentials in the AN and

the brainstem to the far-field potential recorded at the electrodes on the scalp of the
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Figure 8.9: AN-UR-spectrogram visualizing the components in frequency range from 100 to 3000 Hz
that adds up to form the simulated /da/ evoked ABR. It is created by convolving each of the simulated
AN fibers responses with the UR. The ellipse highlights the region with the most activity. At frequencies
above approximately 1 kHz, the single fiber response tracks the envelope, i.e. the fundamental-frequency
periodicity of 10 ms (indicated by the arrows), rather than the fine-structure of the signal.

subject. The peaks of the UR and the time between them, thus describes ascending

places along the auditory pathway were local potentials aregenerated, that contributes

to the ABR potential. The UR is thus not representing the neural encoding in the

brainstem but rather the times after onset where a contribution to the surface potential

is made. In this study, the UR is seen to limit the transmission of the neurally encoded

signal to the recorded surface potential. This is the consequence of the effective low-

pass filtering that again is the consequence of the distance between the major peaks,

and thus neural generators, of the UR. The effective low-pass filtering is also limiting

the utility of this kind of electrophysiology in investigating neural encoding of sound.
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Figure 8.10: Left panels: Time-series and spectrum of the C1 filter output. Right panels: Time-series and
spectrum of the IHC stage output. The CF of the fiber was 2405 Hzand the stimulus was /ga/.
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Figure 8.11: Left panels: Time-series and spectrum of the UR.Right panels: Time-series and spectrum of
the single fiber response of the model (AN model output convolved with UR). The CF of the fiber was 2405
Hz and the stimulus was /ga/.
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8.4.3 Limitation of simulating high spontaneous rate fibers

A deviation between simulations and data is the absolute amplitude of the simulated

ABRs (not shown). The simulated peak-to-trough amplitude is approximately 0.1

µv, whereas the measured data in bothJohnson et al.(2008) and Hornickel et al.

(2009) indicates amplitudes around 0.5µv. The reason for the under prediction is

the choice of simulating the responses of high spontaneous rate fibers. The high

stimulus-level of 80 dB SPL results in saturated fiber responses for high spontaneous

rate fibers (Sumner et al., 2002). This saturation reduces the overall amplitude of the

response. However, the phase-information in the ABR was thepoint of interest in

this study, not the amplitude of the response, and the choicewas therefore to simulate

high spontaneous rate fibers, as these has been shown to be mainly responsible for

the onset of signal-components. However, if other speech-evoked ABRs with an

amplitude-based outcome measure, were to be simulated thislimitation would need

to be addressed. A possible solution would be to simulate a mixture of both high and

low spontaneous rate fibers, to predict both the amplitude and the phase-information

as accurately as possible.

8.4.4 Implications of changing cochlear tuning on Skoe et al.

(2011) conclusions

Hornickel et al.(2009) and Skoe et al.(2011) found correlations between learning-

impairments of children, and recorded cross-phaseogram phase-shifts (peak latencies

in Hornickel et al., 2009) between syllable-evoked ABRs, such that a small average

phase-shift was an indication of learning-impairment. A basic assumption of

Hornickel et al.(2009) was that the two groups of hence normal and learning-impaired

children have equally good peripheral hearing.Hornickel et al.(2009) argued that

this was the case as all subjects had audiometric thresholdsbelow 20 dB HL and had

normal ABR wave-V latencies. The wave-V latency was measured as an indication

of the state of the cochlear tuning, as broad cochlear tuningare believed to lead to

shorter wave-V latencies (e.g.Elberling, 1976; Folsom, 1984). However, in a recent

study Elberling and Don(2008) showed that the traveling wave delay was highly
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individual. The traveling wave delay is also thought to be dependent on the BM tuning,

and it was in the present study suggested that the broadest BMtuning in a group of

audiometric-wise normal-hearing subjects can have a Q-value that is less than half

the Q-value of the sharpest BM tuning. Given the possible variation of “normal”

BM tuning an alternative explanation for theHornickel et al.(2009) results can be

hypothesized. A broad cochlear tuning leads to shorter peak-latencies for all three

stimuli. Further, do the traveling-wave delay decrease logarithmically with increasing

stimulus frequency (e.g.Neely et al., 1988; Elberling et al., 2010). A broad tuning

would thus lead to a decreased difference between the ABR peaks, and thus a smaller

phase-shift. Phase-shift differences similar to the oneSkoe et al.(2011) finds between

the groups of normal and learning-impaired children, couldthus be hypothesized to

also be found when measuring ABRs to two normal-hearing groups but with different

cochlear tuning.

The results from this modeling study showed that there is indeed a relation between

filter tuning and weighted averaged cross-phaseogram values, where sharper tuning

leads to larger phase-shifts. Although this relation was not strictly monotonic it

do indicate that the phaseograms are sensitive to changes inthe auditory periphery.

Whether this finding offers an alternative explanation for the results ofHornickel et al.

(2009) and Skoe et al.(2011) are, however, questionable. That would require the

assumption that the group of learning-impaired children, had significantly overall

broader cochlear tuning than the normal children. Althoughthis hypothesis is not

unlikely, this study cannot by any chance verify such a claim. That would require

a major study, where the cochlear tuning of learning-impaired and normal subjects

were measured carefully, and correlated with weighted average phase-shifts. The

conclusion of this part of this study is thus, that the huge spread of normal-hearing

cochlear-tuning, in the simulations, leads to a huge spreadin weighted average phase-

shifts. Skoe et al.(2011) showed that average phase-shifts was related to learning-

impairment. Further, didSkoe et al.(2011) conclude that the correlation between

learning-impairment and average phase-shifts show plasticity of brainstem. This

conclusion was based on the assumption that the state of the auditory periphery was

equal (i.e. normal hearing) in both groups. However, this study has indicated, that

the cochlear tuning of the normal-hearing subjects could have an effect on the average
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phase-shift, and do thus challenge the underlying assumption of the conclusions from

Hornickel et al.(2009) andSkoe et al.(2011). Further, this study has shown that the

use of audiograms and click-evoked ABR wave-V latencies areunlikely to be precise

enough to claim that the cochlear tuning are similar betweentwo groups.

8.5 Summary and conclusion

This study evaluated the performance of an ABR model to simulate ABR responses to

three synthetic syllables. The ABR model was shown to predict phase-shifts between

the responses to the three syllable stimuli. It was also shown that the model accounts

for these phase-shifts which diminish over time, as the spectral differences between

the stimuli also decrease, and that there are no differencesin the steady-state part of

the responses. The model also correctly described that the frequency-region of the

response that were mainly phase-shifted was well below the frequency-region that

differed between the three stimuli. Based on the simulations it was shown that this

phase-shift was mainly due to upwards spread of excitation and effective low-pass

filtering applied by the UR and not the consequence of the upper limit of phase-locking

as hypothesized byJohnson et al.(2008). Furthermore, it was shown that altering

the cochlear tuning influenced the simulated phase-shifts,illustrating that the state

of the auditory periphery is crucial when analyzing responses based on the cross-

phaseogram. The results suggests that the assumption ofHornickel et al.(2009) and

Skoe et al.(2011), that the peripheral hearing was similar between their twogroups

of test subjects, might be flawed and the following conclusion, that the larger phase-

shifts for the non-learning-impaired children was the consequence of plasticity, might

thus be wrong.
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9
General discussion

9.1 Summary

In this Ph.D. thesis, AEP models based on a convolutive approach were developed,

where the response of a nonlinear peripheral model were convolved with a linear

UR. The peripheral model simulated single-fiber responses to a given stimulus. The

response from 500 individually tuned fibers were summed to form the summed activity

pattern, i.e. the activity at the distal end of the AN. This summed activity pattern

was then convolved with a linear UR, representing the contributions made to the

formation of the far field potential (AEP), from ascending places along the neural

auditory pathway in response to the events in the summed activity pattern. The UR

thus represented the impulse response of the transmission from the activity at the distal

end of the AN to the electrodes attached to the scalp of a test subject. This approach

made use of the assumptions that the UR was independent of test subject and stimulus,

and unaffected by nonlinear neural processing. Two different peripheral models

were used. TheZilany and Bruce(2007) AN model to simulate transiently evoked

responses to clicks, tone bursts and chirps, and theZilany et al.(2009) AN model to

simulate evoked responses to amplitude modulated tones andspeech syllables. Both

AN models were originally fitted to cat data. TheZilany and Bruce(2007) model was

humanized by Ian Bruce and colleagues, such that the frequency-dependent cochlear

tuning was fitted to the human tuning estimates ofShera et al.(2002), and the middle

ear stage was replaced by the human model ofPascal et al.(1998). This humanization

was also applied to theZilany et al.(2009) model. The difference between the two

models was the more advanced IHC-AN synapse adaptation stage included in the

141
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Zilany et al.(2009) model. This more precise adaptation was argued to be important

when longer-duration stimuli like amplitude modulated tones or syllables were used.

The ABR model developed inRønne et al. (2012) was based on the

Zilany and Bruce(2007) AN model and a UR covering the first 10 ms of neural

processing, i.e. including the ABR wave I-VII. The ABR modelwas shown to

predict the frequency dependence of tone-burst wave-V latencies and the amplitude of

wave-V’s evoked by clicks and chirps at different stimulus-levels and chirp sweeping

rates. However, the ABR model under estimated the stimulus-level dependence of

wave-V latencies. An alternative ABR model, using the DRNL model as peripheral

model, was also considered (seeRønne et al., 2011) to investigate whether the under

estimation of the level-dependence of click-latencies wasbound to the structure of

the AN model. However, the DRNL-based ABR model was not foundto improve

predictions. The models capability to simulate ASSRs was also evaluated. This

was done as part of theRønne et al.(2012a) study, where the possibility of using

ASSRs to assess cochlear compression was evaluated both experimentally and in

simulations. The ASSR model was based on theZilany et al.(2009) AN model and a

UR covering the first 80 ms of processing, thus including the middle-latency response

(MLR) components. The model was shown to be able to predict the main trends of

ASSRs to a wide range of stimulus levels and modulation depths. However, the model

failed to predict the slight compression observed in the experimentally measured

modulation-growth function (Rønne et al., 2012a). The model accounted for on-

frequency level-growth compression similar to what would be expected. However,

when simulating responses from all 500 fibers, the mixture ofon- and off-frequency

contributions provided a weaker compression than experimentally measured. In

chapter8 an ABR model was developed based on theZilany et al.(2009) AN model

and a UR covering the first 10 ms of the neural processing, withthe purpose to

evaluate whether the model could simulate responses to complex stimuli. This model

was used to simulate the response to speech syllables. One key prediction was that

the phase-shifts between two ABRs evoked by two different syllables were correctly

accounted for frequencies significantly lower than the frequency content that differed

between the two syllables. This simulation was explained asresulting from upwards

spread of excitation and the effective low-pass filtering applied by the UR. The effect
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of variation of cochlear tuning within what could be expected from a group of normal

hearing test-subjects was also investigated. Here it was found that sharper tuning

generally led to larger phase-shifts. Based on the assumption that the peripheral

hearing was equal between groups,Skoe et al.(2011) argued that the difference in

recorded phase-shift between two groups of normal and learning-impaired children

was caused by plasticity of the brainstem. However, the conclusion of the simulations

from the present study was that the variation in normal-hearing tuning is large enough

to cause significant phase-shifts, and the underlying assumption ofSkoe et al.(2011)’s

conclusion might thus be incorrect.

This thesis also comprised two experimental studies. One ofthem investigated

whether the higher amplitude of an ABR evoked by a rising chirp compared to a

click was mainly a consequence of the better alignment of thelow-frequency (<1500

Hz) versus the high-frequency (>1500 Hz) components. Although both regions were

found to contribute to the ABR, the region with the largest additional contribution to

the chirp-evoked compared to the click-evoked ABR was the low frequencies. In the

other experimental study, it was investigated whether the ASSR could be used to assess

human cochlear compression. The conclusion was that both the level-growth function

and the modulation-growth function could be used to obtain an estimate of cochlear

compression. However, the modulation-growth function required the double amount

of data and had inherently more noise associated. Thus, the clear recommendation was

to use the level-growth function in future work both clinically and in research. One

interesting finding was the slight compression observed when plotting the modulation-

growth function on double logarithmic scales. According tothe developed analytical

model and the ASSR model, no compression should have been observed this way. The

result remained unexplained.
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9.2 Revisiting assumptions of the convolutive ap-

proach to modeling

The modeling work of this study was built upon the convolutive approach assuming

linear superposition, where a nonlinear summed activity pattern was convolved with a

linear UR. The UR was assumed to be independent of stimulus-type (level, frequency

and fluctuations), independent of subjects, unaffected by top-down efferent processing

as training, and unaffected by bottom-up nonlinear neural processing.

A UR with level- and frequency-dependence, as proposed byChertoff (2004) has

already been discussed in section3.6.3 and 4.5. However, the UR could also be

thought to be dependent on temporal fluctuations/modulations of the stimulus. In

chapter7, it was reported that a slight compression was observed whenrecording

ASSR modulation-growth functions and plotting them on double logarithmic scales.

A slope of 1 was predicted by the ASSR model, but a slight compression was observed

experimentally (slope = 0.78). It was suggested that the modulation gain, reported

by Joris and Yin(1992) for single-fiber cat AN responses, could be the cause of the

compression, as the modulation gain describes how synchrony1 is increased in the

neural representation of the AN. However, the modulation gain was included in the

AN model and could thus not explain the found compression (Zilany et al., 2009).

Joris et al.(1994) reported a further increased neural synchronization in the AVCN

compared with the synchronization in the AN fibers. They argued that this was due to

the convergence of inputs from two or more AN fibers on an AVCN cell that require

coincident input spikes before firing (Joris et al., 1994). Malone et al.(2010) showed

that the synchronization is further increased at ascendingplaces along the auditory

pathway. An increased synchronization represents nonlinear processing and thus is

not described by the linear UR. Future work could be to implement a neural stage

where the increased synchronization could be accounted forin the framework of

the present AEP model. Such an extra neural stage could potentially improve the

1 Synchrony measures how densely nerve-firing is clustered around the peaks of the envelope response
(Malone et al., 2007)
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simulations, such that the slight compression found in the logarithmically plotted

ASSR modulation-growth functions could be explained.

Another basic assumption underlying the linear UR of the present AEP model is that

the model is independent of test subject and independent of time. In chapter3, subject

independence was investigated and all simulations were rerun using individually

estimated UR functions from three different subjects. Thisresulted in small changes to

the overall simulated response amplitudes and introduced an individual latency offset.

However, the shape of the UR and the distance between peaks remained the same, as

expected. This investigation was though only interested inthe first 5 ms of the UR, i.e.

up to wave-V. Furthermore, all subjects were young normal-hearing adults. A test of

whether higher neural stages, potentially affecting wave-V and higher generation sites,

differed between individual subjects was never conducted.Such a potential neural

difference could arise from brainstem plasticity, i.e. physiological changes to the

brainstem processing due to learning. A potential effect ofplasticity was described by

Hornickel et al.(2009) andSkoe et al.(2011), where degrees of learning impairment

were found to correlate with electrophysiological ABR phase-shift measures. It was

argued that the reason for the correlation was that the normal-learning children were

better trained and thus showed plasticity of the brainstem,i.e. that auditory training

had resulted in physiological changes of the brainstem. If this was true, a general

across-subject UR would not be reflective of the individual differences in neural

processing. However, plasticity is the effect of long-termlearning in the range from

weeks to several years, and the consequence is thus that the UR does not necessarily

need to be non-linear to simulate these differences. Rather, the consequence is that the

UR should be calculated for each individual subject and could benefit from frequent

recalculations (to anticipate plasticity of the brainstemover time).

9.3 Limitations of the present AEP model

The AEP model of this study was shown to be limited with regards to two different

sets of simulations. The first was the level-dependence of click-evoked ABR latencies

where the predicted slope of the latency-growth function was -0.015 ms/dB compared
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to the slope of -0.05 ms/dB found in literature. The second limitation was the ASSR

level-growth compression, yielding a compression ratio of0.48 dB/dB compared to

experimentally measured compression ratios of 0.2 dB/dB. The underestimation of

the click-latencies was investigated inRønne et al.(2011), with focus on the influence

of the auditory periphery. It was found that the major contributor to click-latencies

was the tuning of the cochlear filters and, to a lesser degree,the IHC-AN synapse

adaptation. Therefore, the conclusion from that study was that the filter tuning at high

stimulus levels and high stimulus frequencies might have been incorrect.

The under-estimated ASSR compression ratio was found inRønne et al.(2012) to

be a consequence of on-frequency compression and off-frequency linearity. The on-

frequency compression was shown to have a compression ratioof 0.2, i.e. similar to

the experimentally recorded compression. However, when mixed with off-frequency

linear contributions, the mixture demonstrated compression with a ratio of 0.48.

Three suggestions for this disparity were made: 1) The filtertuning of the model

could be imprecise, such that the mixture of on- and off frequency contributions

were wrong. An updated implementation would result in either a stronger on-

frequency compression or a suppression of off-frequency contributions, for instance

by making the filter skirt roll-off sharper. 2) The potentially increased synchrony

in the AVCN could also affect the cochlear compression measured by ASSR, as the

neural synchrony has been shown to be stimulus-level dependent. The increased

synchrony is though not monotonically dependent on the stimulus-level, and can thus

not be a major contributor to a simulated compression that istoo low over the entire

compressive stimulus-level region. 3) In the ASSR study, only low-spontaneous rate

fibers were simulated. This was done as high-spontaneous rate fibers were shown

to be saturated at most stimulus levels. However, a saturation represents effectively

an extreme compression. An appropriate mixture of low- and high-spontaneous rate

fibers, could thus potentially increase the on-frequency compression, such that that the

mixture of on- and off-frequency contributions would be changed, and an effectively

higher compression could be obtained. Additional simulations showed that simulating

the response of high-spontaneous rate fibers led to a saturated on-frequency response

as expected. However, as the level of the saturated on-frequency responses were low

(due to the saturation), the off-frequency contributions (which were not saturated)
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were inherently given more relative weight. The resulting mixture of extreme on-

frequency compression and linear off-frequency contributions with higher weight

resulted in a compression ratio very close to the originallysimulated compression ratio

of 0.48. This does thus likely neither provide an explanation for the weak simulated

compression.

Common for the two main limitations of the AEP model is thus the uncertainty

about the implemented cochlear tuning. It has not been within the scope of this Ph.D.

to update the cochlear filters, it has rather been the scope toinvestigate the limitations

of the current knowledge and the present model. However, a future study should

focus on getting the filter tuning accurately modeled. At present, uncertainties remains

regarding the tuning (Q-values) at high stimulus-levels and high stimulus-frequencies

and further regarding the slope of the filter skirts, i.e. thepart of the filter description

not included in theQ10 value.

9.3.1 Modeling high- versus low-spontaneous rate fibers

Throughout this study, either high or low-spontaneous ratefibers have been modeled.

At no point has a mixture of low- and high-spontaneous rate fibers been attempted.

The low-spontaneous rate fibers show slow recovery after stimulation whereas high-

spontaneous rate fibers recover faster (Relkin and Doucet, 1991), making the high-

spontaneous rate fibers important when simulating timing and onset responses.

Further, the high-spontaneous rate fibers show saturating response characteristics

for increasing stimulus level, whereas the low-spontaneous rate fibers show a linear

growth (Winter et al., 1990). It thus seems evident that low-spontaneous rate fibers are

responsible for encoding high stimulus-level signals, whereas the high-spontaneous

rate fibers encode low stimulus levels and onsets of signals.Thus, to be able to

simulate all aspects of AEPs evoked by fluctuating stimuli, like AM signals or

syllables, the inclusion of a mixture of low and high spontaneous-rate fibers is needed.

A starting point for a future inclusion of low- and high-spontaneous rate fibers would

be to determine an appropriate ratio of the number of hence low- and high-spontaneous

rate fibers to include in the model, and secondly to ensure that the two types of fibers
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have appropriate sensitivity. Thus, the summed activity pattern would consist of 500

channels, each consisting of the sum of a low and high spontaneous rate fiber response.

9.4 Perspectives

9.4.1 ASSRs as an objective predictor of cochlear compression

Rønne et al.(2012a) investigated the potential use of the ASSR to assess cochlear

compression. It was found that measuring compression via the level-growth function

was possible on a group basis for normal-hearing subjects. The measurement of

compression at one CF took approximately 30 minutes.Han et al.(2006) showed that

ASSRs can be recorded at four different CFs simultaneously.Therefore, ASSRs could

potentially be a fairly fast (< 30 min) method to get a broad overview (at four CFs) of

the cochlear compression. However, there are still important questions that need to be

addressed before such a method would be ready for clinical usage. First,Rønne et al.

(2012a) showed that compression could be assessed on a group basis,but it was

never shown that the method also was reproducible and accurate on an individual

subject level, which is crucial if the method should be applied in clinical diagnostics.

Second, it was neither shown that the method works with hearing-impaired subjects.

In hearing-impaired subjects with resulting broader filters, the hearing threshold will

typically also be elevated. Further, it is difficult to raisethe stimulus-level as the

test needs to be restricted to the compressive region of the cochlear I/O function of

(approximately 40 to 90 dB SPL). Therefore, the ASSR recording will be carried out

closer to threshold. This could lead to a weaker neural signal and thus more noise-

prone recordings. It should therefore be tested whether theASSR can be recorded

on individual hearing-impaired subjects as well. Finally,the question is what the

information of the state of the cochlear compression in a hearing-impaired subject can

be used for in technical application. Currently, no hearingaid or cochlear implant

manufacturer uses such information in their fitting procedures. Therefore studies on

how to use the information should also be undertaken in the future. A reproducible
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ASSR test of individual local cochlear compression would bea major benefit to both

the research community and the outside world.

9.4.2 Electrophysiological correlate of speech perception

In chapter8, Skoe et al.(2011)’s cross-phaseogram was introduced as a method

to visualize the difference in ABR recordings between two syllable-evoked ABRs.

This cross-phaseogram analysis could be highly interesting for research and clinical

purposes, specifically, if it could be used as an electrophysiological correlate of speech

intelligibility. This would be the case if it was shown that the weighted average

phase-shift correlate with speech-in-noise test results,for a wide variety of stimuli

and subjects.Hornickel et al.(2009) andSkoe et al.(2011) have indicated for a very

specific set of stimuli, /ba/, /da/ and /ga/ syllables, that this could be the case. However,

a series of studies has to be carried out to assess, the sensitivity of the measure,

how general the measure is and, finally, how the measure is influenced by hearing

impairment, before it can be claimed that cross-phaseogramand the average phase-

shift is an electrophysiologically correlate of speech intelligibility. On a short time

scale, a first study to carry out could be to determine whetherthe cross-phaseogram

can be generalized to also account for differences between other syllable pairs. It

could be hypothesized that the cross-phaseogram is a distance measure between two

syllables and, thus, that the larger the average phase-shift is the easier distinguishable

would two syllables be. An outcome measure could be a correlate between a

psychoacoustic test giving a syllable confusion matrix, and the ABR-based averaged

phase-shifts. Further, tests with a series of synthetic syllables, forming a range of

stimuli that are morphing from one syllable into another (e.g. Stephens and Holt,

2011) could be interesting. Here the hypothesis that the cross-phaseogram is a distance

measure could be tested directly. Furthermore, the sensitivity and repeatability should

be tested such that it is investigated whether the cross-phaseogram can be used to

assess individual intelligibility.



150 9. General discussion

9.4.3 AEP model improvements

The present AEP model is capable of simulating many featuresof AEPs evoked

by both complex and simple stimuli. However, there are stillmany types of

responses this model cannot simulate accurately. Improvements of the model would

be highly beneficial for the research community as it would allow the testing of our

understanding of the underlying physiology behind AEPs evoked by more complex

stimuli.

Suggestions for future improvements of the model have already been made in

this thesis, to make the current simulations more accurate.It was suggested that

the cochlear tuning might be imprecise and that the simulations of the cochlear

compression using ASSR as well as the click-evoked ABR wave-V latency could

benefit from an update of this cochlear tuning. Such an updatewould require reliable

data and thus a thorough investigation of tuning at high stimulus levels and high

stimulus frequencies, as well as an investigation of the slope of the filter-skirts.

Another suggestion was to include a mixture of high- and low-spontaneous rate fibers.

This could make the model capable of accurately simulating both the phase and the

amplitude of syllable-evoked ABRs. Finally, it was suggested to include an AVCN

stage to increase the AM synchrony and thus the modulation gain. This AVCN

stage should only influence the components of the UR associated with an onset delay

of more than 3-5 ms. This would complicate the AEP modeling asa non-linear

stage would be added. Amongst the complications would be that the deconvolutive

approach to estimate the UR would become invalid.

The AEP model could also be developed to include higher neural stages. This

could be important if complex speech-like stimuli were to beconsidered. As a

starting point the modeling work byDugue et al.(2010) could be used.Dugue et al.

(2010) measured evoked potentials in epileptic patients where the electrodes were

implanted in the primary auditory cortex. These data were compared to modeling

work based on the DRNL model.Dugue et al.(2010) extended the DRNL model,

such that the chopper neurons from the DRNL model, were combined in a coincidence

detector argued to simulate the inferior colliculus. Thesestages were followed by

stages simulating the medial geniculate body, the thalamicreticular nucleus and the



primary auditory cortex. The model was shown to be able to account for the temporal-

modulation transfer-function data. The model is, however,not directly comparable to

the modeling work of this thesis, as the data used to fit the model were recorded from

electrodes inside the scalp. Some kind of unit function associated to each of the neural

stages should thus also be developed to be able to simulate the scalp-recorded AEPs.

A final improvement of the model would be to simulate the responses from hearing-

impaired subjects. This would be highly relevant for studies where clinically relevant

stimuli were to be developed. A starting point could be to consider the hearing-

impairment related to the loss of OHC functionality. The implementation of OHC loss

in the AN model has already been attempted for the cat-fitted version (Zilany et al.,

2009). However, the outcome measure were single-fiber AN responses and not

scalp-recorded AEPs.Zilany and Bruce(2007) could though inspire a fairly easy

implementation of hearing-impairment in the form of broader tuning due to loss of

OHC functionality in the AEP model. Whether such an implementation of OHC

loss would be sufficient to simulate AEP responses from hearing impaired subjects

is unknown, and an evaluation of the capabilities of the hearing-impaired AEP model

should thus be carried out.

151



152 9. General discussion



References

Agung, K., Purdy, S. C., McMahon, C. M. and Newall, P. (2006),‘The use of cortical

auditory evoked potentials to evaluate neural encoding of speech sounds in adults’,

Journal of the American Academy of Audiology17(8), 559–572.

Aiken, S. J. and Picton, T. W. (2008), ‘Envelope and spectralfrequency-following

responses to vowel sounds’,Hearing research245(1-2), 35–47.

Akhoun, I., Gallego, S., Moulin, A., Menard, M., Veuillet, E., Berger-Vachon, C.,

Collet, L. and Thai-Van, H. (2008), ‘The temporal relationship between speech

auditory brainstem responses and the acoustic pattern of the phoneme vertical bar

ba vertical bar in normal-hearing adults’,Clinical Neurophysiology119(4), 922–

933.

Anderson, S., Parbery-Clark, A., Yi, H.-G. and Kraus, N. (2011), ‘A Neural Basis of

Speech-in-Noise Perception in Older Adults’,Ear and hearing32(6), 750–757.

Bentsen, T., Harte, J. M. and Dau, T. (2011), ‘Human cochleartuning estimates from

stimulus-frequency otoacoustic emissions’,J. Acoust. Soc. Am.129(6), 3797–3807.

Berger, H. (1929), ‘Electroencephalogram in humans’,Archiv fur psychiatrie und

nervenkrankheiten87, 527–570.

Boettcher, F., Poth, E., Mills, J. and Dubno, J. (2001), ‘Theamplitude-modulation

following response in yound and aged human subjects’,Hearing research153, 32–

42.

153



154 References

Bohorquez, J. and Oezdamar, O. (2008), ‘Generation of the 40-Hz auditory steady-

state response (ASSR) explained using convolution’,Clinical Neurophysiology

119(11), 2598–2607.

Burkard, R. and Secor, C. (2002), Overview of auditory evoked potential., in

‘Handbook of Clinical Audiology’, Lippincott, Williams, and Wilkins., pp. 233–

248.

Burkard, R., Shi, Y. and Hecox, K. (1990), ‘A comparison of maximum length and

legendre sequences for the derivation of brain-stem auditory-evoked responses at

rapid rates of stimulation’,J. Acoust. Soc. Am.87(4), 1656–1664.

Carney, L. (1993), ‘A model for the responses of low-frequency auditory-nerve fibers

in cat.’,J. Acoust. Soc. Am.93(1), 401–417.

Carney, L., McDuffy, M. and Shekhter, I. (1999), ‘Frequencyglides in the impulse

responses of auditory-nerve fibers’,J. Acoust. Soc. Am.105(4), 2384–2391.

Chandrasekaran, B. and Kraus, N. (2010), ‘The scalp-recorded brainstem response to

speech: Neural origins and plasticity’,Psychophysiology47(2), 236–246.

Chertoff, M. (2004), ‘Analytic treatment of the compound action potential: Estimating

the summed post-stimulus time histogram and unit response’, J. Acoust. Soc. Am.

116(5), 3022–3030.

Chertoff, M., Lichtenhan, J. and Willis, M. (2010), ‘Click-and chirp-evoked human

compound action potentials’,J. Acoust. Soc. Am.127(5), 2992–2996.

Chintanpalli, A. and Heinz, M. G. (2007), ‘Effect of auditory-nerve response

variability on estimates of tuning curves’,J. Acoust. Soc. Am.122(6), 203–209.

Collura, T. (1993), ‘History and evolution of electroencephalographic instruments and

techniques’,Journal of clinical neurophysiology10(4), 476–504.

Corless, R., Gonnet, G., Hare, D., Jeffrey, D. and Knuth, D. (1996), ‘On the Lambert

W Function’,Adv. Comput. Math.5, 329–359.



References 155

Dau, T. (2003), ‘The importance of cochlear processing for the formation of auditory

brainstem and frequency following responses’,J. Acoust. Soc. Am.113(2), 936–

950.

Dau, T., Wegner, O., Mellert, V. and Kollmeier, B. (2000), ‘Auditory brainstem re-

sponses with optimized chirp signals compensating basilarmembrane dispersion’,

J. Acoust. Soc. Am.107(3), 1530–1540.

Davis, H., Davis, P., Loomis, A., Harvey, E. and Hobart, G. (1939), ‘Electrical

reactions of the human brain to auditory stimulation duringsleep’, Journal of

neurophysiology2(6), 500–514.

deBoer, E. (1975), ‘Synthetic whole-nerve action potentials for the cat’,J. Acoust.

Soc. Am.58, 1030–1045.

Delgutte, B. (1990), ‘Physiological-mechanics og psychophysical masking -

observations from auditory-nerve fibers’,J. Acoust. Soc. Am.87(2), 791–809.

Dobie, R. and Wilson, M. (2001), ‘A comparison of t test, f test, and coherence

methods of detecting steady-state auditory-evoked potentials, distortion-product

otoacoustic emissions, or other sinusoids’,J. Acoust. Soc. Am.100, 2236–2246.

Don, M. and Eggermont, J. (1978), ‘Analysis of click-evokedbrain-stem potentials in

man using high-pass noise masking’,J. Acoust. Soc. Am.63(4), 1084–1092.

Don, M. and Kwong, B. (2002), Auditory brainstem response: Differential diagnosis.,

in ‘Handbook of Clinical Audiology’, Lippincott, Williams, and Wilkins., pp. 274–

297.

Don, M., Ponton, C., Eggermont, J. and Kwong, B. (1998), ‘Theeffects of sensory

hearing loss on cochlear filter times estimated from auditory brainstem response

latencies’,J. Acoust. Soc. Am.104(4), 2280–2289.

Dugue, P., Le Bouquin-Jeannes, R., Edeline, J.-M. and Faucon, G. (2010), ‘A

physiologically based model for temporal envelope encoding in human primary

auditory cortex’,Hearing research268(1-2), 133–144.



156 References

Eggermont, J. (1979), ‘Narrow-band AP latencies in normal and recruiting human

ears’,J. Acoust. Soc. Am.65(2), 463–470.

Eggermont, J. and Don, M. (1980), ‘Analysis of the click-evoked brain-stem potentials

in humans using high-pass noise masking. II. Effect of clickintensity’, J. Acoust.

Soc. Am.68(6), 1671–1675.

Elberling, C. (1976), ‘High frequency evoked action potentials recorded from the ear

canal in man’,Scandinavian audiology5, 157–164.

Elberling, C., Callø, J. and Don, M. (2010), ‘Evaluating auditory brainstem responses

to different chirp stimuli at three levels of stimulation’,J. Acoust. Soc. Am.

128(1), 215–223.

Elberling, C. and Don, M. (2008), ‘Auditory brainstem responses to a chirp stimulus

designed from derived-band latencies in normal-hearing subjects’,J. Acoust. Soc.

Am.124(5), 3022–3037.

Elberling, C. and Don, M. (2010), ‘A direct approach for the design of chirp stimuli

used for the recording of auditory brainstem responses’,J. Acoust. Soc. Am.

128(5), 2955–2964.

Elberling, C., Don, M., Cebulla, M. and Stuerzebecher, E. (2007), ‘Auditory steady-

state responses to chirp stimuli based on cochlear traveling wave delay’,J. Acoust.

Soc. Am.122(5, Part 1), 2772–2785.

Elberling, C., Kristensen, S. G. B. and Don, M. (2012), ‘Auditory brainstem responses

to chirps delivered by different insert earphones’,J. Acoust. Soc. Am.131(3), 2091–

2100.

Fobel, O. and Dau, T. (2004), ‘Searching for the optimal stimulus eliciting auditory

brainstem responses in humans’,J. Acoust. Soc. Am.116(4, Part 1), 2213–2222.

Folsom, R. (1984), ‘Frequency specificity of human auditorybrain-stem responses as

revealed by pure-tone masking profiles’,J. Acoust. Soc. Am.75(3), 919–924.



References 157

Frisina, R., Karcich, K., Tracy, T., Sullivan, D., Walton, J. and Colombo, J. (1996),

‘Preservation of amplitude modulation coding in the presence of background noise

by chinchilla auditory-nerve fibers’,J. Acoust. Soc. Am.99(1), 475–490.

Fromm, B., Nylen, C. and Zotterman, Y. (1935), ‘Studies in the mechanism of the

Wever and Bray effect.’,Acta Otolaryngologica22, 477–486.

Galambos, R., Makeig, S. and Talmachoff, P. (1981), ‘A 40 Hz auditory potential

recorded from the human scalp’,Procedings of the national academy of sciences of

the United States of America-Biological sciences78(4), 2643–2647.

Geisler, C., Frishkopf, L. and Rosenblith, W. (1958), ‘Extracranial responses to

acoustic clicks in man’,Science128(3333), 1210–1211.

Glasberg, B. R. and Moore, B. C. (1990), ‘Derivation of auditory filter shapes from

notched-noise data’,Hearing research47(1-2), 103 – 138.

Goldstein, M. and Kiang, N. (1958), ‘Synchrony of neural activity in electric

responses evoked by transient acoustic stimuli’,J. Acoust. Soc. Am.30(2), 107–

114.

Gorga, M., Kaminski, J., Beauchine, K. and Jesteadt, W. (1988), ‘Auditory brain-

stem responses to tone bursts in normally hearing subjects’, Journal of speech and

Hearing research31(1), 87–97.

Greenwood, D. (1990), ‘A cochlear frequency-position function for several species -

19 years later’,J. Acoust. Soc. Am.87(6), 2592–2605.

Gutschalk, A., Mase, R., Roth, R., Ille, N., Rupp, A., Hahnel, S., Picton, T.

and Scherg, M. (1999), ‘Deconvolution of 40 Hz steady-statefields reveals

two overlapping source activities of the human auditory cortex’, Clinical

neurophysiology.110(5), 856–868.

Hall, J. (1992),Overview of Auditory Evoked Responses: Past, Present, and Future.

Han, D., Mo, L., Liu, H., Chen, J. and Huang, L. (2006), ‘Threshold estimation in

children using auditory steady-state responses to multiple simultaneous stimuli’,

Orl-journal for oto-rhino-laryngology and its related specialities68(2), 64–68.



158 References

Hansen, P. C. H. (1998), ‘Regularization tools. a matlab package for analysis and

solution of discrete ill-posed problems,’,http://www2.imm.dtu.dk/ pch/.

Hari, R., Hamalainen, M. and Joutsiniemi, S. (1989), ‘Neuromagnetic steady-state

response to auditory stimuli’,J. Acoust. Soc. Am.86(3), 1033–1039.

Harte, J. (2007), ‘Constrained ica for the analysis of high stimulus rate auditory evoked

potentials’,7th International Conference on Independent Component Analysis and

Signal Separation, 9-12 September 2007, London, UK.

Harte, J., Elliott, S. and Rice, H. (2005), ‘A comparison of various nonlinear models

of cochlear compression’,J. Acoust. Soc. Am.117, 3778–3786.

Harte, J., Pigasse, G. and Dau, T. (2009), ‘Comparison of cochlear delay estimates

using otoacoustic emissions and auditory brainstem responses’,J. Acoust. Soc. Am.

126(3), 1291–1301.

Harte, J., Rønne, F. and Dau, T. (2010), ‘Modeling human auditory evoked

brainstem responses based on nonlinear cochlear processing’, Proceedings of 20th

International Congress on Acoustics.

Heinz, M., Zhang, X., Bruce, I. and Carney, L. (2001), ‘Auditory nerve model for

predicting performance limits of normal and impaired listeners’, ARLO5(3), 91–

96.

Hornickel, J., Skoe, E., Nicol, T., Zecker, S. and Kraus, N. (2009), ‘Subcortical

differentiation of stop consonants relates to reading and speech-in-noise

perception’,Proceedings of the national academy og sciences of the United States

of America106(31), 13022–13027.

Ibrahim, R. A. and Bruce, I. C. (2010), Effects of PeripheralTuning on the Auditory

Nerve’s Representation of Speech Envelope and Temporal Fine Structure Cues,

in LopezPoveda, EA and Palmer, AR, ed., ‘Neurophysiological bases if auditory

perception’, Med Elect; Hear Life, pp. 429–438. 15th International Symposium on

Hearing, Salamanca, Spain, Jun 01-05, 2009.



References 159

Jewett, D. (1970), ‘Volume-conducted potentials in response to auditory stimuli as de-

tected by averaging in cat’,Electroencephalography and clinical neurophysiology

28(6), 609–&.

Jewett, D., Caplovitz, G., Baird, B., Trumpis, M., Olson, M.and Larson-Prior,

L. (2004), ‘The use of QSD (q-sequence deconvolution) to recover superposed,

transient evoked-responses’,Clinical neurophysiology.115(12), 2754–2775.

Jewett, D. and Williston, J. (1971), ‘Auditory-evoked far fields averaged from scalp

of humans’,Brain 94, 681–&.

John, M. and Picton, T. (2000), ‘Human auditory steady-state responses to amplitude-

modulated tones: phase and latency measurements’,Hearing research141(1–

2), 57–79.

Johnson, K., Nicol, T., Zecker, S., Bradlow, A., Skoe, E. andKraus, N.

(2008), ‘Brainstem encoding of voiced consonant-vowel stop syllables’,Clinical

neurophysiology119(11), 2623–2635.

Johnson, K., Nicol, T., Zecker, S. and Kraus, N. (2008a), ‘Developmental plasticity in

the human auditory brainstem’,Journal of neuroscience28(15), 4000–4007.

Joris, P., Bergevin, C., Kalluri, R., McLaughlin, M., Michelet, P., van der Heijden, M.

and Shera, C. (2011), ‘Frequency selectivity in Old-World monkeys corroborates

sharp cochlear tuning in humans’,Procedings of the national academy of sciences

of the United States of America108(42), 17516–17520.

Joris, P., Carney, L., Smith, P. and Yin, T. (1994), ‘Enhancement of neural

synchronization in the anteroventral cochlear nucleus .1.Responses to tones at the

characteristic frequency’,Journal of Neurophysiology71(3), 1022–1036.

Joris, P., Schreiner, C. and Rees, A. (2004), ‘Neural processing of amplitude-

modulated sounds’,Physiological reviews84(2), 541–577.

Joris, P. and Yin, T. (1992), ‘Responses to amplitude-modulated tones in the auditory-

nerve of the cat’,J. Acoust. Soc. Am.91(1), 215–232.



160 References

Junius, D. and Dau, T. (2005), ‘Influence of cochlear traveling wave and neural

adaptation on auditory brainstem responses’,Hearing research205(1-2), 53–67.

Keefe, D. H., Ellison, J. C., Fitzpatrick, D. F. and Gorga, M.P. (2008), ‘Two-tone

suppression of stimulus frequency otoacoustic emissions’, J. Acoust. Soc. Am.

123(3), 1479–1494.

Kiang, N. (1965),Discharge patterns of single fibers in the cat’s auditory nerve,

Cambridge, Mass., M.I.T. Press.

Kiang, N. (1975),Stimulus representation in the discharge patterns of auditory

neurons., in, The Nervous System. Volume 3: Human Communication and Its

Disorders. Raven Press, New York.

Kiang, N. (1990), ‘Curious oddments of auditory-nerve studies’, Hearing research

49(1-3), 1–16.

Killion, M. (1978), ‘Revised estimate of minimum audible pressure - where is the

"missing 6 dB"’,J. Acoust. Soc. Am.63(5), 1501–1508.

Kim, D. and Molnar, C. (1979), ‘Population study of cochlearnerve-fibers -

comparison of spatial distribution of average-rate and phase-locking measures of

responses to single tones’,J. Neurophysiol.42(1), 16–30.

Krishnan, A., Xu, Y., Gandour, J. and Cariani, P. (2005), ‘Encoding of pitch in the

human brainstem is sensitive to language experience’,Cognitive brain research

25(1), 161–168.

Kuwada, S., Anderson, J., Batra, R., Fitzpatrick, D., Teissier, N. and D’Angelo, W.

(2002), ‘ources of the scalp-recorded amplitude-modulation following response’,

Journal of the American Academy of Audiology13(4), 188–204.

Kuwada, S., Batra, R. and Maher, V. (1986), ‘Scalp potentials of normal and hearing-

impaired subjects in response to sinusoidally amplitude-modulated tones’,Hearing

research21(2), 179–192.



References 161

Lalor, E. C. and Foxe, J. J. (2010), ‘Neural responses to uninterrupted natural

speech can be extracted with precise temporal resolution’,European journal of

neuroscience31(1), 189–193.

Lopez-Poveda, E. and Meddis, R. (2001), ‘A human nonlinear cochlear filterbank’,J.

Acoust. Soc. Am.110(6), 3107–3118.

Malone, B. J., Scott, B. H. and Semple, M. N. (2007), ‘Dynamicamplitude coding

in the auditory cortex of awake rhesus macaques’,Journal of neurophysiology

98(3), 1451–1474.

Malone, B. J., Scott, B. H. and Semple, M. N. (2010), ‘Temporal Codes for Amplitude

Contrast in Auditory Cortex’,Journal of neuroscience30(2), 767–784.

Meddis, R. (2006), ‘Auditory-nerve first-spike latency andauditory absolute

threshold: A computer model’,J. Acoust. Soc. Am.119(1), 406–417.

Meddis, R., O’Mard, L. and Lopez-Poveda, E. (2001), ‘A computational algorithm

for computing nonlinear auditory frequency selectivity’,J. Acoust. Soc. Am.

109(6), 2852–2861.

Melcher, J. and Kiang, N. (1996), ‘Generators of the brainstem auditory evoked

potential in cat .3. Identified cell populations’,Hearing research93(1-2), 52–71.

Mø ller, A. and Jannetta, P. (1983), ‘Interpretation of brain-stem auditory evoked-

potentials - results from intracranial recordings in humans’, Scand. Aud.12(2), 125–

133.

Moore, B., Vickers, D., Plack, C. and Oxenham, A. (1999), ‘Inter-relationship

between different psychoacoustic measures assumed to be related to the cochlear

active mechanism’,J. Acoust. Soc. Am.106(5), 2761–2778.

Murray, J., Cohn, E., Harker, L. and Gorga, M. (1998), ‘Tone burst auditory brain stem

response latency estimates of cochlear travel time in Meniere’s disease, cochlear

hearing loss, and normal ears’,American journal of otology19(6), 854–859.

Nayfeh, A. and Mook, D. (1995),Nonlinear Oscillations, Wiley Classics Library

Edition.



162 References

Neely, S., Norton, S., Gorga, M. and W., J. (1988), ‘Latency of auditory brain-stem

responses and otoacoustic emissions using tone-burst stimuli’, J. Acoust. Soc. Am.

83(2), 652–656.

Norton, S. and Neely, S. (1987), ‘Tone-burst-evoked otoacoustic emissions from

normal-hearing subjects’,J. Acoust. Soc. Am.81(6), 1860–1872.

Nuttall, A. and Dolan, D. (1996), ‘Steady-state sinusoidalvelocity responses of the

basilar membrane in guinea pig’,J. Acoust. Soc. Am.99, 1556–1565.

Palmer, A. and Russell, I. (1986), ‘Phase-locking in the cochlear nerve of the guinea-

pig and its relation to the receptor potential of inner hair-cells’, research24(1), 1–

15.

Pascal, J., Bourgeade, A., Lagier, M. and Legros, C. (1998),‘Linear and nonlinear

model of the human middle ear’,J. Acoust. Soc. Am.104(3, Part 1), 1509–1516.

Picton, T., Skinner, C., Champagne, S., Kellett, A. and Maiste, A. (1987), ‘Potentials-

evoked by the sinusoidal modulation of the amplitude or frequency of a tone’,J.

Acoust. Soc. Am.82(1), 165–178.

Plourde, G., Stapells, D. R. and Picton, T. W. (1991), ‘The human auditory steady-

state evoked potentials’,Acta Otolarygol. (Stockh). Suppl.491, 153–160.

Prieve, B., Gorga, M. and Neely, S. (1996), ‘Click- and tone-burst-evoked otoacoustic

emissions in normal-hearing and hearing-impaired ears’,J. Acoust. Soc. Am.

99(5), 3077–3086.

Puria, S. (2003), ‘Measurements of human middle ear forwardand reverse acoustics:

Implications for otoacoustic emissions’,J. Acoust. Soc. Am.113(5), 2773–2789.

Recio, A. and Rhode, W. (2000), ‘Basilar membrane responsesto broadband stimuli’,

J. Acoust. Soc. Am.108(5, Part 1), 2281–2298.

Rees, A., Green, G. and Kay, R. (1986), ‘Steady-state evoked-responses to

sinusoidally amplitude-modulated sounds recorded in man’, Hearing research

23(2), 123–133.



References 163

Relkin, E. and Doucet, J. (1991), ‘Recovery from prior stimulation .1. Relationship

to spontaneous firing rates of primary auditory neurons’,Hearing research

55(2), 215–222.

Rhode, W. and Recio, A. (2000), ‘Study of mechanical motionsin the basal region of

the chinchilla cochlea’,J. Acoust. Soc. Am.107(6), 3317–3332.

Ribeiro, F. M. and Carvallo, R. M. (2008), ‘Tone-evoked ABR in full-term and preterm

neonates with normal hearing’,International journal of audiology47(1), 21–29.

Richter, U. and Fedtke, T. (2005), ‘Reference zero for the calibration of audiometric

equipment using ’clicks’ as test signals’,International Journal og Audiology

44, 478–487.

Riedel, H., Granzow, M. and Kollmeier, B. (2001), ‘Singlesweep- based methods to

improve the quality of auditory brainstem responses. part ii: Averaging methods’,

Z. Audiol.40, 62–85.

Robles, L. and Ruggero, M. (2001), ‘Mechanics of the mamalian cochlea’,

Physiological reviews81, 1305–1352.

Rønne, F. and Gøtsche-Rasmussen, K. (2011), Low-frequencyversus high-frequency

synchronisation in chirp-evoked auditory brainstem responses,in ‘Proceedings of

International Symposium on Auditory and Audiological Research’, pp. 275–282.

Rønne, F., Harte, J., Elberling, C. and Dau, T. (2011), Modeling the level-dependent

latency of the auditory brainstem response,in ‘Proceedings of Forum Acousticum’.

Rønne, F., Harte, J., Elberling, C. and Dau, T. (2012), ‘Modelling auditory evoked

brainstem responses to transient stimuli’,J. Acoust. Soc. Am.131, 3903–3913.

Rønne, F., Harte, J., Møllenbach, S. and Dau, T. (2012a), ‘Investigating the potential of

auditory steady-state responses to assess loss of cochlearcompression’,J. Acoust.

Soc. Am.submitted.

Ruggero, M. (1992), ‘Responses to sound of the basilar membrane of the mammalian

cochlea’,Curr. Opin. Neurobiol.2, 449–456.



164 References

Ruggero, M. A. and Temchin, A. N. (2007), ‘Similarity of traveling-wave delays in

the hearing organs of humans and other tetrapods’,JARO-Journal of the association

for research in otolaryngology8(2), 153–166.

Ruggero, M., Rich, N., Recio, A., Narayan, S. and Robles, L. (1997), ‘Basilar-

membrane responses to tones at the base of the chinchilla cochlea’,J. Acoust. Soc.

Am.101(4), 2151–2163.

Russell, I. and Sellick, P. (1978), ‘Intracellular studiesof hair cells in mammalian

cochlea’,Journal of physiology-London284(NOV), 261–290.

Russo, N., Nicol, T., Zecker, S., Hayes, E. and Kraus, N. (2005), ‘Auditory training

improves neural timing in the human brainstem’,Behavioural brain research

156(1), 95–103.

Scherg, M. (1990), Threshold prediction using auditory brainstem response and

steady-state evoked potentials with infants and young children., in ‘Auditory

Evoked Magnetic Fields and Electric Potentials’, Karger Basel., pp. 40–69.

Scherg, M. and von Cramon, D. (1985), ‘A new interpretation of the generators of

BAEP waves I-V: results of a spatio-temporal dipole model’,Electroencephalogra-

phy and clinical neurophysiology62(4), 290–299.

Scherg, M. and von Cramon, D. (1985a), ‘Two bilateral sources of the late AEP

as indentified by a spatio-temporal dipole model’,Electroencephalography and

clinical neurophysiology62(1), 32–44.

Schoonhoven, R., Boden, C., Verbunt, J. and de Munck, J. (2003), ‘A whole head

MEG study of the amplitude-modulation-following response: phase coherence,

group delay and dipole source analysis’,Clinical neurophysiology.114(11), 2096–

2106.

Sellick, P., Patuzzi, R. and Johnston, B. (1982), ‘Measurement of basilar membrane
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The auditory evoked potential (AEP) is an electrical signal that can be 
recorded from electrodes attached to the scalp of a human subject, when a 
sound is presented. The signal is believed to reflect neural activity in 
response to the acoustic stimulation, and is as such well established as a tool 
to objectively assess the hearing of humans. However, the physiological 
generation mechanisms of AEPs are a complicated interaction between linear 
and nonlinear cochlear and neural processes, and are not well understood. 
The purpose of this thesis was to develop a phenomenological model that 
could predict key features of recorded AEPs. The model provides an 
opportunity to investigate the influences of the different stages along the 
auditory pathway upon the generation of AEPs. 
 
This thesis describes the development of an AEP model capable of 
simulating click-, tone-burst-, chirp- and syllable-evoked auditory brainstem 
responses, and auditory steady-state responses (ASSRs). Further, the thesis 
describes how the ASSR can be used to assess human cochlear 
compression most effectively.   
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