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Abstract

The intelligibility of speech depends on factors related to the auditory processes
involved in sound perception as well as on the acoustic properties of the sound
entering the ear. However, a clear understanding of speech perception in complex
acoustic conditions and, in particular, a quantitative description of the involved auditory
processes provides a major challenge in speech and hearing research. This thesis
presents a computational model that attempts to predict the speech intelligibility
obtained by normal-hearing listeners in various adverse conditions. The model
combines the concept of modulation frequency selectivity in the auditory processing
of sound with a decision metric for intelligibility that is based on the signal-to-noise
envelope power ratio (SNRenv). The proposed speech-based envelope power spectrum
model (sEPSM) is demonstrated to account for the effects of stationary background
noise, reverberation and noise reduction processing on speech intelligibility, indicating
that the model is more general than traditional modeling approaches. Moreover, the
model accounts for phase distortions when it includes a mechanism that evaluates the
variation of envelope power across (audio) frequency. However, because the SNRenv
is based on the long-term average envelope power, the model cannot account for the
greater intelligibility typically observed in fluctuating noise compared to stationary
noise. To overcome this limitation, a multi-resolution version of the sEPSM is presented
where the SNRenv is estimated in temporal segments with a modulation-filter dependent
duration. This multi-resolution approach effectively extends the applicability of
the sEPSM to account for conditions with fluctuating interferers, while keeping its
predictive power in the conditions with noisy speech distorted by reverberation or
spectral subtraction. The relationship between the SNRenv based decision-metric and
psychoacoustic speech intelligibility is further evaluated by generating stimuli with
different SNRenv but the same overall power SNR. The results from the corresponding
psychoacoustic data generally support the above relationship. However, the model is
limited in conditions with manipulated clean speech since it does not account for the
accompanied effects of speech distortions on intelligibility.

The value of the sEPSM is further considered in conditions with noisy speech
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transmitted through three commercially available mobile phones. The model
successfully accounts for the performance across the phones in conditions with a
stationary speech-shaped background noise, whereas deviations were observed in
conditions with “Traffic” and “Pub” noise.

Overall, the results of this thesis support the hypothesis that the SNRenv is a powerful
objective metric for speech intelligibility prediction. Moreover, the findings suggest
that the concept of modulation-frequency selective processing in the auditory system is
crucial for human speech perception.
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Resumé

Vores hørelse er vital for talekommunikation, og vellykket kommunikation kræver
en tilstrækkelig god taleforståelighed. Det er dog endnu ikke klarlagt præcis hvilke
akustiske karakteristika og hvilke underliggende auditive processer der er afgørende
for taleforståeligheden i komplekse akustiske miljøer. Denne afhandling præsenterer
en signalbehandlingsmodel der kan forudsige taleforståelighed for normalthørende
under forskellige vanskelige forhold. Modellen kombinerer begrebet modulations-
frekvensselektivitet i hørelsens signalbehandling med en beslutningsparameter for
taleforståelighed der er baseret på signal-til-støj modulationseffekt forholdet (SNRenv).
Den præsenterede tale-baserede modulationseffekt spektrum model (sEPSM) vises
i denne afhandling at kunne redegøre for indflydelsen af stationær baggrundsstøj,
efterklang og støjreduktions-signalbehandling på taleforståeligheden. Yderligere ses
det at modellen kan redegøre for indflydelsen af faseforvrængninger i talesignaler,
når der inkluderes en mekanisme der analyserer variationen af modulationseffekten
på tværs de auditive frekvenskanaler. Modellen kan dog ikke forklare den større
taleforståelighed der typisk observeres i fluktuerende støj i forhold til i stationær
støj, da SNRenv er baseret på den langsigtede gennemsnitlige modulationseffekt.
For at overvinde denne begrænsning, præsenteres en multi-opløsnings version af
sEPSM, hvor SNRenv estimeres i tidsmæssige segmenter med en varighed der
afhænger af modulationsfiltrenes centerfrekvens. Denne fremgangsmåde udvider
funktionaliteten af modellen til også at kunne redegøre for situationer med fluktuerende
støjkilder, mens den samtidig beholder sine prædiktive egenskaber i betingelser med
støjfyldt tale der er forvrænget af efterklang eller støjreduktion. Sammenhængen
mellem beslutnings-parameteren (SNRenv) og den psykoakustiske taleforståelighed
evalueres eksplicit med stimuli der har forskellig SNRenv, men det samme overordnede
signal-til-støj effekt forhold. Resultaterne fra de tilsvarende psykoakustiske data
understøtter overordnet hypotesen om SNRenv. Dog er modellen begrænset i
tilfælde hvor tale er blevet manipuleret da den ikke kan redegøre for effekten af
de medfølgende modulationsforvrængninger på taleforståeligheden. De praktiske
anvendelsesmuligheder af sEPSM evalueres desuden i betingelser hvor støjfyldt tale
bliver transmitteret gennem tre kommercielt tilgængelige mobiltelefoner. Modellen
kan redegøre for forskellene i taleforståeligheden af den transmitterede tale for de
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forskellige telefoner i betingelser med en stationær taleformet baggrundsstøj, men
afviger i betingelser med to andre typer støj. Samlet set støtter resultaterne i denne
afhandling hypotesen om at SNRenv er en brugbar objektiv beslutningsparameter
til forudsigelse af taleforståelighed. Desuden tyder resultaterne på at konceptet
om modulations-frekvensselektivitet i det auditive system er afgørende for den
menneskelige taleopfattelse.
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1
General introduction

The auditory system is a remarkable sensory organ that allows us to interact and
interpret the environment that surrounds us. The hearing sense is crucial for the
development of spoken language and speech perception, and thus, for our speech
communication. We rely on our ability to communicate via speech, either face-
to-face or by using telecommunication. However, sufficient intelligibility of the
speech is crucial for successful communication. The field of psychoacoustics provides
researchers with the tools to quantify speech intelligibility and its dependence on
environmental and human factors.

The traditional approach to study speech intelligibility has been via perceptual tests
where a number of listeners are asked to repeat a well defined speech corpus presented
to them acoustically; either in quiet or in combination with one or more interferers.
The ratio of the number of correctly repeated speech items, for example words, to
the number of presented items has thereby been defined as an indicator of the speech
intelligibility. Pioneering work was achieved in connection with the development of
the telephone in the early 20’th century regarding the factors that influence speech
intelligibility (e.g., Steinberg, 1929; Knudsen, 1929; Miller, 1947; Fletcher and Galt,
1950). For example, the masking of speech by an interfering sound (such that the
speech becomes partly unintelligible) was demonstrated to depend greatly on the
temporal and spectral properties of the interferer. Generally, when the interferer itself
is not speech, a stationary sound with the same long-term spectrum as the speech
produces the most masking; in contrast, a pure-tone interferer has only little influence
on the intelligibility. In addition to factors related to the acoustic environment, the
intelligibility depends on the target speech itself. For example, speech items consisting
of unfamiliar nonsense words typically lead to lower intelligibility compared to familiar

1



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 2 — #22 i
i

i
i

i
i

2 1. Introduction

words. Moreover, speech intelligibility depends on the statistical properties of the test
design. For example, if the listener is given a fixed set of speech items to respond from,
the number of items in the response set greatly influences the measured intelligibility
because the probability of reporting the correct item is greater for a small response set
than for a large set.

However, despite decades of research on the factors that influence speech
intelligibility, the auditory processes and acoustic features that govern our speech
perception are still not fully understood. Several models of speech intelligibility have
been proposed to account for the experimental findings. An early model, know as the
Articulation Index (AI; French and Steinberg, 1947), predicts speech intelligibility
based on the long-term acoustic power of the speech and the noise interferer in a
number of frequency bands covering the speech spectrum. The AI assumes that the
masking of speech is caused by the masker providing a greater excitation of the inner
ear than the speech. This concept has been referred to as energetic masking. The AI
can be evaluated from independent physical measurements of the speech and the noise,
which makes the model applicable in practical situations. However, the AI-model does
not include any aspects related to the temporal structure of the speech or the noise and
can therefore not account for effects of temporal distortions on speech intelligibility,
such as those caused by reverberation (Knudsen, 1929; Fletcher and Galt, 1950).

The temporal structure of speech can be characterized by its temporal fine structure,
i.e., the instantaneous variation in the sound pressure, and its envelope, referring to
the slow variation in the overall amplitude. The envelope has been suggested to be
an important carrier of the semantic information in the speech (Smith et al., 2002;
Fogerty, 2011), and this aspect was included in an alternative speech intelligibility
model denoted as the speech transmission index (STI; Houtgast and Steeneken, 1971).
The STI performs a frequency analysis of the temporal envelope within individual
peripheral (audio) frequency channels. The integrity of the speech envelope is measured
by the ratio of the envelope spectrum of the distorted (transmitted) speech and that of
the clean speech, denoted as the modulation transfer function (MTF). This approach
was demonstrated to account for effects of noise and reverberation and has been
especially useful in applications involving room acoustics where reverberation has
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a large influence on the intelligibility. However, with the introduction of digital
technology in telecommunication and hearing-aid devices, it became possible to
perform nonlinear noise reduction processing on the noisy speech signal. In such
conditions, the classical AI and STI models predict that intelligibility should increase
after the processing. However, this has typically not been confirmed by psychoacoustic
data (Ludvigsen et al., 1993; Dubbelboer and Houtgast, 2007), which has been referred
to as the “noise reduction paradox”. This indicates that the knowledge reflected in the
classical models, regarding the critical acoustic features and the auditory processes that
govern speech intelligibility is incomplete.

In a related area of auditory research, scientists performed experimental work on
the characterization of the selective properties of the auditory system with respect to
the processing of amplitude modulated signals. This led to the concept of modulation

masking, whereby the modulation characteristics of an interfering signal can influence
the detection of a target signal modulation (e.g., Bacon and Grantham, 1989; Houtgast,
1989). Frequency selectivity in the envelope frequency domain was demonstrated,
analogous to the frequency selectivity in the audio-frequency domain (Dau et al.,
1997a). Dau et al. (1999) and Ewert and Dau (2000) demonstrated that a decision
metric based on the signal-to-noise envelope power ratio, measured at the output of
modulation frequency selective bandpass filters, could account for the psychoacoustic
modulation masking data. The corresponding model was denoted the envelope power
spectrum model (EPSM), in analogy to the classical power spectrum model of masking
in the audio-frequency domain (Fletcher, 1940). Recently, it has been suggested that
a similar decision metric could account for the apparent “noise reduction paradox”
of speech perception (Dubbelboer and Houtgast, 2008). This indicated that speech
intelligibility might also be affected by modulation masking, in addition to factors
reflecting the integrity of the speech envelope measured by the STI and the effect of
energetic masking as measured by the AI, respectively.

The present thesis describes a model of speech intelligibility that differs considerably
from the above speech modeling approaches. The proposed model extends the concept
of the EPSM towards speech intelligibility and evaluates the usefulness of the signal-
to-noise envelope power ratio as a decision metric for speech intelligibility.
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4 1. Introduction

Chapter 2 describes the details of the proposed model framework, denoted the speech-
based EPSM (sEPSM), where the signal-to-noise envelope power ratio (SNRenv) is
measured from the envelope power spectra of noisy speech and noise alone at the
output of a modulation bandpass filterbank following peripheral auditory filtering. The
parameters of the processing stages are determined from psychoacoustic data from
the literature. While the original EPSM assumed a simple decision criterion relating
SNRenv to detectability, the sEPSM applied the concept of an “ideal observer”, which
includes parameters that are related to the speech material and the test design. This
enables the model to account for differences in the response set size and redundancy of
the considered speech stimuli. Model predictions are compared to speech intelligibility
data in conditions with different speech materials, background noise, reverberation and
noise reduction processing.

Chapter 3 investigates the role of spectro-temporal envelope processing in intelli-
gibility modeling by comparing predictions from the sEPSM from Chapter 2 to two
modified versions. One version assumes a two-dimensional modulation filtering stage,
inspired by earlier work of Elhilali et al. (2003). The other model version keeps
the one-dimensional (temporal) modulation filtering as in the original sEPSM, but
introduces an across (peripheral) audio-frequency mechanism, inspired by models of
comodulation masking release (CMR; Buus, 1985; Piechowiak et al., 2007; Dau et al.,
2013). The role of the decision metric is studied by comparing the predictions obtained
with the SNRenv with those obtained with the MTF. The predictions from all models
are evaluated with regard to the psychoacoustic data in conditions with reverberation,
spectral subtraction processing and phase jitter distortion.

Chapter 4 presents a multi-resolution version of the sEPSM (mr-sEPSM), inspired
by a short-term intelligibility model based on the AI (Rhebergen and Versfeld, 2005).
Instead of estimating the SNRenv from the long-term envelope power spectra, the multi-
resolution version estimates the SNRenv in short-term segments with durations that are
inversely related to the center frequencies of a the modulation filters, i.e., long segments
are used for low modulation center frequencies and short windows for high modulation
center frequencies. This allows the model to capture information reflected in both
slowly varying low-frequency modulations as well as fast fluctuating high-frequency
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modulations in the noisy speech. Predictions using the multi-resolution sEPSM are
compared to experimental data in conditions with various stationary and fluctuating
interferers, as well as in conditions with reverberation and spectral subtraction.

Chapter 5 provides an analysis of the contributions of different audio and envelope
frequency regions to speech intelligibility using the multi-resolution sEPSM framework.
Predictions are compared to data from Christensen et al. (2013), which considered the
effect of attenuating the high-rate modulations from the target and the interfering talker
on speech intelligibility. Furthermore, model predictions in conditions with speech
mixed with different types of fluctuating interferers are compared to corresponding
data from Festen and Plomp (1990).

Chapter 6 further challenges the underlying hypotheses of the sEPSM framework
for speech intelligibility prediction. The relationship between SNRenv and speech
intelligibility is investigated using stimuli that were manipulated to have different
values of SNRenv, while keeping the same long-term energy SNR. This was done by
modifying the modulation power of speech before mixing it with unprocessed stationary
speech-shaped noise or by modifying the modulation power of the noise before mixing
it with the unprocessed speech.

Chapter 7 evaluates the usefulness of the sEPSM to predict speech intelligibility in a
practical application. The purpose is to evaluate the intelligibility of speech transmitted
through modern telecommunication systems, such as mobile phones, and to assess
whether the sEPSM can be used to predict the intelligibility performance of the phones.
Predictions are compared to perceptual data obtained with three different mobile phones
in conditions with three different types of background noise.

Finally, Chapter 8 summarizes the main findings and discusses the limitations and
perspectives of the proposed model.
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2
Predicting speech intelligibility based
on the signal-to-noise envelope power

ratio after modulation-frequency
selective processing*

A model for predicting the intelligibility of processed noisy speech is proposed.
The speech-based envelope power spectrum model (sEPSM) has a similar
structure as the model of Ewert and Dau [(2000). J. Acoust. Soc. Am. 108,
1181–1196], developed to account for modulation detection and masking data.
The model estimates the speech-to-noise envelope power ratio, SNRenv, at the
output of a modulation filterbank and relates this metric to speech intelligibility
using the concept of an ideal observer. Predictions were compared to data
on the intelligibility of speech presented in stationary speech-shaped noise.
The model was further tested in conditions with noisy speech subjected to
reverberation and spectral subtraction. Good agreement between predictions
and data was found in all cases. For spectral subtraction, an analysis of
the model’s internal representation of the stimuli revealed that the predicted
decrease of intelligibility was caused by the estimated noise envelope power
exceeding that of the speech. The classical concept of the speech transmission
index (STI) fails in this condition. The results strongly suggest that the signal-to-
noise ratio at the output of a modulation frequency selective process provides
a key measure of speech intelligibility.

* This chapter is based on Jørgensen and Dau (2011).

7
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8 2. Predicting speech intelligibility

2.1 Introduction

Speech is fundamental for human communication. People rely on the ability to
understand speech, even in adverse acoustic environments, and the effect of noise
on speech intelligibility has been studied for many years. The prediction of speech
intelligibility has been of interest for various applications, such as for the acoustic
design of lecture halls, for assessing the effect of noise reduction in communication
channels and for the evaluation of hearing-aid algorithms. A broad range of prediction
models has been presented, including the Articulation Index (AI; ANSI S3.5, 1969), the
Speech Intelligibility Index (SII; ANSI S3.5, 1997), and the Speech Transmission Index
(STI; IEC60268-16, 2003). It has been demonstrated that the slowly varying level
fluctuations in the envelope of speech, the so-called speech modulations, are affected
by noise. Houtgast et al. (1980) presented the STI, which predicts speech intelligibility
based on changes in the modulation index of an amplitude modulated probe signal. The
STI is based on the assumption that any changes in the modulation of the probe signal,
due to noise or other processing, will have the same effect on the modulations in a
speech signal. Conceptually, the STI measures the reduction of the modulations of the
clean speech signal over the range of audio-frequency bands and modulation-frequency
bands thought to contribute most to speech intelligibility. This concept has been very
successful in predicting speech intelligibility in noisy and reverberant conditions (e.g.,
Houtgast et al., 1980; Steeneken and Houtgast, 1980; Houtgast and Steeneken, 1985).

Despite this success, the STI concept does not work well when noisy speech is
subjected to further nonlinear processing, such as deterministic envelope reduction
(Noordhoek and Drullman, 1997), envelope compression (e.g., Drullman, 1995;
Hohmann and Kollmeier, 1995; Rhebergen et al., 2009) or spectral subtraction (e.g.,
Ludvigsen et al., 1993; Dubbelboer and Houtgast, 2007). For example, in the case
of spectral subtraction, the STI predicts a large improvement of speech intelligibility,
while the experimental data show that speech intelligibility typically decreases by
1-5% (e.g., Lim, 1978; Boll, 1979; Ludvigsen et al., 1993). To extend the applicability
of the STI to nonlinear processing, Payton and Braida (1999) and Goldsworthy and
Greenberg (2004) presented various modifications of the STI, generally known as
speech-based STI methods (sSTI). The main difference between the original STI and
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2.1 Introduction 9

the sSTI methods is that speech is used as the probe signal; the concept of considering
the reduction of clean speech modulations resulting from the processing remains the
same. Goldsworthy and Greenberg (2004) proposed that the sSTI could predict the
effect of various kinds of nonlinear processing. However, this was never evaluated
explicitly using a comparison between predicted and measured speech intelligibility.

An alternative approach to predicting the effect of nonlinear processing of noisy
speech was proposed by Dubbelboer and Houtgast (2008). Instead of considering
the changes only in the modulations of clean speech, as in the STI, Dubbelboer
and Houtgast also considered the changes of a modulation noise floor arising from
the nonlinear interaction between the clean speech and the noise waveforms. The
noise floor was assumed to consist of so-called spurious modulations, i.e. noise
modulations and interaction modulations. It was hypothesized that the nonlinear
processing of noisy speech affected both the speech part and the spurious noise part
of the modulations in the signal, and that the ratio between these two components
was critical for speech intelligibility. The ratio of the speech modulations to the
spurious modulations was defined as the signal-to-noise ratio in the modulation domain,
(S/N)mod, and the concept was shown to account qualitatively for the effects of different
signal processing schemes applied to noisy speech. However, a central aspect of their
method was that the interaction modulations, which do not exist until the speech and
the noise are actually mixed, play an essential role for the noise floor and thus for
speech intelligibility. (S/N)mod could therefore not be estimated from the clean signal
and the noise waveforms separately, or from the statistics of the stimuli. Difficulties
with estimating the interaction modulations from the broadband noisy speech stimulus
led to the use of a narrowband probe signal, a 1-kHz pure tone with an imposed 4-Hz
sinusoidal amplitude modulation. This makes (S/N)mod difficult to generalize to speech
signals so that effects of speaking style or speech material (words versus sentences)
could be studied.

The concept of considering the signal-to-noise ratio in the modulation domain as
an important metric in auditory processing is not new. The envelope power spectrum
model (EPSM; Dau et al., 1999; Ewert and Dau, 2000) used a similar measure
to predict amplitude modulation detection and masking data, assuming that signal
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10 2. Predicting speech intelligibility

modulation imposed on a carrier is detectable if the envelope power signal-to-noise
ratio at the output of the modulation filter tuned to the signal frequency exceeds a
critical value. In contrast to Dubbelboer and Houtgast (2008), the signal modulation
in the EPSM was assumed to be masked by the inherent modulations in the noise, not
by interaction modulations. In the present study, the EPSM was extended to predict
speech intelligibility. The calculation of the envelope power signal-to-noise ratio,
denoted here as SNRenv to distinguish this from (S/N)mod, is considered to be the key
element of the approach. In contrast to Dubbelboer and Houtgast (2008), the proposed
model (i) includes peripheral and modulation filtering inspired by the human auditory
system, (ii) uses a decision device that takes the response-set size and the redundancy
of a given speech material into account and, (iii) bases predictions on the hypothesis
that the intelligibility of processed noisy speech is influenced mainly by the intrinsic
fluctuations in the envelope of the noise waveform, not by interaction modulations. The
model was evaluated for conditions of speech in the presence of stationary noise, using
data from the literature. Furthermore, the model was evaluated for conditions where
noisy speech was distorted by linear and nonlinear processing.

2.2 Description of the model

2.2.1 Overall structure

The structure of the speech-based envelope power spectrum model (sEPSM) is shown
in Fig. 2.1. The first stage represents the filtering of the basilar membrane. This is
followed by envelope extraction and modulation processing. A major change to the
original EPSM is the inclusion of the processing of very low modulation frequencies,
between 0.5 and 4 Hz, which have been shown to be essential for speech intelligibility
(Elliott and Theunissen, 2009; Füllgrabe et al., 2009). Another major change was
in the decision device. The original EPSM related the envelope signal-to-noise ratio
to modulation detection by assuming a certain signal-to-noise ratio at threshold. In
contrast, the sEPSM applies an m-alternative forced choice (mAFC) decision model (an
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2.2 Description of the model 11

Modulation Filterbank

Envelope frequency

 Gammatone filterbank

Envelope extraction

Audio frequency

SNRenv

Ideal observer

0 d’

Internal noise +

Figure 2.1: Block diagram of the structure of the speech-based envelope power spectrum model (sEPSM).
The model consists of a gammatone bandpass filterbank followed by envelope extraction via Hilbert
transformation and a modulation bandpass filterbank. The envelope signal-to-noise ratio, SNRenv, is
calculated from the long-term integrated envelope power at the output of each modulation filter and the
resulting values are combined across modulation filters and audio filters. The overall SNRenv is converted to
a percentage of correctly recognized speech items using the concept of an “ideal observer”.

ideal observer), which defines the relationship between SNRenv and percent correctly
recognized items in a speech intelligibility test.
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12 2. Predicting speech intelligibility

2.2.2 Processing stages in the model

Peripheral filtering and modulation processing

The first stage of the model is a bandpass filterbank, consisting of 22 fourth-order
gammatone filters with 1/3-octave spacing of the center frequencies, which covers the
range from 63 Hz to 8 kHz. This spacing was chosen to minimize the correlation
between adjacent filters. An absolute sensitivity threshold is included such that
only filters with output energy above the hearing threshold are considered for further
processing1. The envelope of the output of each gammatone filter is extracted using the
Hilbert transform. The resulting envelope function provides the input to a modulation
filterbank consisting of a third-order low-pass filter in parallel with 6 overlapping
second-order bandpass filters. The cutoff frequency of the low-pass filter is 1 Hz, and
the bandpass filters have center frequencies from 2 to 64 Hz with octave spacing and a
constant Q-factor of 1. The ac-coupled power of the filtered envelope is calculated by
integrating the power density over the transfer-range of each modulation filter:

Penv =
1

S(0)

∫
∞

fenv>0
S( fenv)Wf c( fenv)d f (2.1)

where S( fenv) denotes the power density of the input envelope as a function of the
envelope frequency, fenv. S(0) represents the dc component of the envelope power
spectrum and Wf c( fenv) denotes the squared transfer function of the modulation filter
centered at the envelope frequency, fc. In order to limit the model’s sensitivity to the

1 The spectrum level of the input stimulus was calculated in 1/3-octave bands as described in ANSI S3.5
(1997), using the same center frequencies as the audio filters of the sEPSM. The spectrum level of the
input is compared to the diffuse field threshold in quiet (ISO389-7, 2005).
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2.2 Description of the model 13

smaller modulations in a speech signal, envelope power below -20 dB is set to a level
of -20 dB2.

Calculation of the envelope power signal-to-noise ratio

Assuming that noise (N) and noisy speech (S+N) stimuli are available separately at
the input of the model, the envelope power of the noisy speech (Penv,S+N) and that
of the noise alone (Penv,N) are available at the output of the modulation processing
stage. The effect of adding the noise to the speech is assumed to be three-fold. The
noise (i) reduces the envelope power of the mixture compared to the clean speech by
“filling up” the low-level parts of the speech, (ii) introduces a noise floor due to the
intrinsic fluctuations in the noise itself, and (iii) creates new modulations from the
nonlinear interaction between the speech and noise. Here, the envelope power of noise
alone (Penv,N) represents an estimate of the noise floor. The interaction modulations
are not included in this estimate, as they are assumed to have a negligible influence
on intelligibility compared to the other two effects. In order to estimate the envelope
power of the speech in the mixture (P̂env,S), the noise floor envelope power is subtracted
from the noisy speech envelope power:

P̂env,S = Penv,S+N−Penv,N (2.2)

Note that the value of P̂env,S is different from the envelope power of the original clean
speech. The SNRenv is calculated by taking the ratio of the estimated speech envelope

2 The internal noise threshold is motivated by Noordhoek and Drullman (1997), who showed that
modulations in the envelope of speech in quiet could be reduced to -20 dB before reaching 50 %
intelligibility. Thus, the threshold reflects the minimum envelope power needed to recognize 50 % of the
presented speech. The threshold deviates from the -30 dB used in the original EPSM, which reflected
the empirically found AM detection threshold (Viemeister, 1979; Ewert and Dau, 2000). However, the
sEPSM is concerned with the prediction of speech intelligibility, and the minimum envelope power
related to the threshold for recognizing speech appears to be different from the minimum envelope power
needed for detecting sinusoidal AM. The deviation might not have been apparent if the task had been
speech detection, rather than speech recognition.
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14 2. Predicting speech intelligibility

power and the noise envelope power:

SNRenv =
Penv,S+N−Penv,N

Penv,N
(2.3)

=
P̂env,S

Penv,N
(2.4)

It is assumed that the envelope power of the noise alone does not exceed the envelope
power of the noisy speech, such that the numerator of Eq. 2.3 cannot be negative:

Penv,S+N = max{Penv,S+N ,PN}+ ε. (2.5)

where ε is a small positive constant which prevents the numerator from being zero in
the case of Penv,S+N = Penv,N . Since the model contains 7 modulation filters for each
of the 22 audio filters, the output of the SNRenv calculation stage is a multi-channel
representation containing 7 x 22 SNRenv values.

Information integration across channels

Within the model, the information is combined across the audio and modulation
frequency channels. The observations from n channels are combined using:

SNRenv =

[
n

∑
i=1

(SNRenv,i)
2

]1/2

(2.6)

The use of overlapping filters in both the audio and the modulation domain results
in partly correlated outputs, implying that the assumption of statistically independent
observations is not fulfilled. The amount of correlation could be decreased by using
fewer filters and a wider spacing between them. However, the information loss resulting
from a reduction of the number of observations was earlier shown to affect the output
more than the gain from statistical independence (Ewert and Dau, 2000). Using Eq. 2.6,
the seven SNRenv values from the modulation filters are combined yielding a single
value for each audio filter. The values for all audio filters are then combined using the
same concept, resulting in the overall SNRenv.
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2.2 Description of the model 15

Transformation from SNRenv to percent correct

The overall SNRenv is converted to a sensitivity index, d′, of an “ideal observer” using
the relation:

d′ = k · (SNRenv)
q (2.7)

where k and q are constants. This relation has been used previously to describe
the relationship between d′ and SNR in the audio domain (Egan, 1965; Egan et al.,
1969). Here, it is assumed that the relation can be applied to the SNR in the envelope
domain. The constants k and q are assumed to be independent of speech material and
experimental condition, so only one value is used for each constant. The value of d′

is converted to the percentage of correct responses using an mAFC model (Green and
Birdsall, 1964) in combination with an unequal-variance Gaussian model (e.g., Mickes
et al., 2007). The ideal observer is assumed to compare the input speech item with m

stored alternatives and select the item, xS, that yields the largest similarity. The m−1
remaining items are assumed to be noise, one of which, xN,max, has the largest similarity
with the input speech item. It can be shown that the value of xS is a random variable
with mean d′ and variance σ2

S . Similarly, the value of xN,max is a random variable with
mean µN and variance σ2

N . The selected item is correct as often as the value of xS is
larger than xN,max. The corresponding probability of having selected the correct item is
estimated from the difference distribution of xS and xN,max:

Pcorrect(d′) = Φ

 d′−µN√
σ2

S +σ2
N

 (2.8)

where Φ denotes the cumulative normal distribution. The values of σN and µN are
determined by the response-set size, m, of the speech material. σS is a free parameter,
assumed here to be related to the redundancy of the speech material. For example,
speech material consisting of meaningful sentences with high redundancy would have a
low value of σS and a material consisting of single-syllable words with low redundancy
would have a higher value of σS. The expressions for estimating σN and µN can be
found in the Appendix.
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+ % correct
sEPSM

Transmission
channel 

processing

Noise

Speech

Speech + noise

Figure 2.2: Block diagram showing the structure for estimating speech intelligibility using the sEPSM. See
the main text for a description of the individual stages.

2.2.3 Prediction of speech intelligibility data

The assumptions used to predict speech intelligibility data are as follows: (i) noise and
speech are available separately prior to any processing, (ii) the noise alone provides
a representative estimate of the noise within the noisy speech, (iii) the information
in the different processing channels is uncorrelated and combined optimally across
channels, and (iv) only the amplitude of the temporal envelope of the speech influences
intelligibility, i.e. temporal fine structure (TFS) and envelope phase information is
neglected. The general structure of the model framework for predicting intelligibility
of noisy speech using the sEPSM is shown in Fig. 2.2. The structure consists of two
parallel processing paths, each divided into two stages. The input signals are the
noise alone (N) and the noisy speech (S+N), respectively. The first stage represents
transmission-channel processing applied to the noise and the noisy speech separately.
It is noted that the same processing is applied to the two paths. Here, the noise alone
provides an estimate of the effect of the transmission-channel processing on the intrinsic
noise modulations within the noisy speech. The processed stimuli are then used as
input to the sEPSM described above and the output is a percent correct prediction.

Figure 2.3 illustrates the concept of predicting the intelligibility of processed noisy
speech. The top panel represents schematically the SNRenv, i.e. the input to the
ideal observer, as a function of the input SNR for unprocessed (black) and processed
(gray) noisy speech. The bottom panel shows the predicted percent correct based
on the ideal observer. Comparison of the two panels reveals that the ideal observer
essentially converts the model’s representation of the SNRenv to the probability of
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Figure 2.3: Illustration of the effects of noise and transmission-channel processing on predictions with the
sEPSM framework. Top panel: SNRenv as a function of the input SNR for unprocessed (black) and processed
(gray) noisy speech. Bottom panel: corresponding predicted percentage of correct responses as a function of
the input SNR. The change in speech recognition threshold (SRT) for a given type of transmission-channel
processing is estimated by measuring the horizontal shift of the predicted psychometric function.

correctly recognizing the noisy speech. Initially, the parameters of the ideal observer
are adjusted so that it predicts the shape of the psychometric function for a given
unprocessed speech material (black curve in the bottom panel). With these parameters
fixed, the noisy speech is subjected to the transmission-channel processing, such as
reverberation or spectral subtraction, and the simulated result is the predicted percent
correct after the processing (gray curve in the bottom panel). Since the parameters
of the ideal observer remain the same as for the unprocessed condition, it is only the
transmission-channel processing of the stimuli that causes the shift of the predicted
psychometric functions. By measuring the horizontal shift in terms of the input SNR,
the change in any point on the functions can be estimated. For example, the change
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in the speech recognition threshold, ∆SRT, can be predicted by measuring the shift
at the 50 % point. From the top panel of Fig. 2.3 it can be seen that ∆SRT may also
be estimated by considering the SNRenv value corresponding to 50 % correct in the
unprocessed condition (5 dB in this example) and measuring the input SNR needed
to provide the same SNRenv after processing through the transmission channel. The
central hypothesis of the present model framework is that the predicted change in
intelligibility arises because the transmission-channel processing changes the input
SNR needed to obtain the SNRenv corresponding to a given percent correct.

2.3 Method

2.3.1 Speech material

Model predictions were compared to data from the literature on the intelligibility of
noisy speech. Three Danish speech materials were considered: (i) the Conversational
Language Understanding Evaluation (CLUE) test consisting of unique meaningful
sentences (Nielsen and Dau, 2009), (ii) the DANTALE II sentence test consisting of
grammatically correct but meaningless sentences constructed from a set of 50 words
(Wagener et al., 2003), and (iii) the DANTALE word test consisting of meaningful
monosyllabic words (Keidser, 1993). For all test materials, the speech items were
mixed with a speech-shaped stationary noise constructed specifically to match the long-
term spectra of the respective materials. The three types of materials lead to different
normative psychometric functions, i.e. they differ in the measured intelligibility
as a function of the SNR when averaged over a large number of normal-hearing
listeners. Table 2.1 shows the normative SRT and the slope, s50, at the 50 % point
of the psychometric function for each type of material. The SRTs are different, with
SRTCLUE having the largest value, indicating that a higher SNR is needed to recognize
speech from the CLUE material. Furthermore, s50,CLUE > s50,DANTALE II > s50,DANTALE,
indicating that the transition from poor to good understanding with increasing SNR
occurs more quickly for the CLUE material than for the other two materials. The
differences in slope and SRT can be explained by differences in the redundancy and
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Table 2.1: Speech recognition thresholds (SRT) and slopes (s50) of the psychometric functions for three
Danish speech materials: CLUE, DANTALE II and DANTALE. Data from Nielsen and Dau (2009), Wagener
et al. (2003) and Keidser (1993), respectively.

Speech material SRT [dB] s50 [ % per dB]
CLUE -3.2 18.7
DANTALE II -8.4 12.6
DANTALE -8.7 6.0

response-set size of the speech material (Miller et al., 1951; Hirsh et al., 1954; Egan
et al., 1956; Kruger and Kruger, 1997). A small number of response alternatives and a
low redundancy typically leads to a more shallow slope whereas a larger number and a
higher redundancy leads to a steeper slope.

2.3.2 Stimuli and experimental conditions

Speech in noise and reverberation

New data on the intelligibility of noisy speech with reverberation were obtained.
The noisy sentences were convolved with an impulse response reflecting a specific
reverberation time. The impulse response was generated using ODEON room acoustics
software version 10 (Christensen, 2009). The simulated room was rectangular in shape
with a volume of 3200 m3 and the absorption was distributed such that the room
had equal reverberation time (T30) in the frequency range from 63 to 8000 Hz. Five
different values of T30 were used: 0, 0.4, 0.7, 1.3, and 2.3 s.

Speech in noise subjected to spectral subtraction

Spectral subtraction is the common name for a group of signal processing schemes
intended to increase the signal-to-noise ratio of a noisy signal by modifying the spectral
content (see e.g., Lim, 1978; Berouti et al., 1979; Boll, 1979; Ludvigsen et al., 1993;
Tsoukalas et al., 1997). Here, one type of spectral subtraction is applied to noisy speech
in order to investigate its effect on speech intelligibility. Sentences were mixed with
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speech-shaped noise and subjected to spectral subtraction as defined by Berouti et al.

(1979):

Ŝ( f ) =
[
PS+N( f )−αP̂N( f )

]1/2 (2.9)

where Ŝ( f ) denotes an estimate of the clean speech power spectrum, P̂N( f ) represents
an estimate of the noise power spectrum, PS+N( f ) is the power spectrum of the noisy
speech and α denotes an over-subtraction factor. The over-subtraction factor is included
to reduce spectral artifacts (Berouti et al., 1979). The spectral subtraction algorithm
was implemented using a 2048-point Short Time Fourier Transform (STFT) with a
window (Hanning) length of 24 ms and an overlap of 50%. The STFT was calculated
separately for the noise alone and the noisy speech signals. For each frame, the spectral
estimate of the noise, P̂N( f ), was calculated as the mean value of the noise power
spectral density. This value was then multiplied by the over-subtraction factor and
subtracted from each spectral bin of the noisy speech power spectrum. After subtraction,
negative values of the noisy speech spectrum were set to zero. Finally, the spectrum
was combined with the phase of the original noisy speech and transformed back to
the time domain using an overlap-add method. It is noted that this implementation
represents an “ideal” form of the spectral subtraction algorithm, since the noise signal
is available separately. In practical applications, P̂N( f ) would be estimated from the
noisy signal during non-speech periods.

Six different processing conditions were considered with the over-subtraction factor,
α , as the parameter. The α values were 0, 0.5, 1, 2, 4 and 8, where α = 0 represented
the reference condition with no spectral subtraction. An α value from 1 to 4 is expected
to provide the optimal noise reduction while α = 8 is expected to distort the speech in
addition to reducing the amount of noise (Berouti et al., 1979).

2.3.3 Apparatus and procedure

The speech intelligibility data were collected by measuring the SRT using the CLUE
speech material. All stimuli were stored digitally at a sampling frequency of 44.1 kHz
and presented diotically using a calibrated pair of Sennheiser HD 580 headphones and
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a high-quality sound card in a double-walled sound-attenuating booth. The speech had
a constant level of 65 dB SPL and noise was added to achieve the appropriate SNR
before further processing. Each sentence was presented once with the noise starting
1 second before the sentence began and ending 600 ms after it ended. The noise was
ramped on and off using 400-ms squared-cosine ramps. A simple 1 up-1 down adaptive
procedure, yielding an estimate of the 50 % correct threshold, was used, with the
SNR being adjusted in steps of 2 dB. If all words in a sentence was correctly repeated,
the SNR was lowered and if not, the SNR was increased. The threshold therefore
represents sentence intelligibility rather than word intelligibility. Ten sentences were
used to measure one SRT, which was calculated as the average SNR at the last eight
presentations. Listeners were instructed to repeat as much of the presented sentence
as possible, and were allowed to guess; no feedback was provided. Each listener was
tested three times in the same condition using different lists each time, and five different
lists were used for training before the measurement.

2.3.4 Listeners

Five male and three female normal-hearing listeners between 24 and 33 years of age
participated in the experiment. They had pure-tone thresholds of 20 dB hearing level
or better in the frequency range from 0.25 to 8 kHz, except for one subject, who
had a threshold of 30 dB at 8 kHz. All listeners had experience with psychoacoustic
measurements.

2.3.5 Model setup and parameters

Prediction of results for speech in noise

To generate model predictions, 150 sentences from the CLUE material, 144 sentences
from the DANTALE II material and 100 single words from the DANTALE material
were used as samples. The durations of the noise samples were matched to those of the
speech and all stimuli were down-sampled to 22.05 kHz to reduce computation time.
The percentage of correct responses was calculated for each speech sample, for a set of
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Table 2.2: Calibrated values of σS and the constants (k,q) of the ideal observer, for three different speech
materials: CLUE, DANTALEII and DANTALE. The estimated response-set sizes, m, are also shown.

Speech material k q σS m
CLUE

√
1.2 0.5 0.6 8000

DANTALE II
√

1.2 0.5 0.9 50
DANTALE

√
1.2 0.5 0.9 8000

input SNRs. The final prediction at a given SNR and for a given material was computed
as the average across all simulations at that SNR. The model was calibrated by adjusting
the constants (k,q) and the parameter, σS, of the ideal observer such that the predicted
percentage of correct responses matched the relevant data. The calibrated values are
given in Table 2.2. A single set of constants (k,q) was found that fitted all three speech
materials. The values of σS have the relation σS,CLUE < σS,DANTALEII = σS,DANTALE,
which is consistent with the apparent redundacy of the materials: the meaningful
sentences of the CLUE material have a higher redundancy than the mono-syllabic
words and nonsense sentences of the DANTALE and DANTALE II materials. The
values of m were estimated from the designs of the speech materials. For example,
each test-list from the DANTALE II material is constructed from the same set of 50
words, so mDANTALE II = 50. The speech materials CLUE and DANTALE are open-set,
for which there are no explicit boundaries of the response-set sizes. Here, m is limited
by the size of the listeners’ active vocabulary, which was assumed here to comprise
8000 items both for words and sentences (Müsch and Buus, 2001).

Prediction of results for reverberant noisy speech and spectral subtraction

Predictions were generated using 150 different CLUE sentences mixed with noise at
seven SNRs, ranging from -9 to 9 dB with 3-dB intervals. For each SNR, the predicted
percent correct was obtained as the average across all 150 sentences. A continuous
psychometric function was obtained by joining the predicted responses at the seven
SNRs with straight lines. The transmission-channel processing, here reverberation and
spectral subtraction, was applied to both the noisy speech and the noise alone stimuli
(Fig. 2.2). The reverberant stimuli were truncated when the level of their envelopes
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reached 5 % of their maximum values. In the case of spectral subtraction, the same
noise estimate P̂N( f ) was subtracted from both noisy speech and noise alone. This
provided an estimate of the effect of the spectral subtraction processing on the intrinsic
noise modulations within the noisy speech. Note that, for the measured data, spectral
subtraction was applied to the mixture only. The predicted SRT for a specific processing
condition was obtained as the 50% point on the predicted psychometric function. The
∆SRT for a given condition, both for the measured and the predicted data, was obtained
as the difference between the SRT for the reference condition and for the processed
condition. Positive ∆SRTs indicate an increase of SRT.

2.4 Results

2.4.1 Speech in stationary noise

In this section, predicted and obtained speech intelligibility in stationary noise are
compared. Figure 2.4 shows the data (open symbols) and corresponding predictions
(filled symbols) for the CLUE material (top), the DANTALE II material (middle) and
the DANTALE material (bottom). For all three speech materials, the predicted percent
correct values are in very good agreement with the data. This results from the calibration
of the ideal observer, i.e. the adjustment of (k,q) and σS to the individual materials. The
adjustment was performed until the best possible agreement was achieved between the
measured and predicted data points, determined by visual inspection. Note that (k,q)
is fixed for all materials. Thus, the sEPSM can account for the different psychometric
functions of the materials solely by setting the response-set sizes to the appropriate
values for the speech materials and fitting the corresponding values of σS. To better
visualize the trends in the data, a two-parametric function (solid line) (Wagener et al.,
2003) fitted to the data is shown with goodness of fit statistics provided in each panel.
This function was not used for model predictions.
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Figure 2.4: Measured data (open symbols)
and corresponding simulations (filled sym-
bols) for the CLUE material (top panel),
the DANTALE II material (middle-panel)
and the DANTALE material (bottom panel).
The data are reprinted from Nielsen and
Dau (2009), Wagener et al. (2003) and
Keidser (1993), respectively. To aid visual
inspection, a two-parametric function (solid
line) (Wagener et al., 2003) is fitted to the
measured data using a least-squares procedure.
The coefficient of determination (R2) and the
root-mean-squared-error (RMSE) of the fit
is indicated on each panel. Note that the
prediction at -10 dB SNR for the DANTALE
II material is hidden behind the measured data
point.
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2.4.2 Reverberant speech

Here, predictions and data for reverberant noisy speech are compared. Figure 2.5 shows
∆SRT as a function of the reverberation time. The open squares show data averaged
across 6 listeners, and the filled squares show predictions. The mean measured SRT
in the reference condition was -3 dB, which is consistent with the normative SRT
for the CLUE test (see Table 2.1 and the top panel of Fig. 2.4). The vertical bars
indicate the standard deviation of the listeners’ mean SRT, which was 1 dB on average.
A two-way analysis of variance (ANOVA) performed on the SRT data showed no
significant effect of subjects (F5,20 = 3.74, p = 0.015). A significant effect of T30

was found (F4,20 = 73.1, p < 0.001). SRT increased with 4 to 8 dB with increasing
T30. This is consistent with the data of Duquesnoy and Plomp (1980). A multiple
comparison procedure using Tukey’s honestly significant difference criterion revealed
significant differences (p < 0.05) between SRT in the reference condition (T30 = 0)
and all values of T30 greater than zero. Significant differences were also found between
T30 = [0.4,0.7] and T30 = [1.3,2.3]. The predictions also show an increase of SRT with
increasing reverberation time. The Pearson correlation coefficient between predicted
and measured ∆SRT is 0.98 and the RMSE is 0.71 dB, showing that the predictions
follow the data very well.

2.4.3 Spectral subtraction

Figure 2.6 shows ∆SRT (left ordinate) as a function of the over-subtraction factor α .
The open squares represent measured ∆SRTs, averaged across 4 subjects. Here, the
SRT in the reference condition was obtained at an SNR of -3.3 dB, consistent with the
value in Table 2.1. The vertical bars indicate the standard deviation of the mean SRT,
which averages about 0.5 dB. A two-way ANOVA performed on the mean SRT data
across subjects and conditions showed no significant effect of subjects (F3,15 = 0.39,
p = 0.18) but a significant effect of α (F5,15 = 15.08, p < 0.001). For all cases of
spectral subtraction (α > 0), SRT increased with 1.5 to 2.5 dB, reflecting reduced
speech intelligibility compared to the condition without spectral subtraction (α = 0).
Such decreases in intelligibility are consistent with the data of Boll (1979), Ludvigsen
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Figure 2.5: The measured change in SRT (open squares), averaged across 6 normal-hearing listeners, as
a function of the reverberation time, T30. The mean SRT in the reference condition was -3 dB. Model
predictions are indicated by the filled squares. The linear correlation coefficient (ρ) and RMSE is indicated
in the upper left corner.

et al. (1993), and Sarampalis et al. (2009). Multiple comparison tests showed a
significant difference (p < 0.05) between the reference condition and all conditions
of spectral subtraction. There were also significant differences (p < 0.05) between
SRTs for α = [0.5,1,2] and 8. The filled squares in Fig. 2.6 show the predicted results,
which agree well with the measured data but are consistently a bit higher for α > 0.
The Pearson correlation coefficient between the predictions and the data is 0.99 and the
RMSE is 0.48 dB, indicating that the agreement between predictions and measurements
is slightly better for spectral subtraction than for reverberation. The filled gray circles
in Fig. 2.6 show sSTI values (Houtgast and Steeneken, 1985) (indicated on the right
ordinate; note the reverse scaling). The sSTI increased in all conditions of spectral
subtraction compared to the reference condition (α = 0), thus predicting an increase
in speech intelligibility, opposite to the trend in the data. This inconsistency was
also found by Ludvigsen et al. (1993) and Dubbelboer and Houtgast (2007) and has
occasionally been referred to as the “noise reduction paradox”.
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Figure 2.6: ∆SRT (left ordinate) as a function of the over-subtraction factor α for 4 normal-hearing listeners
(open squares) and sEPSM predictions (filled squares). The right ordinate (with a reversed scale) shows the
corresponding sSTI values as filled gray circles. These values are, however, not converted to ∆SRT values
since these would be outside the left ordinate scale.

2.5 Model analysis

2.5.1 Modulation excitation patterns of the stimuli

In this section, we consider the contributions of the different model processing stages
to the predicted results. The four panels in Fig. 2.7 show the output of the modulation
filterbank, for the four gammatone filters centered at 250 Hz (top left), 1250 Hz (top
right), 2500 Hz (bottom left), and 5000 Hz (bottom right). Each point represents the
integrated envelope power at the output of a single modulation filter centered at the
modulation frequencies labeled on the abscissa (the 1-Hz label refers to the cutoff
frequency of the modulation lowpass filter). The corresponding patterns are denoted
as “modulation excitation patterns”, inspired by the term “excitation pattern”used in
the audio-frequency domain (Moore and Glasberg, 1983). Three patterns are shown
in each plot, resulting from the excitation with clean speech (squares), noisy speech
at an SNR of 0 dB (filled circles), and noise alone (triangles). Note that clean speech
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Figure 2.7: Modulation excitation patterns for the outputs of four gammatone filters with center frequencies
of 250 Hz (top left), 1250 Hz (top right), 2500 Hz (bottom left) and 5000 Hz (bottom right). Each point
represents the long-term integrated envelope power at the output of a modulation filter, plotted as a function
of its center frequency (fc), for three different input stimuli: clean speech (squares), noisy speech at an SNR
of 0 dB (filled circles), and noise alone (triangles).

was not considered in Sec. 2.4 but its pattern is shown here for comparison purposes.
In all panels, in the range from 1 to 16 Hz, the pattern for clean speech resembles the
classical modulation spectra of speech as presented in Houtgast and Steeneken (1985)
and Payton and Braida (1999). A peak at 4 Hz is clearly visible, corresponding roughly
to the rate of syllables in normal speech. The filters centered at 1250 and 2500 Hz
show an increase of the envelope power of the clean speech above about 32 Hz. This
increase was not observed in the study of Payton and Braida (1999) since they lowpass
filtered all speech envelopes with a cutoff frequency of 31 Hz before calculation of the
modulation spectra.
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2.5.2 The effects of audio-frequency and envelope-frequency
selectivity on SNRenv

The difference between the modulation excitation patterns for noisy speech and noise
alone determines the value of SNRenv; a small difference corresponds to a low SNRenv

and a large difference corresponds to a large value of SNRenv. Figure 2.7 shows that
SNRenv depends on the modulation (center) frequency and has small values above about
16 Hz. Furthermore, SNRenv varies to some extent with audio frequency. This illustrates
that the individual audio- and modulation-frequency channels contribute differently to
the overall value of SNRenv at the output of the model. This was further investigated
by repeating the spectral subtraction predictions using modified versions of the model.
Figure 2.8 shows ∆SRT as a function of the over-subtraction factor α . The open
squares replot the data from Fig. 2.6. The filled gray circles show predictions when the
gammatone filterbank was replaced by a single bandpass filter with cutoff frequencies
at 63 Hz and 8 kHz, thus assuming no selectivity in the audio-frequency domain.
The filled triangles in Fig. 2.8 shows predictions when the gammatone filterbank was
left unchanged but the modulation filterbank was replaced by a single modulation
low-pass filter with a cutoff frequency of 150 Hz, thus assuming no selectivity in
the modulation-frequency domain. The predicted ∆SRT is substantially decreased
for all conditions with α > 0, for both modified models, which is inconsistent with
the data. This suggests that the frequency selectivity assumed in the two domains is
important for accurate prediction of the intelligibility of noisy speech subjected to
spectral subtraction.

2.5.3 The effect of spectral subtraction in the envelope-frequency
domain

Figure 2.9(A) shows modulation excitation patterns at the output of the 1-kHz
gammatone filter for four values of the over-subtraction factor α . The envelope
power of the noisy speech (filled circles) increases with increasing α . However, the
envelope power of the noise alone (triangles) also increases with increasing α . Thus,
the predicted decrease of speech intelligibility with increasing α is caused by the
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Figure 2.8: ∆SRTs as a function of the over-subtraction factor α . The open squares show the data from
Fig. 2.6. The filled circles represent predictions when the gammatone filterbank was replaced by a single
bandpass filter with cutoff frequencies at 63 Hz and 8 kHz. The filled triangles show predictions when
the modulation filterbank was replaced by a single lowpass filter with a cutoff frequency of 150 Hz, while
keeping the original gammatone filterbank. The filled diamonds show predictions with a fixed modulation
noise floor, explained in Sec. 2.5.3. The arrows indicate that the corresponding values are outside the ordinate
scale.

envelope power of the noise, which is increased by a greater amount than that of the
noisy speech. The detrimental effect of spectral subtraction on speech intelligibility
may therefore be explained by a decreasing SNRenv with increasing α . Figure 2.9(B)
shows SNRenv as a function of the input SNR for the different values of α used in
the experiment. Each point represents the overall SNRenv for a given value of α and
input SNR. SNRenv generally decreases with increasing α , except for the input SNR
of -9 dB. To further illustrate this, Fig. 2.9(C) shows the change in envelope SNR,
∆SNRenv (left ordinate), obtained at the fixed input SNR of 0 dB as a function of α .
∆SNRenv decreases from 0 to -2.5 dB with increasing α . For comparison, the open
squares replot the data from Fig. 2.6 (right ordinate, reversed scale). The predicted
decrease of SNRenv with α , for this particular input SNR, is in quantitative agreement
with the increase of SRT observed in the data. It should be noted that the units of
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SNRenv and SRT are not the same. Therefore, this comparison should only illustrate
that the measured change in SRT is paralleled in the SNRenv metric.

Since SNRenv is calculated from the envelope power of the noisy speech and noise
alone, the value of the noise envelope power alone is crucial. To further evaluate this,
predictions were made assuming a fixed value of the noise-alone envelope power as a
function of the processing condition. Specifically, the transmission-channel processing
(here spectral subtraction) was not applied to the noise-alone path of the model (see
Fig. 2.2). In this case, the increase of the envelope power of the noisy speech, as
result of spectral subtraction, would lead to an increase of SNRenv. As a consequence,
the corresponding predicted SRT decreases. The filled diamonds in Fig. 2.8 show
the corresponding prediction, showing a decrease of SRT for all values of α > 0. A
decrease of SRT corresponds to an increase of intelligibility, which is inconsistent with
the data. This shows that, in the model, the envelope power of the noise alone is crucial
for prediction of the intelligibility of noisy speech subjected to spectral subtraction.

2.5.4 The effect of reverberation in the envelope-frequency do-
main

The four panels in Fig. 2.10(A) show modulation excitation patterns at the output of
the 1-kHz gammatone filter for conditions with different amounts of reverberation.
The top left panel represents the reference condition without reverberation (T30 = 0).
The envelope power of noisy speech decreases above 2 Hz as the reverberation time
increases, indicating that reverberation acts as a low-pass filter in the modulation
domain (Houtgast and Steeneken, 1985). The envelope power of the noise alone
increases at low modulation filter (center) frequencies when the reverberation time
increases, which is mainly caused by the increasing duration of the reverberant tail
of the noise stimulus. As a result, the overall SNRenv decreases with increasing
reverberation time, consistent with the decreasing intelligibility seen in Fig. 2.5 (open
squares) .
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Figure 2.10: Modulation excitation patterns for the output of the 1-kHz gammatone filter for four
reverberation times: T30 = 0 (top left), T30 = 0.4 (top right), T30 = 0.7 (bottom left) and T30 = 2.3 (bottom
right). The input SNR was 9 dB.

2.6 Discussion

2.6.1 Relation between sEPSM and STI

The present study shows that the sEPSM framework accounts well for the measured
∆SRT values observed for conditions of noisy speech and reverberation. The STI has
earlier been demonstrated to account for similar data (e.g., Duquesnoy and Plomp, 1980;
Houtgast and Steeneken, 1973) as well as for conditions in which speech is distorted by
reverberation only (Houtgast et al., 1980; Houtgast and Steeneken, 1985). Data for the
purely reverberant condition (without noise distortion) can also be accounted for by the
sEPSM. In this case, the SNRenv is limited by internal noise (not shown here explicitly).
In addition to the conditions of noise and reverberation, the sEPSM was shown to
account for the intelligibility of noisy speech subjected to spectral subtraction, where
the STI approach clearly fails. The sSTI approach of Goldsworthy and Greenberg



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 34 — #54 i
i

i
i

i
i

34 2. Predicting speech intelligibility

(2004) predicted a slight increase of intelligibility up to α = 2, followed by a decrease
towards α = 8. Although their implementation of the spectral subtraction algorithm
differed slightly from the one used in the present study, their predictions contradict
the data presented here. The critical distinction between all STI-based models and the
sEPSM is that the STI considers the difference between clean speech and noisy speech
in the envelope domain, quantified by the modulation transfer function (MTF). This
is equivalent to assuming a fixed noise floor within the noisy speech. In contrast, the
sEPSM considers the difference between the noisy speech and the noise alone, and
the noise alone provides an explicit estimate of the intrinsic noise floor. In the case
of spectral subtraction, the modulations in the noisy speech envelope are enhanced
by the processing, and this leads to an increased envelope power, which causes the
STI to predict an increase of intelligibility. However, the modulations inherent in the
noise-alone envelope are enhanced as well, in some conditions by a larger amount
than the noisy speech (Fig. 2.9(A)). The increased intrinsic noise envelope power
is not taken into account by the STI which explains why the approach must fail in
these conditions. If a fixed noise floor was assumed in the sEPSM, this would also
fail (Fig. 2.8). Thus, the key to the sEPSM approach is the explicit estimation of the
intrinsic noise envelope power within the noisy speech.

2.6.2 Audio and modulation frequency weighting

Weighting of individual frequency bands is a common feature of speech intelligibility
prediction metrics such as the AI, SII and STI. The general rationale for the weighting
is that certain frequency regions appear to be perceptually more relevant for speech
intelligibility than other frequency regions (French and Steinberg, 1947; Kryter, 1960;
Houtgast and Steeneken, 1985; Warren et al., 2005). In the case of the STI, the
weighting can be separated into two types: (i) audio-frequency weighting of individual
octave bands within the frequency range 0.125 and 8 kHz, and (ii) modulation-
frequency weighting in the form of a truncation of the maximum modulation frequency
included in the MTF, typically at 16 Hz (Houtgast et al., 1980; Houtgast and Steeneken,
1985). The truncation of modulation frequencies was motivated by the finding that
speech modulation spectra have low amplitudes above 16 Hz (Drullman et al., 1994b,a;
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Xu et al., 2005). In contrast to the standardized metrics, the sEPSM does not apply
any explicit weighting functions, apart from limitations in terms of absolute sensitivity
(Sec. 2.2.2). The agreement between the predicted and measured intelligibility (Fig. 2.5
and Fig. 2.6) suggests that an explicit frequency weighting might not be necessary to
account for the data, if the metric that is assumed to be related to speech intelligibility
is appropriate.

2.6.3 The role of interaction modulations

The measure signal-to-noise ratio in the modulation domain, (S/N)mod, proposed
by Dubbelboer and Houtgast (2008), quantified the strength of speech modulations
relative to a noise floor of spurious modulations. The spurious modulations consist of
noise modulations and interaction modulations arising from the nonlinear interaction
between the noise and the speech waveforms. The novelty compared to the STI
was their hypothesis that speech intelligibility may be reduced not only due to the
decrease of the speech modulations, but also due to the increase of the level of the
spurious noise modulation, for example in the case of the processing through spectral
subtraction. The present study followed the idea that noise modulations can influence
speech intelligibility. However, the hypothesis of Dubbelboer and Houtgast (2008)
that the interaction modulations represent an essential effect causing the decreased
intelligibility of noisy speech processed by spectral subtraction, was not supported here.
Instead, the main effect causing decreased intelligibility, according to the sEPSM, is
the increase of the intrinsic fluctuations in the noise itself.

Another main assumption of the (S/N)mod concept was that the modulation noise
floor, and thus (S/N)mod, could only be estimated from the mixed waveform of noise
and speech. Because of the difficulties related to envelope filtering of noisy speech,
Dubbelboer and Houtgast (2008) used a special narrow-band probe signal, containing a
single modulation frequency, for estimating (S/N)mod. In contrast, SNRenv is calculated
here from the speech and the noise separately, so problems with separating the noise
and the speech after envelope filtering are avoided. The drawback is that the interaction
between the speech and the noise waveforms is neglected. However, given the accuracy
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of the present model predictions, it appears that the intrinsic fluctuations in the noise
envelope play a larger role for speech intelligibility than interaction modulations.

The assumption that (S/N)mod must be estimated from the mixture of speech and
noise makes it difficult to extend from a concept to a model. In contrast, SNRenv in
the present study was calculated using a model framework, the sEPSM, that includes
elements of established hypotheses about human auditory processing. An earlier version
of this framework was demonstrated to predict modulation detection and masking data
with different types of carriers and modulation maskers (Dau et al., 1999; Ewert and
Dau, 2000; Ewert et al., 2002; Ewert and Dau, 2004).

2.6.4 Limitations of the approach

Various studies have demonstrated that speech intelligibility is higher in conditions with
non-stationary interferers, such as amplitude modulated noise or competing talkers, than
with stationary interferers (e.g., Miller, 1947; Miller and Licklider, 1950; Duquesnoy,
1983; Festen and Plomp, 1990; Füllgrabe et al., 2006). The difference in intelligibility
has been called speech masking release. The sEPSM in its present form cannot account
for this phenomenon, since predictions are based on the long-term integrated SNRenv.
For example, if the noise was amplitude modulated at a rate of 4 Hz, this would result in
greater noise envelope power at 4 Hz which, in turn, would lead to a very low SNRenv

at this frequency. The contribution from the 4 Hz modulation filter to the overall
SNRenv would then be reduced compared to the stationary case, and the model would
predict decreased speech intelligibility, in contrast to the experimental data. Thus,
benefits from listening in the dips of a modulated noise or a competing talker cannot be
accounted for by the model in its present form. Moreover, the model does not include
nonlinear effects of cochlear processing, such as compression and suppression, nor
does it reflect any influence of the statistics of the integrated envelope power which is a
random variable over short times. In this respect, the sEPSM differs substantially from,
for example, the more complex processing models described by Dau et al. (1997a,b)
or Jepsen et al. (2008), which were applied to speech intelligibility in the studies of
Jürgens and Brand (2009) and Christiansen et al. (2010). In particular, the models of
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Dau et al. (1997a,b) and Jepsen et al. (2008) contain an adaptation stage that allows
the description of simultaneous and non-simultaneous masking as well as modulation
masking effects. Such a stage is not contained in the current model. The sEPSM is
a model that is restricted to amplitude modulation processing and makes only a few
assumptions about the processing of the stimuli. Even though this model oversimplifies
the “real” processing in the auditory system (more than do the complex models), this
analytical approach might be helpful for understanding which processing stages are
essential for successfully describing key aspects of speech recognition.

2.6.5 Perspectives

The sEPSM can be applied to non-linear conditions that have not been considered in
the present study, such as amplitude compression and peak-clipping. In particular,
the intelligibility changes due to phase-jitter and phase-shift distortions, as studied
by Elhilali et al. (2003), pose interesting challenges. Elhilali and colleagues showed
that their concept of the spectro-temporal modulation index, STMI, can account for
the changes in intelligibility caused by these distortions. The STMI assumes a two-
dimensional modulation filtering process, motivated by spectro-temporal response
fields in the cortex of animals (Chi et al., 1999), and the degradation of the spectral
periodicity in the “auditory spectrogram” due to the non-linear processing is reflected
in the STMI, but not in the STI. However, it would be interesting to test to what extent
the noise distortions produced by this non-linear process can be accounted for by the
sEPSM, which only considers a one-dimensional (temporal) modulation analysis.

In its current form, the sEPSM utilizes an observer that functions as a signal detector,
assuming that a certain long-term overall SNRenv corresponds to a given percent
correct. This detector does not perform any direct recognition of words nor consider the
difference between individual words from a single-syllable word material. In this way,
the sEPSM (and the standardized STI and SII) differs from models that predict smaller
details of the speech signal, such as consonant or phoneme confusions (Gallun and
Souza, 2008; Jürgens and Brand, 2009). The spectral correlation index (SCI; Gallun
and Souza, 2008) measures the modulation energy in a number of modulation bandpass
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filters at the output of a number of audio bandpass filters. Instead of considering
the total modulation energy of a given stimulus, as performed in the STI and the
present model, the SCI considers the specific pattern of modulation energy across the
different modulation and audio filters. It assumes that a given consonant will have a
specific modulation energy pattern, and that a confusion between two consonants can
be predicted from the correlation between their corresponding modulation patterns.
The SCI showed a correlation with measured consonant confusion error rates of up to
0.82. The ideal observer in the sEPSM could be modified to perform a similar operation
as the SCI. However, in contrast to considering a pattern of speech modulation energy,
the sEPSM would consider a specific pattern of SNRenv-values associated with each
consonant. By comparing patterns of SNRenv instead of speech modulation energy,
effects of modulation masking (e.g. caused by intrinsic fluctuations of external noise)
would be included in the estimates of confusions.

The SNRenv concept could also be incorporated into more advanced models of
auditory signal processing (e.g., Chi et al., 2005; Jepsen et al., 2008). Such more
detailed models might facilitate investigations of the effect of hearing-impairment on
speech intelligibility.

2.7 Summary and conclusions

The speech-based envelope power spectrum model (sEPSM) was proposed for the
prediction of the intelligibility of processed noisy speech. The model estimates the
envelope signal-to-noise ratio, SNRenv, from the long-term integrated envelope power
falling in the transfer range of a number of modulation bandpass filters, and combines
the SNRenv values optimally across modulation filters and auditory filters.

Model predictions were compared with measured speech recognition thresholds
(SRT) for two conditions: (i) reverberant noisy speech and (ii) noisy speech subjected
to spectral subtraction. The predictions showed an increase of the SRT both with
increasing reverberation time and as a consequence of spectral subtraction, in good
agreement with the data. The STI predicts similar results for conditions with
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reverberation, but clearly fails for spectral subtraction. The analysis of the model
predictions revealed that the spectral subtraction process increases the envelope power
of the estimated noise component of the noisy speech by a greater amount than that of
the speech itself, which leads to a decreased SNRenv and thus a decrease in predicted
intelligibility.

The sEPSM concept represents a more general concept than the STI and might be
powerful when applied to other conditions of processed noisy speech.

Appendix

A. Details of the ideal observer

The conversion from the sensitivity index, d′, to percent correct is described by equation
2.8. The values of σN and µN are determined by the number of alternatives, m, in the
mAFC model of Green and Birdsall (1964):

σN =
1.28255

Un
and µN =Un +

0.577
Un

(2.10)

where

Un = Φ

(
1− 1

m

)−1

(2.11)

and Φ denotes the cumulative normal distribution. As m increases, µN also increases
while σN decreases. The value of Un represents the value that would be drawn from a
normal distribution with probability p = 1−1/m. 1/m corresponds to the minimum
percent correct of the model’s psychometric function, which for three alternatives is
33% correct and for 100 alternatives is 1% correct.
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3
The importance of auditory

spectro-temporal modulation filtering
and decision metric for predicting

speech intelligibility†

Speech intelligibility models typically consist of a preprocessing part that
transforms the stimuli into some internal (auditory) representation and a
decision metric that relates the internal representation to speech intelligibility.
The present study analyzed the role of modulation filtering in the preprocessing
of different speech intelligibility models by comparing predictions from models
that either assume a spectro-temporal (i.e. two-dimensional) or a temporal-
only (i.e. one-dimensional) modulation filterbank. Furthermore, the role of
the decision metric for speech intelligibility was investigated by comparing
predictions from models based on the signal-to-noise envelope power ratio,
SNRenv, and the modulation transfer function, MTF. The models were evaluated
in conditions of noisy speech that were (i) subjected to reverberation, (ii)
distorted by phase jitter or (iii) processed by noise reduction via spectral
subtraction. The results suggested that a decision metric based on the SNRenv

may provide a more general basis for predicting speech intelligibility than a
metric based on the MTF. Moreover, the one-dimensional modulation filtering
process was found to be sufficient to account for the data when combined
with a measure of across (audio) frequency variability at the output of the

41
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auditory preprocessing. A complex spectro-temporal modulation filterbank
might therefore not be required for speech intelligibility prediction.

3.1 Introduction

Early models of speech intelligibility, such as the articulation index (AI; French
and Steinberg, 1947), consider the effects of energetic masking as the main factor
influencing the intelligibility of speech presented in background noise. The decision
metric employed by the AI, i.e., the measure used to quantify the effects of the
transmission channel on speech intelligibility, mainly considers the audibility of the
speech, quantified by a weighted average of the signal-to-noise ratios (SNR) measured
in frequency bands covering the speech spectrum. The AI has been demonstrated
to account well for conditions with static interferers, like additive noise (French and
Steinberg, 1947), and for conditions with spectrally filtered speech (Kryter, 1962).
However, it fails in conditions with temporal distortions, such as reverberation, because
it does not consider the modifications to the temporal envelope of the (speech) signal.

In contrast, the speech transmission index (STI; Houtgast et al., 1980; Steeneken and
Houtgast, 1980; IEC60268-16, 2003) considers the integrity of the temporal envelope
fluctuations of a reference signal in the decision metric, quantified by the modulation
transfer function (MTF), which was included in a revised version of the AI, the speech
intelligibility index (SII; Pavlovic, 1982; ANSI S3.5, 1997). The MTF calculates the
reduction of the envelope fluctuations as the ratio between the modulation magnitude
spectrum of the processed reference signal and that of the clean reference signal, for a
number of audio frequencies. Because the MTF captures the effects of the distortions
on the envelope of the reference signal, the STI accounts for speech intelligibility
in reverberant conditions as well as when the speech is presented in a stationary
background noise (Houtgast et al., 1980; Steeneken and Houtgast, 1980; Houtgast and
Steeneken, 1985). However, the STI fails in conditions with nonlinear processing, such
as envelope compression (Rhebergen and Versfeld, 2005), phase jitter, phase shifts

† This chapter is based on Chabot-Leclerc et al. (2014).



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 43 — #63 i
i

i
i

i
i

3.1 Introduction 43

(Elhilali et al., 2003), or spectral subtraction (Ludvigsen et al., 1993; Dubbelboer and
Houtgast, 2007).

To overcome this limitation, Payton and Braida (1999) as well as Goldsworthy
and Greenberg (2004) introduced modifications of the STI, generally referred to as
speech-based STI methods (sSTI). The main difference from the original STI method
is that speech is used as the reference signal rather than a modulated wide-band noise,
and that the integrity of the temporal envelope is quantified by other metrics than
the MTF. Although the sSTI methods seemed promising, they were never evaluated
with quantitative comparisons between measured and predicted speech intelligibility
data. Moreover, Dubbelboer and Houtgast (2008) proposed that, in the case of noise
reduction via spectral subtraction, the MTF-concept was inherently limited because it
compares the clean reference signal to the processed signal and thereby neglects the
effects of the intrinsic modulations in the noise itself on speech intelligibility.

An alternative approach was taken by Elhilali et al. (2003), who predicted
intelligibility based on the spectro-temporal modulation index (STMI). The STMI
measures the integrity of the spectral and temporal modulations of a signal, inspired by
neural responses to spectro-temporally varying stimuli in the auditory cortex of ferrets
Depireux et al. (2001); Kowalski et al. (1996). This concept is in contrast to the STI,
which only considers the integrity of the modulations in the temporal domain. The
SMTI considers a two-dimensional (spectro-temporal) MTF as the decision metric,
effectively assuming a spectro-temporal modulation band-pass filterbank. Elhilali
et al. (2003) defined two versions of the STMI. One version used a spectro-temporally
modulated noise as the reference signal, denoted as a ripple, analogous to the temporally
modulated noise in the case of the STI. The second version used clean speech as the
reference signal, as in the sSTI methods. The ripple-based and speech-based STMI,
respectively denoted as STMIR and STMIT, were shown to be consistent with the STI
in conditions with additive noise and reverberation. Furthermore, both STMI versions
could account for the nonlinear distortion effects due to phase jittering and phase shifts,
to which the STI is insensitive. The key component in the STMI to account for the
phase distortions was assumed to be the processing across the frequency axis, i.e., the
evaluation of the integrity of the spectral modulations in the speech signal. However,
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since the STMI is still based on the MTF concept, it should have the same principal
limitations as the STI when noisy speech is processed by spectral subtraction.

Recently, Jørgensen and Dau (2011) proposed the signal-to-noise envelope power
ratio (SNRenv) as an alternative decision metric, inspired by the work of Dubbelboer
and Houtgast (2007). The SNRenv was implemented in the speech-based envelope
power spectrum model (sEPSM) and is estimated at the output of a temporal modulation
filterbank. The SNRenv was shown to account for the changes of intelligibility observed
in conditions with additive noise, reverberation, and spectral subtraction. The key
component allowing the SNRenv to account for spectral subtraction is the consideration
of the intrinsic modulations of the noise (alone). The power of these fluctuations is
typically increased as a consequence of the noise reduction processing which leads to a
masking effect on speech in the modulation domain. This effect is neglected in the MTF
concept. However, the sEPSM can be expected to fail in conditions with distortions
that affect the spectral structure of the signal (e.g., the spectral peaks representing
the speech formants) since the model does not assume any explicit across-frequency
processing besides simple information integration.

Thus, conceptually, the STMI and the sEPSM introduced different modifications to
the STI: the STMI introduced an across-frequency mechanism via a spectro-temporal

modulation filterbank that seems essential for the prediction of phase jitter effects, but
kept the MTF-based decision metric. The sEPSM introduced another decision metric,
based on the SNRenv, which seems essential for the prediction of effects of spectral
subtraction, but kept the analysis of only temporal modulations,

The present study investigated if the combination of the two models would provide
a more general, and thus more powerful, modeling framework for predicting speech
intelligibility. Two model realizations were considered, both based on the sEPSM
structure from Jørgensen and Dau (2011) and thus employing the SNRenv metric. One
realization replaced the temporal modulation filterbank by a 2-D spectro-temporal
modulation filterbank, as in the STMI, denoted in the following as “2D-sEPSM”. The
other realization kept the purely temporal (1-D) modulation filterbank and introduced
a mechanism that analyzed the variance of the output of this modulation filterbank
across peripheral channels, denoted in the following as “sEPSMX”. In this model,
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the contribution to intelligibility from a given modulation channel was assumed to be
proportional to the amount of the variance across peripheral channels for that particular
modulation channel. Such a mechanism was inspired by models of comodulation
masking release (CMR; e.g., van de Par and Kohlrausch, 1998; Piechowiak et al.,
2007). CMR refers to the greater detectability of a tone centered in a narrow-band
noise, surrounded by one or more flanking noise bands with comodulated waveforms,
compared to the same situation with uncorrelated flanking noise bands. The addition
of a tone in the comodulated noise bands introduces a decorrelation of the waveforms
across frequency, which has been suggested to be a cue for detection (van de Par and
Kohlrausch, 1998). An across-channel decorrelation corresponds to an increase in
the variation across frequency bands. However, in contrast to the synthetic stimuli
considered in CMR experiments, natural speech contains a highly variable pattern of
spectro-temporal fluctuations in an auditory spectrogram-like representation, reflected
by a large across-channel variance. Distortions that would decrease the across-
frequency variance would thus reflect a loss of speech information.

The two models were evaluated in conditions of reverberation, spectral subtraction,
and phase jitter processing and compared to predictions obtained with the STMIT

(Elhilali et al., 2003) and the original sEPSM (Jørgensen and Dau, 2011).

3.2 Model descriptions

Figure 3.1 shows a sketch of the overall structure of the model(s) considered in the
present study. The first three stages represent the auditory “preprocessing”, consisting
of a gammatone filterbank, an envelope extraction process, and a modulation filtering
process, which are specific to each of the two model realizations. An absolute sensitivity
threshold is included in both models, such that only peripheral filters with output power
above the normal hearing threshold are considered. The two final stages indicated
in Fig. 1 represent the decision module, consisting of the SNRenv calculation and an
“ideal observer”, as defined in Jørgensen and Dau (2011).
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Figure 3.1: Block diagram of the overall structure of the modeling framework. The model consists of a
gammatone bandpass filterbank followed by envelope extraction via the Hilbert transform, producing the
“auditory spectrogram” of the incoming signal. The modulation filtering differs in the two considered model
versions, the 2D-sEPSM and the sEPSMX. The envelope signal-to-noise ratio, SNRenv, is calculated from
the time-averaged “cortical representation” at the output of either the one-dimension modulation filtering
(sEPSMX) or the two-dimensional modulation filtering (2D-sEPSM). The resulting values are combined
across modulation filters and audio filters. The overall SNRenv is converted to a percentage of correctly
recognized speech items using an ideal observer process.

3.2.1 Model 1: Two-dimensional envelope power spectrum model
(2D-sEPSM)

In the 2D-sEPSM, the acoustic signal is filtered using a bandpass filterbank consisting
of 128 fourth-order gammatone filters equally spaced on a logarithmic scale between
90 Hz and 3.5 kHz (24 filters/octave over a 5.3 octave range). The envelope of the
output of each gammatone filter is extracted using the Hilbert transform, lowpass
filtered using a first-order Butterworth filter with a cut-off frequency of 150 Hz (Ewert
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and Dau, 2000; Kohlrausch et al., 2000) and short-term averaged in blocks of 4 ms
to form an “auditory spectrogram”-like representation. Next, the joint spectral and
temporal modulation content is extracted from the auditory spectrogram using a bank
of spectrally and temporally selective modulation-filters (Chi et al., 1999). The output
of this processing is referred to as the “cortical representation” of the incoming signal
and has the four dimensions time, cochlear frequency, temporal modulation frequency
and spectral modulation frequency. The 2D modulation filters are third-octave wide,
octave-spaced, and tuned (Q=1) to a range of temporal modulations frequencies (ω)
between 2 and 32 Hz and spectral modulations frequencies (Ω) between 0.25 and
8 cycles/octave. The impulse responses of the 2D modulation filters have the form of a
Gabor function. Detailed information on the cortical stage can be found in Chi et al.

(1999) and Chi et al. (2005).

In the decision device, the long-term envelope power of the cortical representation is
calculated as the variance across time, normalized with the squared time-average of
the unfiltered temporal envelope, leaving a three dimensional internal representation
of the noisy speech mixture, Tmix( f ,ω,Ω), and of the noise alone, N( f ,ω,Ω). These
time-collapsed cortical representations are considered equivalent to the envelope power
spectrum of the noisy speech, Penv,S+N , and of the noise alone, Penv,N , as defined in
Jørgensen and Dau (2011). The SNRenv can therefore be expressed as:

SNRenv =
Tmix−N

N
. (3.1)

It is assumed that the values of the mixture do not exceed the value of the clean speech:

Tmix = min(Tmix,Tclean), (3.2)

and that the cortical representation of the noise does not exceed that of the mixture:

N = min(Tmix,N) (3.3)

The lower limits of Tmix and N are represented by a small positive value ε , reflecting an
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internal noise threshold:

Tmix = max(Tmix,ε) (3.4)

N = max(N,ε) (3.5)

In order to limit the model’s sensitivity to very small modulations in the stimuli, ε is
set to −40 dB. 1.

3.2.2 Model 2: One-dimensional envelope power spectrum model
with variance weigthing across frequency (sEPSMX)

The sEPSMX assumes 22 gammatone filters with 1/3-octave spacing of the center
frequencies, covering the range from 63 Hz to 8 kHz. The envelope of the output of
each gammatone filter is extracted via the Hilbert transform and low-pass filtered using
a first-order Butterworth filter with a cut-off frequency of 150 Hz (Kohlrausch et al.,
2000). The envelope is analyzed by a filterbank consisting of a third-order lowpass filter
in parallel with six overlapping second-order bandpass filters. The cutoff frequency
of the low-pass filter is 1 Hz and the bandpass filters have center frequencies from 2
to 64 Hz with octave spacing and a constant Q-factor of 1. Thus, for the sEPSMX,
the cortical representation is a three-dimensional function of time, audio-filter center
frequency, and modulation-filter center frequency.

At the decision device, the long-term envelope power is calculated from the temporal
output of each modulation filter as the variance of the filter output across time, and
normalized with the squared time-average (DC) of the unfiltered envelope. The SNRenv

is then calculated from the normalized envelope power of the noisy speech, Penv,S+N ,
and the noise alone, Penv,N , at the output of each modulation filter:

SNRenv =
Penv,S+N−Penv,N

Penv,N
(3.6)

1 This threshold corresponds to the value of−20 dB in the original model of Jørgensen and Dau (2011) that
considered only temporal modulation channels. The assumption that the internal noise is independent in
all (spectral and temporal) modulation channels considered in the 2D-sEPSM leads to the lower value of
ε .
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Similarly to the 2D-sEPSM, the model’s' sensitivity is limited and the envelope power
below −20 dB is set to −20 dB (Jørgensen and Dau, 2011).

3.2.3 Transformation from SNRenv to probability of being correct

In both models, the SNRenv contributions from all G modulation filters and L audio
filters are integrated according to:

SNRenv =

[
G

∑
g=1

L

∑
l=1

(
SNRenv,g,l

)2

]1/2

(3.7)

In the case of the sEPSMX, the SNRenv contribution from the g’th modulation filter is
weighted as follows:

SNRenv,g,l = [σ2
g ]

β ·SNRenv,g,l , (3.8)

where σ2
g represents the across-channel variance for modulation filter g, evaluated

across all 22 audio filters and β is a free parameter with a value determined by an
optimal fit of the model predictions to the conditions with phase jitter. The value of σ2

g

was determined from the stimuli using several computational steps: first, the long-term
envelope power of the noisy speech mixture, P∗env,g,l , was computed at the output of
modulation-filter g and audio-filter l and normalized with a factor proportional to the
bandwidth in Hz of the audio filter. The proportionality factor was the root-mean-square
level of the noisy speech mixture. The normalization ensured that σ2

g did not reflect
differences in the overall level across peripheral channels that might arise due to greater
energy contained in the audio filters with larger bandwidths. Finally, the variance (σ2

g )
of the normalized P∗env,g,l was computed across the 22 peripheral filters.

Figure 3.2 illustrates the across-channel variance computation using a matrix
representation; each row corresponds to a different audio channel and each column
represents a modulation channel. In each cell of the matrix, the indices g and l of
P∗env,g,l represent the center frequencies of the filters. The across-channel variance is
calculated across rows in a given column.
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Figure 3.2: Illustration of the calculation of the across-channel variance of the envelope power for a given
time frame. Each cell represents the normalized envelope power, P∗env,g,l , of the noisy speech at the output of
a temporal modulation filter g, and audio filter, l. The across-channel variance, σ2

g , for a given modulation
filter center frequency corresponds to the variance across rows for a given column of the matrix.

For both models, the combined SNRenv value is converted to a sensitivity index, d′,
of an “ideal observer” using the relation:

d′ = k · (SNRenv)
q (3.9)

where k and q are constants, independent of the experimental condition. d′ is converted
to a percentage of correct responses using an m-alternative forced choice (mAFC)
decision model (Green and Swets, 1988) combined with an unequal-variance Gaussian
model. The ideal observer is assumed to compare the input speech item with m stored
alternatives and select the item, xS, that yields the largest similarity. The m-1 remaining
items are assumed to be noise, one of which, xN,max, has the largest similarity with
the input speech item. The value of xS is a random variable with a mean of d′ and
variance σ2

S . Similarly, the value of xN,max is a random variable with mean µN and
variance σ2

N . The selected item is considered correct if the value of xS is larger than
xN,max. The corresponding probability of being correct is estimated from the difference
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distributions of xS and xN,max:

Pcorrect(d′) = Φ

 d′−µN√
σ2

S +σ2
N

 (3.10)

where Φ designates the cumulative normal distribution. The values of σ2
N and µN

are determined by the number of alternatives, m, which for an open-set paradigm
is set to the number of words in a normal listener’s active vocabulary (Müsch and
Buus, 2001). The value of σS is inversely proportional to the slope of the ideal
observer’s psychometric function, and can be adjusted to account for different degrees
of redundancy in the speech materials (see Jørgensen and Dau, 2011).

3.3 Method

3.3.1 Speech material

The target speech was Danish sentences from the Conversation Language Understand-
ing Evaluation (CLUE) test, consisting of unique meaningful five-word sentences
(Nielsen and Dau, 2009). The CLUE test is similar to the hearing in noise test (HINT;
Nilsson et al., 1994). For all test conditions, the sentences were mixed with speech-
shaped stationary noise having the same long-term average spectrum as the speech
material.

3.3.2 Stimuli and experimental conditions

Three conditions of processed noisy speech were considered: reverberant speech,
speech processed by spectral subtraction and speech subjected to a phase-jitter
distortion. In all conditions, sentences were mixed with the stationary speech noise at a
given SNR before processing. The measured data presented here were either collected
as part of the present study (phase jitter condition) or were taken from Jørgensen and
Dau (2011) (reverberation and spectral subtraction conditions).
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Reverberation

The noisy sentences were convolved with an impulse response corresponding to a
particular reverberation time. The impulse responses were created using the ODEON
room acoustic software version 10 (Christensen, 2009). The simulated room was
rectangular in shape with a volume of 3200 m3 and the absorption was distributed such
that the room had very similar reverberation time (T30) measured in octave bands from
63 to 8000 Hz. In the room simulation, the absorption was adjusted such that the room
impulse responses corresponded to five different values of T30: 0, 0.4, 0.7, 1.3, and
2.3 s. The corresponding acoustic clarity (C50), defined as the ratio of the energy of
the first 50 ms of the impulse response to the energy of the remaining part, were 0.60,
−2.9, −6.6, −8.0 dB, respectively.

Spectral subtraction

The spectral subtraction was implemented using the scheme defined by Berouti et al.

(1979). An estimate of the noise power spectrum was subtracted from the power
spectrum of the noisy speech in 20-ms time windows. The amount of noise subtracted
was defined by the over-subtraction factor, κ . Details on the algorithm can be found in
Jørgensen and Dau (2011). Six different over-subtraction factors were considered: 0,
0.5, 1, 2, 4 and 8, where κ = 0 corresponded to the reference condition with no spectral
subtraction.

Phase jitter

Noisy speech distorted by phase-jitter was obtained by multiplying noisy speech, s(t),
with an SNR of 5 dB with a cosine function with a random phase, as described in
Elhilali et al. (2003):

r(t) = ℜ{s(t)e jΘ(t)}= s(t)cos(Θ(t)), (3.11)
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where θ (t) is a random process uniformly distributed over [0,2π] (0 < α < 1), and α

is the parameter controlling the amount of jitter. The α-values used covered the range
0 to 1 in steps of 0.125. For α = 0.5 and 1, the signal becomes a temporally modulated
white noise.

3.3.3 Apparatus and procedure

For the conditions with phase jitter, the stimuli were stored digitally at a sampling
frequency of 44.1 kHz and presented diotically through a pair of calibrated Sennheiser
HD580 headphones driven by a high-quality soundcard in a double-walled sound-
attenuating booth. The speech had a constant level of 65 dB sound pressure level
and noise was added to achieve the desired SNR before further processing. Each
sentence was presented once with the noise starting one second before and ending
600 ms after the sentence; the noise was ramped on and off using 400 ms cosine ramps.
Eighteen ten-sentence lists were presented to each subject: two lists were used for
each α value and two sentences per list for each SNR, resulting in four data points for
each combination of SNR and distortion parameter per subject. The lists and SNRs
were presented in random order. The training consisted of three lists using α-values of
0, 0.25, and 0.5, presented in a random order. The listeners were asked to repeat the
sentence heard and were allowed to guess. No feedback was provided.

3.3.4 Listeners

Measurements were obtained with six normal-hearing males, aged from 25 to 27 years.
Their pure-tone thresholds were of 20 dB hearing level or better in the frequency range
0.25–8 kHz. All subjects had previous experience with psychoacoustic measurements.
All of them were native Danish speakers and students at the Technical University of
Denmark. None of them were paid for their participation.
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Table 3.1: Calibrated values of the parameters σS, m, k, and q of the ideal observer for the CLUE speech
material.

Model k q σS m β

2D-sEPSM 0.7 0.28 0.6 8000 -
sEPSMX 0.79 0.5 0.6 8000 0.31

3.3.5 Model setup and parameters

Predictions were generated using 150 sentences from the CLUE material. The sentences
were down-sampled to 8192 Hz for the 2D-sEPSM and to 22050 Hz for the sEPSMX

to reduce computation time. The duration of the noise samples was matched to the
duration of each sentence and mixed at five SNRs, ranging from −7 to 9 dB with
4 dB intervals, except in the phase jitter condition where the SNR was 5 dB only. In
all cases, the processing was applied to both the noisy speech and the noise alone.
The percentage of correct responses was obtained for each sentence and for each
combination of SNR and distortion parameter (T30, κ or α). The final predictions were
calculated as the average across all 150 sentences at a given combination of SNR and
distortion parameter. A predicted psychometric function was obtained by connecting
predicted responses with straight lines, and the speech reception threshold (SRT) for a
specific condition was obtained as the SNR corresponding to 50% intelligibility.

For the EPSMX, the values of the parameters k and β were adjusted to minimize
the root-mean-square error (RMSE) between the prediction and the measured SRT
in the reference condition (speech-shaped noise only) and the conditions with phase
jitter. The values of m,q, and σS were taken from Jørgensen and Dau (2011). For the
2D-sEPSM, the parameters k and q were adjusted to obtain a good agreement with
the data in the reference condition. All parameters were then kept fixed in all other
experimental conditions and the values are given in Table 3.1.
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3.4 Results

3.4.1 Reverberant speech

Figure 3.3 shows the obtained SRTs as a function of the reverberation time. The open
squares represent the measured data from Jørgensen and Dau (2011). The mean SRT
in the reference condition without reverberation (T30 = 0) was obtained at an SNR
of −3.5 dB. The vertical bars denote one standard deviation of the listeners’ average
SRT. The measured SRT increased with increasing reverberation time, reflecting a
decrease in intelligibility. The different filled symbols represent model predictions.
The filled black squares show the results obtained with the 2D-sEPSM and the black
triangles represent the predictions obtained with the sEPSMX. The Pearson correlation
coefficient between the 2D-sEPSM predictions (filled squares) and the measured data
was 0.99 and the root-mean-square-error (RMSE) was 2.2 dB. In the case of the
sEPSMX (black triangles), the Pearson coefficient was 0.99 and the RMSE amounted to
1.2 dB. For comparison, the predictions obtained with the original sEPSM (without any
across-frequency process) from Jørgensen and Dau (2011) are also shown, indicated by
the filled gray triangles. Furthermore, predictions using the STMIT based on Elhilali
et al. (2003) are shown as the gray filled circles. All models could account for the
increase of SRT with increasing reverberation. However, the 2D-sEPSM generally
underestimated the effect of reverberation by about 2 to 3 dB while the sEPSMX

overestimates it by a similar amount for the largest T30.

3.4.2 Spectral subtraction

Figure 3.4 shows the results for the condition with spectral subtraction. SRTs are
shown as a function of the over-subtraction factor κ . The measured SRTs, replotted
from Jørgensen and Dau (2011), increased with increasing over-subtraction factor.
The predicted SRTs obtained with the 2D-sEPSM (black filled squares) and those
using the sEPSMX (black triangles) also increased with κ . The Pearson correlation
coefficient between the data and the 2D-sEPSM was 0.93 and the RMSE was 1.4 dB.
The sEPSMX predictions had a correlation with the data of ρ = 0.99 and a RMSE of
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Figure 3.3: SRTs as a function of the reverberation time, T30. The open squares represent a replot of the data
in Jørgensen and Dau (2011), with the vertical bars indicating one standard deviation. The filled symbols
show predictions obtained with the different models. The black squares and the black triangles indicate
predictions obtained with the 2D-sEPSM and the sEPSMX, respectively. In addition, for comparison, the gray
triangles show predictions obtained with the original sEPSM without an across-channel process (Jørgensen
and Dau, 2011). The gray filled circles represent the predictions obtained with the STMIT. The STMIT

prediction did not reach 50% intelligibility when the reverberation time was 1.3 and 2.3 s, therefore the SRT
could not be calculated and is not shown.

0.4 dB. For comparison, the predictions using the original sEPSM were replotted from
Jørgensen and Dau (2011) and are indicated by the gray triangles. Furthermore, the
gray filled circles show the predictions obtained with the STMIT. This model predicted
a decrease of SRT, i.e. increasing speech intelligibility with increasing κ , in contrast to
the measured data.

3.4.3 Phase jitter

The open symbols in Fig. 3.5 show the measured speech intelligibility data collected
in the present study, expressed as the percentage of correct words as a function of
the phase jitter parameter, α , at a fixed SNR of 5 dB. The vertical bars represent one
standard deviation. The intelligibility score showed a characteristic trend as a function
of α , with 100% intelligibility for α close to 0, a steep drop of intelligibility down to 0%
for α = 0.5, followed by a local maximum of about 45% for α = 0.75 and, finally, 0%
intelligibility for α = 1. This trend in the data is consistent with the data presented in
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Figure 3.4: SRTs as a function of the over-subtraction factor κ in conditions of spectral subtraction. The
open squares represent measured data from Jørgensen and Dau (2011), with the vertical bars indicating one
standard deviation. The filled black squares show the predictions obtained with the 2D-sEPSM and the
upward triangles represent the results using the sEPSMX. For direct comparison, the filled gray downward
triangles show predictions with the original sEPSM (replotted from Jørgensen and Dau, 2011). The filled
gray circles show predictions obtained with the STMIT as proposed by Elhilali et al. (2003).

Elhilali et al. (2003), although their results did not show a local maximum for α = 0.75,
most likely because the α-values used were different from the ones used in the present
study. A two-way analysis of variance (ANOVA) of the data showed a significant effect
of α (F8,44 = 228.7, p < 0.001) but no significant difference between listeners (F4,252 =
3.3, p = 0.023). A post-hoc test with Bonferroni correction and with 95% confidence
intervals showed that intelligibility percentages α = 0.375 and α = 0.75 were different
from all other values. Two data points are significantly different from each other if they
are labeled by different letters indicated above the figure.

The filled symbols represent predictions obtained with the different models. The
2D-sEPSM accounted for the main characteristics in the data, with 100% intelligibility
below α = 0.25, minima at α = 0.5 and 1, and a local maximum at α = 0.75. However,
the predicted intelligibility scores never reached values below 39%. The Pearson
correlation coefficient between the data and the 2D-sEPSM was 0.93 and the RMSE
was 24.5%. The predictions obtained with the sEPSMX followed the data more closely
than the 2D-sEPSM, with minima of about 4% correct responses for α = 0.5 and 1
and a local maximum of 47% for α = 0.75. The correlation between the sEPSMX
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Figure 3.5: Word intelligibility as a function of the phase-jitter parameter α , for a fixed SNR of 5 dB. The
open symbols indicate average measured data collected in the present study. Vertical bars show one standard
deviation of the average listeners’ percentage of word intelligibility. The filled symbols show predictions
obtained with the different models. 2D-sEPSM predictions are shown as filled black squares; sEPSMX

predictions are indicated as filled black triangles. For comparison, predictions obtained with the original
sEPSM without across-channel processing are shown as gray triangles. Predictions from the STMIT are
represented as filled gray circles. Data points that differ significantly from each other are labeled by different
letters above the figure (2-way ANOVA, Bonferroni post-hoc correction, 95% confidence interval).

predictions and the data was ρ = 0.98, with an RMSE value of 9%. The original
sEPSM (downward triangles) without across-channel processing was insensitive to the
effects of the phase jitter (similar to the STI as demonstrated in Elhilali et al. (2003)),
thus predicting constant speech intelligibility independent of α , in strong contrast to
the data. The predictions obtained with the STMIT showed the correct trend, but the
dynamic range of intelligibility values was smaller than in the measured data, with
values between 12 and 85%. Overall, the results suggest that all models except the
original sEPSM could account for the main effects on speech intelligibility caused by
the phase jitter distortion.
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3.5 Discussion

3.5.1 The role of the decision metric

All considered models could, with varying degrees of accuracy, account for the main
effect of reverberation on the intelligibility of noisy speech. In contrast, only the
models considering the decision metric based on the SNRenv could account for the
detrimental effect of spectral subtraction. The MTF-like metric of the STMIT could
not account for the spectral subtraction data, possibly because it does not consider the
effects of the nonlinear processing on the inherent noise modulations alone. This is
consistent with the results from Jørgensen and Dau (2011). The two models presented
here, the 2D-sEPSM and the sEPSMX, both employed the SNRenv metric but applied it
to two different internal representations (a three-dimensional versus a two-dimensional
representation of the modulation power), and provided reasonable results across the
three different conditions considered in the present study. This suggests that the SNRenv

is a powerful metric for speech intelligibility prediction and that it is robust with respect
to specific assumptions in the auditory preprocessing.

3.5.2 The role of across-frequency modulation processing

Regarding the phase-jitter distortion, which mainly affects the spectral structure of
the speech, the results demonstrated that the original sEPSM (Jørgensen and Dau,
2011) fails in this condition. The results obtained with the two models considered
here, the 2D-sEPSM and the sEPSMX, showed that the failure of the original sEPSM
was caused by the lack of an across (audio-) frequency mechanism. The across-
frequency process in the 2D-sEPSM is reflected in the spectro-temporal modulation
filtering stage. Such a stage, inspired by physiology, has been proposed as the basis for
extracting relevant information in various modeling tasks, such as speech segregation
(Mesgarani et al., 2006) and discrimination of natural sounds (Woolley et al., 2005),
and as a feature extraction mechanism for speech recognition (Kleinschmidt, 2002;
Nemala et al., 2013). However, the “2D” modulation filtering does not assume any
information reduction in the processing and may represent a rather complex internal
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representation of the stimuli for modeling speech perception. The sEPSMX, in contrast,
applies a temporal-only modulation-filtering process (as in the original sEPSM), also
motivated by physiological data in the auditory brainstem and cortex in cat (Langner
and Schreiner, 1988; Schreiner and Urbas, 1988), recent imaging studies in humans
(Xiang et al., 2013), as well as computational modeling results from behavioral signal
detection and modulation masking studies in humans (e.g., Dau et al., 1997a; Verhey
et al., 1999; Derleth and Dau, 2000; Jepsen et al., 2008). The approach to measure the
amount of coherent modulation activity across frequency after the preprocessing in the
model is also consistent with recent concepts in computational auditory scene analysis
(Elhilali et al., 2009), comodulation masking release (CMR; Piechowiak et al., 2007;
Dau et al., 2013) and sound texture synthesis (e.g., McDermott and Simoncelli, 2011).
Using the across-channel variance as the measure of coherent across-frequency activity
has been a pragmatic choice in the present study. Other across-channel operations, such
as ones based on cross-correlation or the temporal coherence of the temporal envelope
of neighboring channels, may represent alternative measures.

The sEPSMX performed slightly better than the 2D-sEPSM in the conditions
considered in the present study. The sEPSMX showed an average Pearson correlation
of 0.98 with the data across all conditions and an average RMSE of 0.79 dB for the
reverberation and spectral subtraction conditions and a RMSE of 9% for the phase
jitter condition. The 2D-sEPSM showed an average Pearson correlation of 0.96 across
all conditions and average RMSEs of 1.81 dB and 24.5%, respectively, for the same
conditions. Compared to the original sEPSM, both models showed slightly worse
performance in conditions with reverberation. However, it should be noted that the
two models presented here were not optimized in terms of best fits with the data in
all conditions. The parameters of the 2D-sEPSM were optimized for the reference
condition only, while the k and β -parameters in the sEPSMX were optimized using
the data in the phase-jitter conditions, but all parameters were then kept constant
for the conditions with additional processing. The main focus of this study was a
comparison of two conceptual across-frequency processes in connection with different
types of decision metrics for speech-intelligibility prediction. The sEPSMX appears
conceptually simpler than the 2D-sEPSM. However, more work is needed to clarify
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which approach may be more powerful and plausible when applied to a broader range
of experimental conditions.

3.5.3 The role of the auditory preprocessing in the models

The similarity of the predictions obtained with the 2D-sEPSM from the present study
and the STMIT (from Elhilali et al., 2003) in the phase jitter conditions suggests
that the sharp tuning of the auditory filters assumed in the STMI framework (Elhilali
et al., 2003) may not be critical for the simulation results. The preprocessing of the
STMI includes peripheral filters with a quality factor, Q, of 4, followed by a lateral
inhibitory network (LIN), which effectively sharpens the auditory filters to a Q-factor
of 12 (Shamma et al., 1986; Wang and S., 1994; Lyon and Shamma, 1996). In contrast,
the preprocessing of the 2D-sEPSM included a filterbank of fourth-order gammatone
filters without any subsequent sharpening. Although sharper auditory filters have
been suggested in connection with certain phenomena, such as peripheral (two-tone)
suppression (e.g., Robles and Ruggero, 2001), the use of the wider gammatone filters
has been successful in various modeling studies on signal-in-noise detection (e.g.,
Jepsen et al., 2008), comodulation masking release (Moore et al., 1990; Piechowiak
et al., 2007) and speech intelligibility (e.g., Beutelmann et al., 2010; Rennies et al.,
2011). Hence, the prediction results suggest that fourth-order gammatone filters seem
adequate to account for the speech intelligibility data at moderate stimulus levels as
considered in the present and previous studies.

3.5.4 The role of the frequency weighting for predicted speech
intelligibility

The 2D-sEPSM and sEPSMX do not include any explicit audio or modulation frequency
weighting, consistent with the STMI and the original sEPSM. Frequency weighting is
only reflected by limiting the processing to “audible” audio and modulation frequencies.
This is different from the explicit weighting of individual frequency bands that has
otherwise been a common feature of speech intelligibility prediction metrics such
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as the AI, SII, and STI. The general rationale for the weighting in these metrics
has been that certain frequency regions appear to be perceptually more relevant for
speech intelligibility than other frequency regions (French and Steinberg, 1947; Kryter,
1960; Houtgast and Steeneken, 1985; Warren et al., 2005). For example, in the case
of the STI, the weighting has been separated into two types: (i) audio-frequency
weighting of individual octave bands within the frequency range 0.125 and 8 kHz,
and (ii) modulation-frequency weighting in the form of a truncation of the maximum
modulation frequency included in the MTF, typically at 16 Hz (Houtgast et al., 1980;
Houtgast and Steeneken, 1985). The reasonable agreement between the predicted and
measured intelligibility obtained with the sEPSM approaches suggests that an explicit
frequency weighting might not be necessary to account for the data, if the metric that
is assumed to be related to speech intelligibility is appropriate.

3.5.5 Relation to other speech intelligibility models

An alternative approach for predicting speech intelligibility is the short-time objective
intelligibility model (STOI; Taal et al., 2011), where the decision metric is a short-term
correlation coefficient between the original clean speech envelope and the processed
(noisy) speech envelope at the output of a number of 1/3-octave band pass filters. A
key step in the model is the normalization and clipping of the processed envelope,
such that effects of level differences between the two signals are removed from the
correlation coefficient. As a result, STOI effectively measures the similarity of the
modulation content from the envelope waveforms of the two signals, whereby any
reduction of the correlation may be assumed to result from noise modulations or other
non-speech modulations. This is conceptually similar to the SNRenv metric, which
effectively measures the ratio of speech and noise modulation power. One benefit of
the correlation-based metric is that it includes information about the envelope phase
within each audio channel, which is not captured by the power metric. This implies that
the STOI model might be sensitive to changes in the envelope phase caused by phase
jitter distortion within individual channels, such that this model would not require an
explicit across channel mechanism to account for phase jitter. The within-channel
change in envelope phase, as measured by the cross-correlation, and the across-channel
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change in envelope power, as measured by the across channel variance, may be two
ways of capturing the same loss of speech information caused by the jitter. The main
difference is that the sEPSM framework makes specific assumptions about the source
of the speech degradation, i.e., modulation masking by noise, while this is not clear in
the correlation coefficient. Moreover, the sEPSM includes additional aspects of human
auditory processing, in the form of the perceptually and physiologically motivated
modulation filterbank, which might be crucial in other conditions, such as reverberation,
where the STOI metric have limitations (Taal et al., 2011).

3.5.6 Perspectives

The framework could be extended towards a more realistic peripheral processing model
(e.g.; Jepsen et al., 2008). For example, the model does not include non-linear effects
of cochlear processing, such as compression and suppression, which are affected
in the case of a sensorineural hearing loss. Such an extension would thus allow
investigations of the consequences of hearing impairment on speech intelligibility in
the framework of the model. Alternatively, since the sEPSM is a model that is restricted
to amplitude modulation processing, the SNRenv concept could also be incorporated
into more advanced models of across-channel auditory signal processing (e.g., Chi
et al., 2005; Dau et al., 2013). The sEPSM approach simplifies the “real” processing in
the auditory system much more than the complex models do. Nevertheless, this simple
approach might be helpful for understanding which processing stages are essential for
successfully describing key aspects of speech perception.
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4
A Multi-resolution envelope-power

based model for speech intelligibility‡

The speech-based envelope power spectrum model (sEPSM) presented by
Jørgensen and Dau (2011) estimates the envelope power signal-to- noise ratio
(SNRenv) after modulation-frequency selective processing. Changes in this
metric were shown to account well for changes of speech intelligibility for normal-
hearing listeners in conditions with additive stationary noise, reverberation, and
nonlinear processing with spectral subtraction. In the latter condition, the
standardized speech transmission index (IEC60268-16, 2003) fails. However,
the sEPSM is limited to conditions with stationary interferers, due to the long-
term integration of the envelope power, and cannot account for increased
intelligibility typically obtained with fluctuating maskers. Here, a multi-resolution
version of the sEPSM is presented where the SNRenv is estimated in temporal
segments with a modulation-filter dependent duration. The multi-resolution
sEPSM is demonstrated to account for intelligibility obtained in conditions
with stationary and fluctuating interferers, and noisy speech distorted by
reverberation or spectral subtraction. The results support the hypothesis that
the SNRenv is a powerful objective metric for speech intelligibility prediction.

‡ This chapter is based on Jørgensen et al. (2013).
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4.1 Introduction

Speech intelligibility in noisy environments is largely affected by the spectral and
temporal characteristics of the background noise. In an early review, Miller (1947)
described the interfering effects of tones, white noise, and speech on the intelligibility
of target speech. A stationary noise with a long-term spectrum similar to that of the
target speech was indicated to be the most effective masker. In a later study, Miller and
Licklider (1950) demonstrated that the amount of speech masking by noise decreased
when the noise was periodically interrupted, while keeping the long-term spectrum and
the signal-to-noise ratio (SNR) the same as in the stationary case. The corresponding
reduction of the speech reception threshold (SRT) for the speech presented in the
interrupted noise relative to that obtained in the steady noise was denoted as speech
masking release, with SRT representing the SNR at which 50% of the target speech
was correctly understood. The observed masking release was attributed to the listeners’
ability to take advantage of the portions of the noisy speech with a favorable short-term
SNR, i.e., to utilize speech information in the dips of the interferer. Various other
studies have explored the masking release effect for speech using different types of
interferers (e.g., Dirks et al., 1969; Festen and Plomp, 1990; Howard-Jones and Rosen,
1993; George et al., 2006; Rhebergen et al., 2006; Buss et al., 2009). The size of
the masking release effect was found to depend greatly on the type of fluctuations in
the masker, e.g., sinusoidal, speech-like, or gated, as well as on the fluctuation rate,
modulation depth, and duty cycle.

Classical approaches to predict speech intelligibility, such as the articulation index
(AI; ANSI S3.5, 1969) and its successor, the speech intelligibility index (SII; ANSI
S3.5, 1997), have failed to account for the masking release effect. Since these models
are based on long-term frequency information only, they cannot distinguish between a
stationary and a fluctuating masker if the long-term frequency contents of the maskers
are the same. In an alternative approach, Festen and Plomp (1990) considered a
metric based on the modulation-transfer function (MTF; Houtgast et al., 1980), which
reflects the reduction of the intensity modulations of a probe signal caused by the
transmission through a processing channel. However, the speech transmission index
(STI; IEC60268-16, 2003), which is based on the MTF-concept, makes no distinction



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 67 — #87 i
i

i
i

i
i

4.1 Introduction 67

between the interferer and the target fluctuations and thus cannot account for the
masking release effect. In order to separate the fluctuations of the target and the
interferer, Festen and Plomp (1990) considered a modified version of the STI, proposed
by Ludvigsen et al. (1990), which is based on a regression analysis of the clean and
the noisy modulation spectra. While the corresponding predictions showed the overall
trends in the data, the amount of masking release was generally underestimated by this
approach.

A common feature of the above models is that their predictions are based on the
long-term estimates of speech and noise, i.e., no short-term stimulus information is
considered. To overcome this limitation, Rhebergen and Versfeld (2005) and Rhebergen
et al. (2006) proposed a short-time version of the SII, denoted as the extended SII
(ESII). The main property of this metric is the determination of a frequency-band
specific SNR in a number of short temporal windows covering the time-course of a
given speech token. The short-term SNR values are weighted with empirically derived
band-importance functions, and the resulting short-term SII-values are averaged to
provide an estimate of the intelligibility of the token. This approach was shown to
account for the masking release effect obtained with square-wave interrupted noise,
sinusoidally intensity modulation noise, saw-tooth noise, as well as multi-talker babble.
However, also substantial discrepancies were demonstrated, e.g., in conditions with
speech mixed with interfering speech from a single talker. Furthermore, as the original
SII, the ESII fails in conditions where noisy speech is nonlinearly processed, e.g., via
amplitude compression (Rhebergen et al., 2009) or noise-reduction processing (Smeds
et al., 2011). Thus, the short-term SNR, as calculated in the ESII-metric, does not
seem to capture the information underlying speech intelligibility in these conditions.
Cooke (2006) presented an alternative short-term model based on “glimpses” of the
target speech in the valleys of the fluctuating interferer. A glimpse was hereby defined
as a time-frequency (T-F) unit in an auditory spectrogram-like representation with a
local SNR above a given threshold. Within this framework, the number of glimpses
and the extent of the glimpse-regions in the auditory spectrogram representation were
considered to be related to speech intelligibility. However, since also the glimpse-model
is based on the short-term SNR of the stimuli, it can be expected to fail when noisy
speech is subjected to nonlinear processing.
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Inspired by a study of Dubbelboer and Houtgast (2008), Jørgensen and Dau (2011)
proposed that the change in SRT caused by nonlinear processing of noisy speech
can be accounted for by a metric based on the signal-to-noise ratio in the envelope
power domain (SNRenv). The key step in this approach is the determination of the
SNRenv from the envelope power of noisy speech and noise alone at the output of a
bank of modulation-frequency selective filters following peripheral filtering. It was
earlier demonstrated that such a modulation-frequency selective filterbank is essential
to account for perceptual amplitude modulation detection and masking data (e.g.,
Dau et al., 1997a,b, 1999; Ewert and Dau, 2000). Ewert and Dau (2000) showed
that modulation masking patterns can be accounted for by using the envelope power
spectrum model (EPSM), where the envelope of a signal is extracted at the output of an
auditory filterbank and further analyzed by a bank of overlapping second-order band-
pass modulation filters. Jørgensen and Dau (2011) extended this framework to predict
speech intelligibility and denoted it the speech-based EPSM (sEPSM). The sEPSM was
shown to account for the intelligibility of different speech materials in stationary noise,
as well as for the effect of additional reverberation or spectral subtraction processing.
In this framework, a shift of the SRT is associated with a shift of the SNRenv. However,
the sEPSM presented in Jørgensen and Dau (2011) computes the SNRenv from the long-
term integration of the stimuli’s envelope power. Thus, as with the earlier stationary
models, this model can fail in conditions with fluctuating interferers.

In the present study, it is suggested that a frame-based estimation of the SNRenv

computed using a “short-term” estimation of the envelope power will generalize the
sEPSM framework to also account for conditions with fluctuating interferers. To be
consistent with the envelope power definition of the earlier model, the short-term
envelope power, averaged over several frames of an ideal sinusoidal modulation, and
the corresponding long-term envelope power should be identical. This implies that the
frame-duration should be equal to or exceed the period of the modulation at the output
of the modulation filter centered at the modulation frequency. The model presented
here, therefore, includes a temporal “multi-resolution” estimation of the SNRenv, with
modulation-filter dependent frame duration. It is hypothesized, that the SNRenv is
increased in the dips of a fluctuating interferer relative to a stationary interferer and
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that the multi-resolution estimation of the SNRenv will account for the masking release
effect.

The proposed multi-resolution sEPSM (mr-sEPSM) is evaluated and compared
to earlier models using three categories of interferers and nonlinear processing that
represent different challenges for the model: (i) speech mixed with three types of
stationary noise with widely different spectral characteristic, evaluating the model’s
ability to account for differences in spectral masking; (ii) speech mixed with five types
of fluctuating noise with very different temporal structure, evaluating the model’s
predictions of speech masking release; and (iii) two conditions with noisy speech
subjected to reverberation and spectral subtraction processing, testing the model with
respect to convolution and nonlinear distortions in the processed speech.

4.2 Model description

4.2.1 Overall structure

The processing structure of the mr-sEPSM is illustrated in Fig. 4.1. The key
improvements over the model previously proposed by Jørgensen and Dau (2011)
are found in the modulation-processing stage as well as in the calculation of the
envelope power. The upper limit of the model’s modulation-frequency selectivity was
increased from 65 Hz to 265 Hz, which is more consistent with earlier studies on
perceptual modulation-frequency selectivity (Ewert and Dau, 2000; Ewert et al., 2002).
Furthermore, the envelope power at the output of each modulation filter was determined
in temporal windows with a modulation-filter dependent duration.

4.2.2 Processing stages of the model

The first stage of the model is a “peripheral” bandpass filterbank consisting of 22
gammatone filters with equivalent rectangular bandwidths (Glasberg and Moore, 1990)
and third-octave spacing, covering the frequency range from 63 Hz to 8 kHz. A
threshold representing the limit of hearing sensitivity is included such that individual
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Figure 4.1: Sketch of the multi-resolution sEPSM. Noisy speech (black) and noise alone (gray) are processed
separately through a peripheral bandpass filterbank followed by envelope extraction via the Hilbert transform.
Each sub-band envelope is processed by a modulation bandpass filterbank. The envelope power is computed
at the output of each modulation filter for the noisy speech (Penv,S+N , black) and the noise alone (Penv,N ,
gray) with a segment duration inversely related to the modulation-filter center frequency. The corresponding
multi-resolution SNRenv is computed from Penv,S+N and Penv,N averaged across time and combined across
modulation filters and peripheral filters. Finally, the overall SNRenv is converted to a percent-correct
prediction assuming an ideal observer as in Jørgensen and Dau (2011).

peripheral filters are considered in the subsequent calculations only if the level of the
stimulus at the output is above the diffuse-field hearing threshold in quiet (ISO389-7,
2005). The temporal envelope of each filter output is extracted via the Hilbert-transform
and low-pass filtered with a cut-off frequency of 150 Hz, using a first-order Butterworth
filter (Ewert and Dau, 2000; Kohlrausch et al., 2000). The resulting envelope is
analyzed by a modulation filterbank, consisting of eight second-order bandpass filters
with octave spacing and center frequencies covering a range from 2 - 256 Hz. The
bandpass filters are in parallel with a third-order low-pass filter with a cutoff frequency
of 1 Hz. All modulation filters up to modulation center frequencies below one fourth
of the respective peripheral-filter center frequency are used, as earlier proposed in
Verhey et al. (1999). The temporal output of each modulation filter is segmented
using rectangular windows without overlap. The durations of these windows are the
inverse of the center frequency of the corresponding modulation filter. For example,
the window duration in the 4-Hz modulation channel is 250 ms. In the case of the
lowpass modulation filter, the window duration, 1 s, represents the inverse of the
cut-off frequency of the filter. For E(p, t) representing the Hilbert envelope as a
function of time, t, at the output of the peripheral filter, p, and e(p,n, t) representing
the corresponding output of modulation filter n, the envelope power, Penv,i of a temporal
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segment, i, is a function of the peripheral filter and the modulation filter. Penv,i is
defined here as the variance of e(p,n, t), calculated over the duration of the segment
and normalized with the squared time-average of E(p, t)

Penv,i(p,n) =
1

[Ē(p)]2/2
[ei(p,n, t)− ei(p,n)]2, (4.1)

where the bar indicates the average over time. The normalization ensures that the
envelope power defined in this way is independent of the overall level of the stimulus.
Furthermore, the envelope power of a 100% sinusoidally amplitude modulated pure tone
will equal 0 dB (one) at the output of the modulation filter centered at the modulation
frequency, for the peripheral filter centered at the carrier frequency. A lower limit of
the envelope power at −30 dB (relative to 100% amplitude modulation) is included in
each temporal segment. This limit reflects the minimum human sensitivity to amplitude
modulation (Ewert and Dau, 2000; Kohlrausch et al., 2000).

For each temporal segment, SNRenv,i is computed from the envelope power of the
noisy speech and the noise alone for that segment as

SNRenv,i(p,n) =
Penv,S+N,i(p,n)−Penv,N,i(p,n)

Penv,N,i(p,n)
, (4.2)

where Penv,S+N,i and Penv,N,i represent the normalized envelope power of the noisy
speech and the noise alone. The middle part of Fig. 4.1 illustrates e(p,n, t) for a given
peripheral filter in response to a sentence mixed with noise (black) and in response
to the noise alone (gray), and the right part illustrates the corresponding segmental
SNRenv,i(p,n); higher bars indicate larger SNRenv. For each modulation filter, the
SNRenv,i-values are averaged across the number of temporal segments, I(n), covering
the duration of a given speech token
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SNRenv(p,n) =
1

I(n)

I(n)

∑
i=1

SNRenv,i(p,n). (4.3)

The result is a single SNRenv-value for each of the nine 9 modulation filters, in each of
the 22 peripheral filters, representing 9×22 values overall. The values are combined
across all modulation filters according to the following equation

SNRenv(p) =

[
9

∑
n=1

SNR2
env(p,n)

]1/2

. (4.4)

Similarly, the SNRenv-values are then combined across peripheral filters according to

SNRenv =

[
22

∑
p=1

SNR2
env(p)

]1/2

. (4.5)

The combined overall SNRenv is converted to a sensitivity index, d′, of a statistically
“ideal observer” using the relation

d′ = k · (SNRenv)
q, (4.6)

where k and q are empirically determined constants. The value of q is set to 0.5 as
suggested in Jørgensen and Dau (2011). However, in contrast to Jørgensen and Dau
(2011), k is assumed to depend on the speech material used. Finally, d′ is converted to
the probability of recognizing the speech for the ideal observer using an m-alternative
forced choice model (Green and Birdsall, 1964) in combination with an unequal-
variance Gaussian model. Conceptually, the ideal observer is assumed to compare the
input speech item with m stored alternatives and to select the item (xS) that yields the
largest similarity. The m−1 remaining items are assumed to be noise, one of which,
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xN,max, has the largest similarity with the input speech item. In this model, the value of
xS is a random variable with mean d′ and variance σS. Similarly, the value of xN,max

is a random variable with mean µN and variance σN . The selected item is considered
to be correct if the value of xS is larger than xN,max. The corresponding probability of
being correct is estimated from the difference distribution of xS and xN,max

Pcorrect(d′) = Φ

 d′−µN√
σ2

S +σ2
N

 , (4.7)

where Φ denotes the cumulative normal distribution. The values of µN and σN are
determined by the response-set size, m, of the speech material (detailed expressions
are given in Jørgensen and Dau, 2011). The value of m can be determined exactly
if the material is based on a closed-set paradigm with a fixed number of response
alternatives, such as the matrix-test paradigm (e.g., Hagerman and Olofsson, 1982). If
the material is based on an open-set paradigm, such as the CLUE-material (Nielsen and
Dau, 2009), m is set to the number of words in a normal listener’s active vocabulary
(Müsch and Buus, 2001). σS is related to the inverse of the slope of the ideal observer’s
psychometric function, assumed here to be mainly determined by the redundancy
of a given speech material. For example, speech material consisting of meaningful
sentences with high redundancy would have a steep psychometric function and a low
value of σS, whereas speech material consisting of single-syllable words with low
redundancy would have a shallow psychometric function and higher value of σS. As
the exact relation between speech redundancy and σS is difficult to quantify, the value
of σS was estimated empirically in this study.
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4.3 Method

4.3.1 Speech material

The target speech was either Danish sentences from the DANTALE II speech material
(Wagener et al., 2003), Danish sentences from the CLUE speech material (Nielsen
and Dau, 2009), or Dutch sentences from the speech material developed by Plomp
and Mimpen (1979), denoted here as the PM-material. The DANTALE II material
consists of grammatically correct but meaningless sentences, based on the paradigm by
Hagerman and Olofsson (1982), spoken by a female speaker, while the CLUE and the
PM-materials consist of meaningful everyday sentences, similar to the hearing in noise
test (Nilsson et al., 1994), spoken by male speakers.

The data presented here partly consist of data collected in this study (Sections 4.3.3
and 4.3.4) and other data collected by Kjems et al. (2009), Festen and Plomp (1990),
and Jørgensen and Dau (2011).

4.3.2 Experimental conditions

Three categories of conditions were considered: (i) speech mixed with five stationary
interferers, (ii) speech mixed with five non-stationary interferers, and (iii) two
conditions with linearly and nonlinearly processed noisy speech.

Table 4.1 summarizes the experimental conditions. For each of the three different
speech materials, a condition with a matching stationary speech-shaped noise (SSN)
was considered. These conditions were used as references for assessing the masking
release effect in conditions with fluctuating interferers. Two additional stationary
interferers were considered: car-cabin noise (Car) and the sound of bottles on a conveyor
belt (Bottle). The fluctuating interferers were as follows: (i) a conversation between
two people sitting in a cafe (Cafe), (ii) SSN that was fully amplitude modulated by an
8-Hz sinusoid (SAM), (iii) the speech-like, but non- semantic, International Speech
Test Signal (ISTS; Holube et al., 2010), (iv) two-band speech modulated noise (SMN;
Festen and Plomp, 1990), and (v) time-reversed speech from a female talker (reversed
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Table 4.1: Summary of experimental conditions. “+” indicates that the attribute “steady” or “fluctuating”
holds for the noise used in a given condition.

Condition Material Steady Fluctuating
SSN CLUE +
SSN DANTALE II +
SSN PM +
Car DANTALE II +
Bottle DANTALE II +
Cafe DANTALE II +
SAM CLUE +
ISTS CLUE +
SMN PM +
RT PM +
SSN + Reverberation CLUE +
SSN + Spectral subtraction CLUE +

talker, RT). Only the data with the SSNCLUE, SAM, and ISTS interferers were collected
in the present study.

The conditions with linearly processed noisy speech consisted of sentences from the
CLUE- material mixed with SSN and convolved with reverberant impulse responses
obtained using the room acoustic simulation software ODEON (Christensen, 2009).
The simulated impulse responses corresponded to rooms having reverberation times
(T30) of 0.4, 0.7, 1.3, and 2.3 s. The conditions with nonlinearly processed noisy speech
consisted of CLUE-sentences in the presence of SSN, processed by an ideal spectral
subtraction algorithm using six different values of the spectral subtraction factor α (see
Jørgensen and Dau, 2011, for details about the algorithm).

4.3.3 Apparatus and procedure

For the new speech intelligibility data collected here, all stimuli were stored digitally
with a sampling frequency of 44.1 kHz and presented diotically using a calibrated pair
of Sennheiser HD 580 headphones and a high-quality sound card in a double-walled,
sound-attenuating booth. The digital files for the SSN and SAM- noise had duration
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of 22 s while the ISTS was 52 s long. The speech level was fixed to a long-term,
root-mean-square (RMS), level of 60 dB sound pressure level (SPL). Each sentence
was presented once and the added noise was a random token from the original noise
files such that it started 1 s before the sentence and stopped 600 ms after it. The noise
was ramped on and off using 400-ms squared-cosine ramps and the RMS level of
the noise sample was set such that the target SNR was achieved for each individual
combination of speech and noise tokens.

A simple 1-up, 1-down adaptive procedure was used, yielding an estimate of the 50%
point on the psychometric function. The SNR was adjusted in steps of 2 dB. If every
word of a sentence was correctly repeated, the SNR was decreased, otherwise the SNR
was increased. The obtained threshold therefore represented sentence intelligibility
rather than word intelligibility. Ten sentences were used to measure one SRT, which
was calculated as the average SNR after the last eight responses. Listeners were
instructed to repeat as much of the presented sentence as possible, and were allowed to
guess; no feedback was provided. For each listener, one SRT was measured with each
interferer and one list was used for training before the measurement for each interferer.

4.3.4 Listeners

For the new data presented here, five male normal-hearing listeners between 24 and
33 years of age participated in the experiment. They had pure-tone thresholds of 20
dB hearing level or better in the frequency range from 0.25 to 8 kHz. All listeners had
experience with psychoacoustic measurements.

4.3.5 Model setup and parameters

To generate the model predictions, 100 sentences from each of the speech materials
were used. Each sentence was mixed with a noise token (randomly selected from the
full-length noise files) over a discrete range of SNRs. For a given SNR-value, the
final percent correct prediction was computed as the average predicted score across all
sentences of a given speech material. The prediction at each SNR was then connected
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Table 4.2: Values of model parameters k, q, σS, and m, for the three different speech materials: CLUE,
DANTALE II, and PM.

Speech material k q σS m
CLUE 0.61 0.5 0.6 8000
DANTALE II 0.41 0.5 0.9 50
Plomp and Mimpen (1979) 0.36 0.5 0.6 8000

by straight lines, resulting in a continuous psychometric function, from which the SRT
was estimated as the SNR corresponding to 50% correct. For a given run of the model,
the inputs were a sentence mixed with a noise token and the noise alone. For the
conditions with spectral subtraction, the noise alone was estimated using the method
described by Hagerman and Olofsson (2004). For the conditions with reverberation,
the noise alone was convolved with the impulse response corresponding to a given
reverberation time.

The model was calibrated by adjusting the parameters of the ideal-observer stage
such that the predicted SRT matched the data in the SSN-condition for a given speech
material (represented by the first three rows of Table 4.1). These parameters were kept
fixed for all other conditions for that material. The parameter k (Eq. 4.6) was adjusted
to obtain a match of the measured and predicted SRT, while the values for m, q, and
σS, were taken from Jørgensen and Dau (2011). The values for the PM-material were
assumed to be the same as for the CLUE- sentences since both materials consist of
meaningful sentences of similar structure and size. The values of all parameters are
given in Table 4.2.

4.4 Results

Figure 4.2 shows the results for all considered conditions. Open symbols indicate
experimental data and closed symbols show model predictions. The data from Kjems
et al. (2009) are indicated by diamonds, the data from Festen and Plomp (1990) are
shown as right-pointing triangles, and the data from Jørgensen and Dau (2011) are
represented as downward pointing triangles. The data collected in the present study
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are indicated as squares. Error-bars (if reported) indicate plus/minus one standard
deviation across the listeners’ SRTs. Corresponding predictions obtained with the
mr-sEPSM are represented as black bullets and predictions from the long-term sEPSM
are shown by the gray bullets. The root-mean-square error (RMSE) between the data
and the mr-sEPSM predictions are indicated in each panel, representing the conditions
with stationary interferers (top left), fluctuating interferers (top right), reverberation
(bottom left), and spectral subtraction (bottom right). A two-way analysis of variance,
performed on the new data (open squares) across five subjects and three conditions,
revealed no significant effect of subject (F4,14 = 1.25, p = 0.37), but a significant effect
of condition (F2,14 = 185, p = 0.37, p < 0.0001).

4.4.1 Stationary interferers

The measured SRTs for the three SSN-conditions (left part of top-left panel) were
obtained at SNRs of −3.5, −4.3, and −7.3 dB for the CLUE, PM, and DANTALE
II-materials, respectively. The multi-resolution and the long-term sEPSM predictions
matched the data since the models were calibrated in these conditions. The SSN-
conditions were therefore not included in the RMSE-calculation. The SRTs for the
Car and Bottle noises were obtained at SNRs of −20 and −12 dB. The very low SRT
obtained with the Car noise is mainly a consequence of the dominant low-frequency
content of this noise, such that the masking effect on speech is weaker than in the case
of the SSN and the Bottle noise. The mr-sEPSM accounted very well for the SRTs
obtained with the Car and Bottle noises, as indicated by the RMSE of 0.48 dB, while
the original sEPSM slightly underestimated the SRT for the Bottle noise.

4.4.2 Fluctuating interferers

The results for the conditions with fluctuating interferers are shown in the top-right
panel of Fig. 4.2. SRTs were obtained at SNRs of −8.8, −9.5, −18, −7.9, and −10
dB for the Cafe, SAM, ISTS, SMN, and RT interferers, respectively. A multiple
comparison analysis using Tukey’s honestly significant difference criterion showed
significant mutual differences between the SRTs obtained in the SSNCLUE, SAM, and
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Figure 4.2: Results for the conditions with stationary interferers (top-left panel), fluctuating interferers
(top-right panel), reverberant noisy speech (bottom-left panel), and spectral subtraction (bottom-right panel).
Measured data are indicated as open symbols. Predictions from the mr-sEPSM and the original “long-term”
sEPSM are shown as filled black and gray circles, respectively (all panels). Predictions from the ESII are
indicated as filled gray diamonds in the bottom panels. The root-mean-square error (RMSE) between the
data and the mr-sEPSM-predictions is indicated in each panel. The perfect match of the predictions to the
data in the SSN-conditions (top-left panel) results from the calibration of the model to these conditions,
which were therefore not included in the RMSE calculation.

ISTS conditions, demonstrating a clear masking release effect with the fluctuating
interferers. Similarly, the SRTs for the Cafe, SMN, and RT-conditions from Kjems
et al. (2009) and Festen and Plomp (1990) were reported to be significantly lower
than the SRTs in the respective SSN-conditions. The mr-sEPSM-predictions are in
good agreement with the data for all fluctuating interferers, thus accounting for the
masking release effect. However, the match was not as good as that found with the
stationary interferers, as reflected in the slightly larger RMSE of 0.84 dB. The ESII has
been shown to account for very similar conditions (e.g., Rhebergen and Versfeld, 2005;
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Rhebergen et al., 2006), not indicated explicitly in the Fig. 4.2. In contrast, the original
sEPSM (gray bullets) clearly failed to account for the fluctuating interferers, predicting
higher SRTs for all fluctuating conditions than for the SSN-conditions.

4.4.3 Processed noisy speech

Reverberation

The bottom-left panel of Fig. 4.2 shows the results for the conditions with SSN and
reverberation. The measured SRTs from Jørgensen and Dau (2011) increased with
increasing reverberation time and both models, the mr-sEPSM (black bullets) with an
RMSE of 0.64 dB and the original sEPSM (gray bullets) with an RMSE of 0.71 dB,
could account for this effect. Predictions obtained with the ESII, including a forward
masking function (Rhebergen et al., 2006), are represented by the filled gray diamonds,
where the SRT corresponded to an SII-value of 0.32. The ESII predicted an SRT
that was largely independent of the reverberation time, in contrast to the data. When
combined with the STI, the ESII has been shown to account for data from similar
conditions (George et al., 2008), as further discussed in Section 4.6.3.

Spectral subtraction

The bottom-right panel of Fig. 4.2 shows measured SRTs from Jørgensen and Dau
(2011) (open triangles) for six conditions of the spectral subtraction factor α . “UNP”
denotes the reference conditions with no spectral subtraction. Jørgensen and Dau
(2011) found a significant increase of the SRT with increasing α , demonstrating lower
intelligibility with spectral subtraction than without this processing. The mr-sEPSM
(black bullets) could predict the trend in the data, although it slightly overestimated
the SRTs for α = 4 and 8, resulting in an RMSE of 1.3 dB, which was higher than
that (0.48 dB) for the original sEPSM (gray bullets). The ESII (filled gray diamonds)
predicted an SRT that was largely independent of spectral subtraction, in contrast to
the data.
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Figure 4.3: Psychometric functions derived from the data obtained by Kjems et al. (2009; solid lines) and
corresponding predicted functions obtained with the mr-sEPSM (symbols connected by dashed lines), for
the SSN, Bottle, Car, and Cafe interferers. Predictions from the “long-term” sEPSM version by Jørgensen
and Dau (2011) for the Cafe-interferer are denoted by gray diamonds connected with the dotted lines.

4.4.4 Prediction of psychometric functions

Figure 4.3 shows psychometric functions (solid black and gray curves) derived from
the two-parameter model described in Wagener et al. (2003). The parameters were
the SRT and the slope data obtained by Kjems et al. (2009) for the three stationary
interferers SSNDAN, Bottle, and Car as well as the fluctuating Cafe-interferer. The
mr-sEPSM (symbols connected by dashed lines) accounted well for the shape of the
functions, considering that a fixed set of parameters was used for all conditions. In
contrast, the long-term sEPSM (diamonds connected by the dotted line) clearly failed
with the fluctuating Cafe-interferer, but it produced similar results as the mr-sEPSM in
the stationary conditions (not shown here).
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Figure 4.4: (Top) Output from the nine modulation filters (indicated at the left ordinate) as a function of time
in response to the interferer alone (gray) and the interferer plus speech (black) for three different interferers:
SSN (left), SAM (middle), and ISTS (right). (Bottom) SNRenv-values (in dB) per time segment, calculated
from the modulation-filter outputs shown in the corresponding upper panels. The overall time-averaged
SNRenv is indicated directly above each of the bottom panels.

4.5 Model analysis

4.5.1 Prediction of speech masking release

The following analysis shows how the effect of speech masking release is reflected
in the internal representation of the stimuli in the framework of the mr-sEPSM. The
three panels in the upper row of Fig. 4.4 show the output of the nine modulation filters
ranging from 1 to 256 Hz (indicated on the ordinate) in the 1-kHz peripheral filter in
response to a 1.2-s noise-alone token (gray traces) and a sentence with the same noise
token added (black traces) at an SNR of −5 dB. The three panels show the responses
to the SSN (upper left), SAM (upper middle), and ISTS (upper right) interferers,
respectively. The most dominant changes due to the presence of the speech occurred
at about 0.5 s in all modulation filters. In case of the SAM and ISTS interferers, the
changes in the modulation filter outputs were more prominent than in the case of the
SSN interferer, particularly in the higher-frequency modulation filters.

The bottom row of Fig. 4.4 shows the corresponding SNRenv-values (in dB) per time
segment, calculated from the modulation-filter outputs in the upper panels (Eq. 4.2).
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Dark elements indicate large SNRenv-values, as shown by the shaded bar on the
right. As the duration of a segment is inversely related to the modulation-filter
center frequency, the segments become shorter with increasing modulation-filter center
frequency. The time-averaged SNRenv per modulation filter (Eq. 4.3) combined across
all modulation filters and peripheral filters (Eq. 4.5), is indicated for each interferer
above the respective panel. In the case of the SSN (left panel), the segments at about
0.5 s at very low modulation frequencies (1 - 4 Hz) and at high modulation frequencies
(> 64 Hz) provided the main contributions to the overall SNRenv. For the SAM
interferer (middle panel), the SNRenv in the high-frequency modulation filters was
considerably increased compared to the SSN. In addition, segments with high SNRenv

occurred in the dips of the masker (at about 0.3 and 1.1 s). The same trend can be
observed for the ISTS interferer (right panel), resulting in an even larger overall SNRenv.
This larger overall SNRenv for the SAM and ISTS interferers, compared to the SSN,
led to a larger predicted intelligibility. Thus, in the framework of the mr-sEPSM, the
masking release effect is caused by the larger short-term SNRenv occurring during the
dips of the fluctuating interferers.

To illustrate the relative contribution of individual peripheral and modulation filters
to speech intelligibility in the mr-sEPSM, Fig. 4.5 shows the distribution of the time-
averaged SNRenv across peripheral and modulation filters for the three interferers SSN
(left), SAM (middle), and ISTS (right). The SNRenv-values represent averages across
150 sentences of the CLUE material at an SNR of −5 dB. Dark elements indicate
large SNRenv-values (see color bar on the right). The white regions at the bottom
and lower right corners of the panels were not considered in the model because they
represent modulation frequencies that exceeded a quarter of the center frequency of the
corresponding peripheral filters ( fcm < 0.25 fc), or because the level of the stimulus in
the peripheral channel was below the sensitivity threshold of the model in case of the
low-frequency peripheral filters and ISTS (see Section 4.2.2). For the SSN-interferer,
the main contribution to the overall SNRenv stemmed from the modulation filters tuned
to the 1 to 8-Hz region from the peripheral filters in the range from 200 and 3000 Hz.
In contrast, for the SAM- noise, the largest contribution originated from modulation
filters tuned to frequencies above 16 Hz and peripheral filters above 1000 Hz. It can
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Figure 4.5: Time-averaged SNRenv (Eq. 4.3) in dB, averaged across 150 sentences of the CLUE material at
an SNR of −5 dB, obtained in the various peripheral filters and modulation filters for the SSN (left), SAM
(middle), and ISTS (right) interferers. Dark elements are large SNRenv-values as indicated by the scale on
the right.

also be observed that the modulation filters centered near the modulation rate of the
SAM- noise (8 Hz) had the lowest SNRenv- values.

A similar trend is visible in the case of the ISTS interferer. Here, the prominent
dips in the interferer were of longer duration and the corresponding region with very
low SNRenv values ranged from 1 - 4 Hz. The largest SNRenv-values for the ISTS
were observed in the modulation filters above 4 Hz and in peripheral filters above 800
Hz. Thus, in general terms, the modulation filters that contributed most to the overall
SNRenv shifted from the modulation-frequency region below 16 Hz in the case of the
stationary interferer to the region above 16 Hz in the case of the fluctuating interferers.
This resulted from the target-speech envelope fluctuations that were accessible in the
valleys of the fluctuating interferers. The modulation- frequency range corresponding
to the dominant fluctuation rate of the interferer (such as the 8-Hz rate in the case
of the SAM interferer) provided very low SNRenv-values, which hardly contributed
to the overall SNRenv. This observation indicates modulation masking caused by the
respective interferer.
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Figure 4.6: Replot of the data (open squares) from Fig. 4.2 together with predictions obtained with two
modified versions of the model, including one with a fixed-resolution segmentation of 10 ms (dark gray
diamonds) and a version where the modulation filterbank was replaced by a 150-Hz modulation lowpass
filter (gray triangles).

4.5.2 The role of modulation filters and multi-resolution SNRenv-
processing

In comparison to earlier short-term analyses in speech intelligibility prediction (e.g.,
ESII, Rhebergen and Versfeld, 2005; Rhebergen et al., 2006), the current approach
introduced two major changes: (i) processing by a modulation filterbank, and (ii) multi-
resolution temporal segmentation of the filterbank output. To illustrate the relative
contribution of the two processes to the predictive power of the mr-sEPSM, Fig. 4.6
shows predictions from two modified versions of the mr-sEPSM. In addition, the data
(open squares) from Fig. 4.2 were replotted in the figure for direct comparison.
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The first modified model was considered to evaluate the effect of the modulation
filterbank processing while maintaining the multi-resolution segmental SNRenv-
analysis of the mr-sEPSM. In this modification, the filterbank was replaced by a
single first-order 150-Hz modulation lowpass filter. The lowpass-filtered envelope
was thus effectively analyzed by a parallel set of temporal windows with durations
that ranged from 1 to 1/256 s. The corresponding predictions from this “modulation-
lowpass” version (filled gray triangles) accounted for the SRTs obtained in all stationary
interferers (RMSE = 0.75 dB) and the effect of spectral subtraction was described
well (RMSE = 0.88 dB). Moreover, lower SRTs were predicted for the fluctuating
interferers than for the SSN-interferers, demonstrating that the modulation filterbank is
not essential for predicting masking release.

This suggests that the main feature allowing the mr-sEPSM to predict masking
release is the temporal segmentation. However, the masking release effect was highly
overestimated (RMSE = 9.8 dB), and the effect of reverberation could only be accounted
for qualitatively (RMSE = 2.3 dB), demonstrating that a modulation lowpass filter is
not sufficient to account for the data in these conditions.

The second model version maintained the modulation filterbank, but replaced the
multi-resolution segmentation by fixed 10-ms segments in all modulation filters. Thus,
this simulation evaluated the effect of the multi-resolution SNRenv- analysis. This
“fixed-resolution”-version (dark gray diamonds in Fig. 4.6) provided predictions with a
larger deviation from the data than the unmodified model in the conditions with the
stationary interferers (RMSE = 4.3 dB), and the fixed-resolution version also strongly
overestimated the amount of masking release for the fluctuating interferers (RMSE
= 7.4 dB). Moreover, the effect of reverberation was accounted for only qualitatively
(RMSE = 3.7) while little effect of spectral subtraction was predicted (RMSE = 1.3).
This demonstrates that even though a fixed 10-ms segmentation may facilitate the
prediction of masking release, longer window durations, such as those assumed at
low modulation frequencies in the unmodified mr-sEPSM or in the original sEPSM
(Jørgensen and Dau, 2011), are required to account for reverberation and spectral
subtraction with the present model.
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4.6 Discussion

4.6.1 Importance of the multi-resolution analysis and the modula-
tion filterbank

The proposed mr-sEPSM was shown to account for the SRTs obtained in conditions
with stationary and fluctuating interferers, as well as in conditions with reverberation
and noisy speech processed by spectral subtraction. This demonstrates an improvement
over the original sEPSM (Jørgensen and Dau, 2011), which fails in conditions with
fluctuating interferers. The model analysis revealed that the key component that
allows the mr-sEPSM to account for the fluctuating interferers is the multi-resolution
estimation of the SNRenv, with the short segments in the modulation filters tuned
to modulation frequencies above about 16 Hz contributing most to speech masking
release. Moreover, while the mr-sEPSM predicted the data quite well, a modified
version where the duration of the segments were fixed to 10 ms failed to account for
all aspects of the data (dark gray diamonds in Fig. 4.6). Thus, the relatively long
segments (0.5 and 1 s) used at low modulation frequencies by the mr-sEPSM were
critical to provide accurate predictions in the conditions with spectral subtraction and
reverberation. Simulations with a modified model assuming a modulation-lowpass
filtering process highly overestimated the masking release effect and underestimated
the effect of reverberation (gray triangles in Fig. 4.6), while it accounted for the data
in the conditions with spectral subtraction. In the framework of the present model,
this demonstrated that the modulation-frequency selective process was not essential to
account for the effects of spectral subtraction, but contributed to the improved accuracy
in the conditions with fluctuating interferers and reverberation.

Neither the use of a fixed short-term (10-ms) segmentation nor a single “long-term”
analysis, as in the case of the original sEPSM (Jørgensen and Dau, 2011), could account
for both a masking release, in conditions with fluctuating interferers, and the effects of
reverberation and spectral subtraction. These results suggest that the auditory system
is able to access speech information carried in the envelope on different time scales
simultaneously, and that the temporal segments with large SNRenv contribute the most
to overall speech intelligibility. The inverse relation of the modulation bandpass center
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frequency and the duration of the segments can be interpreted as a critical sampling of
the information conveyed in the individual (band- limited) modulation channels.

4.6.2 Importance of modulation-frequency range for masking
release

The model analysis demonstrated that different peripheral and modulation filters
contributed maximally to speech intelligibility depending on the type of the interferer.
The major contribution to masking release in the framework of the mr-sEPSM was
provided at modulation frequencies above 16 Hz. “Local information” in the dips of a
fluctuating interferer (increased local SNRenv) was mainly observed in the model for
time segments with shorter durations than the local dips in the interferer. Conversely,
in modulation filters tuned to the average fluctuation rate of the interferer, modulation
masking was observed, reflected in minima of the local SNRenv values. It is possible that
this finding of the model analysis corresponds to an increased perceptual importance of
high modulation frequencies of the target speech signal in conditions where a masking
release is observed. If so, these high-frequency modulations may convey fundamental
frequency (f0) information that could help segregating target and interferer.

4.6.3 Relation to other short-term intelligibility models

The ESII, as described in Rhebergen and Versfeld (2005), considers the conventional
energy SNR in short-term frames as the underlying intelligibility metric for predicting
speech intelligibility with fluctuating interferers. An updated version that includes
properties of forward masking was shown to account for various conditions with
fluctuating interferers (Rhebergen et al., 2006), but was largely insensitive to the effects
of reverberation and spectral subtraction as considered here (cf. Fig. 4.2). George et al.

(2008) suggested combining the ESII with the STI in order to account for the effects in
conditions with fluctuating interferers in reverberant environments. However, while this
approach was proven successful, it applies two different decision metrics in parallel,
the conventional energy SNR and the MTF, depending on the experimental condition,
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since the individual metrics can only account for part of the speech intelligibility data.
Moreover, the ESII model uses a stationary speech-shaped noise as a probe for the
actual speech. Thus, the model neglects the effects of the level fluctuations of the target
speech itself, which may lead to difficulties when applying the model to conditions
with speech interferers.

In contrast to the ESII, the mr-sEPSM framework considers a single decision metric,
the SNRenv, estimated from the normalized variance of the envelope fluctuations of
noisy speech and noise alone. For some conditions, such as with an SSN interferer, the
SNRenv is related to the conventional energy SNR. Increasing the SNR in a condition
with SSN also increases SNRenv. However, the two metrics can also differ considerably,
such as in conditions where the modulation depth of the noise has been reduced, but
the short-term energy has been kept fixed.

Similar to the ESII, the model by Cooke (2006) defines the useful “glimpse area”
based on the short-term energy SNR in a spectrogram-like representation. This metric
is therefore most likely not able to account for the results obtained with the processed
noisy speech. However, the glimpse model includes a speech recognition backend,
which may account for the distortions in a different way, via the mismatch between
the learned dictionary and the distorted input. Thus, the inclusion of automatic
speech recognition can increase the range of conditions in which intelligibility can be
successfully predicted. However, this comes at the cost of greater complexity compared
to a purely predictive model.

4.6.4 Limitations of the modeling approach

The current mr-sEPSM and the earlier sEPSM consider the SNRenv calculated from an
analysis of the temporal envelope in a number of parallel peripheral filters, and combine
the time-averaged values from the individual filters assuming statistically independent
observations. This means that the models are insensitive to the relative timing of
segments with high or low SNRenv in the individual filters, and would therefore be
insensitive to phase shifts within a given filter. However, these phase shifts have been
shown to severely affect speech intelligibility (Elhilali et al., 2003). It is possible, that
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the purely temporal SNRenv analysis should be combined with an across peripheral-
frequency process, such as an across-channel correlation network, which would be
sensitive to across peripheral-channel phase differences.

4.6.5 Perspectives

The presented framework may instruct future work that investigates speech perception
in both normal and hearing-impaired listeners. For example, the mr-sEPSM framework
may be combined with a model of hearing impairment to facilitate a systematic
investigation of how the SNRenv representation is affected by different types of hearing
loss and to what extent this can account for the reduced speech masking release typically
observed for hearing-impaired listeners (e.g., Festen and Plomp, 1990; Strelchyk and
Dau, 2009). Moreover, the present approach may be considered as a framework for
systematically analyzing the role of different peripheral- and modulation-filters for the
speech intelligibility in conditions of speech-on-speech masking, and may be used to
separate out the effects of energetic, modulation and informational masking.

4.7 Summary and Conclusions

A multi-resolution short-term SNRenv estimation was introduced in the sEPSM
(Jørgensen and Dau, 2011). The duration of the segments used for short-term SNRenv

calculation was assumed to be inversely related to the center frequencies of the
modulation bandpass filters in the model. The resulting mr-sEPSM was demonstrated
to extend the applicability of the modeling approach to conditions with fluctuating
interferers, where the original sEPSM failed as a consequence of the “long-term”
SNRenv calculation. The mr-sEPSM was shown to successfully account for conditions
of stationary and fluctuating interferers as well as the effects of reverberation and
spectral subtraction. In addition, the model results suggested that high- frequency
modulations (> 16 Hz) contribute to speech intelligibility in the conditions with
fluctuating interferers whereas low-frequency modulations (< 16 Hz) are typically
dominant in conditions with stationary and/or reverberant interferers.
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5
The role of high-frequency envelope

fluctuations for speech masking release§

The multi-resolution version of the sEPSM presented in Chapter 4 was shown
to successfully predict speech intelligibility in conditions with stationary and
fluctuating interferers, reverberation, and spectral subtraction. The key element
in the model was the multi-resolution estimation of the signal-to-noise ratio in
the envelope domain (SNRenv) at the output of a modulation filterbank. The
simulations suggested that mainly modulation filters centered in the range
from 1 - 8 Hz contribute to speech intelligibility in the case of stationary
maskers whereas modulation filters tuned to frequencies above 16 Hz might be
important in the case of fluctuating maskers. In the present study, the role of
high-frequency envelope fluctuations for speech masking release was further
investigated in conditions of speech-on-speech masking. Simulations were
compared to measured data from normal-hearing listeners (Festen and Plomp,
1990; Christensen et al., 2013). The results support the hypothesis that high-
frequency envelope fluctuations (> 30 Hz) are essential for speech intelligibility
in conditions with speech interferers. While the sEPSM reflects effects of
energetic and modulation masking in speech intelligibility, the remaining
unexplored effect in some conditions may be attributed to, and defined as,
“informational masking”.

§ This chapter is based on Jørgensen and Dau (2013).
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5.1 Introduction

Many aspects of speech intelligibility in noise may be accounted for by the availability
of the slowly varying fluctuations in the temporal envelope of the speech, also called
speech modulations (e.g., Houtgast and Steeneken, 1973; Drullman, 1995). In a series
of studies, Houtgast and Steeneken demonstrated that the concept of the modulation
transfer function (MTF), which measures the integrity of speech envelope fluctuations
in noise, can account for many conditions with varying levels of background noise
and reverberation. However, the MTF-concept does not capture effects of nonlinear
distortions on the speech envelope, and cannot account for noise reduction processing,
such as spectral subtraction (e.g., Ludvigsen et al., 1993; Dubbelboer and Houtgast,
2007). Dubbelboer and Houtgast (2008) suggested that the envelope fluctuations of
the noise itself, which are not included in the MTF-concept, should also be considered
since they may also be affected by the nonlinear processing. They proposed that
the strength of the speech envelope fluctuations relative to that of the noise envelope
fluctuations could account for some aspects of nonlinear processing of noisy speech.
However, this finding was not associated with a functional model for quantitative
prediction of speech intelligibility. The concept of considering the relative strength
of the target signal and noise envelope fluctuations was earlier used by Dau et al.

(1999) and Ewert and Dau (2000) in their envelope power spectrum model (EPSM)
of modulation masking, which was demonstrated to account for modulation detection
and masking data. The EPSM quantified the envelope fluctuations by measuring the
envelope power (i.e., the variance of the envelope fluctuations relative to the mean
envelope amplitude). The EPSM was extended to speech stimuli by Jørgensen and Dau
(2011), arguing that the signal-to-noise envelope power ratio (SNRenv) at the output
of modulation-frequency selective filtering could be used to predict intelligibility of
processed noisy speech. It was demonstrated that the speech-based envelope power
spectrum model (sEPSM) and the SNRenv were sufficient to account for conditions with
stationary noise and reverberation as well as with noisy speech processed by spectral
subtraction. However, the sEPSM as presented in Jørgensen and Dau (2011) fails in
conditions with fluctuating interferers due to the assumed long-term computation of
the envelope power. It cannot account for speech “masking release”, referring to the
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higher intelligibility observed in conditions with modulated noise or competing talkers
compared to a condition with a stationary noise. In order to overcome this limitation,
a multi-resolution version of the sEPSM was proposed (mr-sEPSM; Jørgensen et al.,
2013), which estimates the SNRenv in short temporal segments with a modulation filter
dependent duration. The mr-sEPSM was demonstrated to account for speech masking
release with fluctuating interferers as well as for conditions with reverberation and
spectral subtraction. Moreover, the simulations indicated that the modulation filters
centered above 30 Hz were important in the case of fluctuating interferers, suggesting
that high-rate envelope fluctuations might be important for speech masking release. In
the present study, the role of high-rate envelope fluctuations for speech masking release
was further investigated. Model predictions were compared to data from the literature
in conditions with stationary noise, amplitude modulated noise and competing talkers
as interfering signals. The competing-talker conditions included speech from the same
talker (ST) as the target speech and speech from a different talker (DT). Additional
conditions included vocoded stimuli where the high-rate envelope fluctuations of the
target speech and interferer were attenuated.

5.2 Methods

Predictions from the multi-resolution sEPSM (Jørgensen et al., 2013) were compared
to data collected by Festen and Plomp (1990) and Christensen et al. (2013). The target
speech were either Dutch or Danish meaningful five-to-seven word sentences, spoken
by male native speakers (Plomp and Mimpen, 1979; Nielsen and Dau, 2009). Two
categories of conditions were investigated. The first category included the conditions
considered by Festen and Plomp (1990) where unprocessed sentences were mixed with
five different interferers: a steady speech-shaped-noise (SSN); a speech- modulated
noise (SMN) consisting of the SSN that was amplitude modulated with the broadband
envelope of the target speech; forward and time-reversed speech from a different talker
(DT and DT-R); and time-reversed speech from the same talker (ST-R) as the target.
The other category included conditions considered by Christensen et al. (2013) where
processed speech was mixed with either unprocessed SSN or a processed version of the
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international speech test signal (ISTS; Holube et al., 2010). The long-term spectrum of
the SSN was shaped to the long-term spectrum of the ISTS. The processing consisted
of a vocoder with amplitude and frequency modulated pure-tone carriers. The original
speech signal was decomposed into 16 spectral bands using gammatone-filters. In
each band, the Hilbert envelope and the instantaneous frequency were extracted. A
temporally smoothed version of the instantaneous frequency was used to drive a sine
generator and the output was amplitude modulated with a low-pass filtered version of
the envelope signal. The root-mean-square (RMS) level of each band was equalized to
the unprocessed RMS-level of the corresponding band and all bands were recombined
by summing the signals with the proper delay to account for time-delays caused by the
filters. The resulting processed signal was scaled to have the same long-term RMS-level
as the unprocessed signal. More details on the vocoder can be found in Christensen
et al. (2013). For each of the interferers (SSN or ISTS), two conditions were considered,
with envelope lowpass filter cut-off frequencies of 30 Hz or 300 Hz. In addition, the
mixed stimulus of speech and noise was either presented broadband (BB) or high-pass
(HP) filtered with a cut-off frequency of 500 Hz, resulting in four conditions for each
interferer: BB30, BB300, HP30, and HP300. An additional off-frequency masker was
added in the HP-conditions, consisting of the SSN with an RMS-level of 12 dB below
the speech presentation level.

For the sEPSM predictions, the model parameter from Jørgensen et al. (2013) were
applied here, except for the conditions with vocoded speech where the k-parameter of
the ideal observer was adjusted to provide a good agreement between predictions and
data in the SSN-BB300 condition. These parameters were then kept constant for all
other experimental conditions. Identical stimuli were used for the simulations and the
measurements.
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Figure 5.1: SRTs obtained by Festen and Plomp (1990) (open squares) and predicted (filled squares) by the
model as function of the interferer type - SSN: stationary speech-shaped noise; SMN: speech-modulated
noise; DT: speech from a different talker; DT-R: time-reversed speech from a different talker; ST-R: time-
reversed speech from the same talker as the target.

5.3 Results

5.3.1 Fluctuating interferers

Figure 5.1 shows the speech reception thresholds (SRT), corresponding to 50% correct,
obtained by Festen and Plomp (1990) for 20 normal-hearing listeners (open squares),
for each of the five interferers indicated on the abscissa. The vertical bars denote
plus/minus one standard deviation. The SRT in the SSN-condition was obtained at an
SNR of about −4 dB, while lower SRTs were obtained for the SMN (−8 dB SNR),
and DT interferers (−10 dB SNR), reflecting a clear effect of masking release. There
was no effect of the playback mode (forward versus time-reversed) on the SRT for the
DT-interferer. In contrast, the SRT for the ST-R interferer was obtained at an SNR of
about 1 dB, i.e., 5 dB higher than for the SSN-condition, demonstrating a negative

masking release. The model predictions (filled squares) were in good agreement with
the data for the SSN, SMN, DT, and DT-R interferers, but clearly deviated from the
data in the condition of the ST-R interferer, where a much lower SRT was predicted
than obtained in the data. Thus, the model accounted for the observed speech masking
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Figure 5.2: Data obtained by Christensen et al. (2013) (left panel) and model predictions (right panel) in the
conditions with vocoded speech.

release, except for the condition where the competing talker was a time-reversed version
of the target speech.

5.3.2 Vocoded stimuli

The left panel of Fig. 5.2 shows the measured SRTs obtained by Christensen et al.

(2013) for 5 normal-hearing listeners in the conditions with vocoded speech and
interferers. For the SSN-interferer (black symbols and lines), the SRT in the BB300-
condition (left open diamond) was obtained at an SNR of about -1 dB, while it was
slightly higher in the BB30-condition (left open square), demonstrating only a small
effect of envelope low-pass filtering. The SRTs were generally obtained at higher
SNRs for the HP300 condition (right open diamond) and HP30 condition (right open
square) compared to the BB-conditions. For the ISTS interferer (gray symbols and
lines), the SRT in the BB300-condition (left gray diamond) was obtained at an SNR
of about −11 dB, versus about −8 dB SNR in the BB30 condition (right gray square).
This demonstrates a clear effect of envelope low-pass filtering for the ISTS interferer.
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Figure 5.3: SNRenv -patterns for the SSN (left), SMN, (middle left), DT (middle right), and ST-R interferers
(middle left). The patterns represent the time-averaged SNRenv in dB as a function of the audio and
modulation filter center frequencies considered in the model, in response to sentences mixed with the
corresponding noise at an input SNR of −3 dB. Each pattern represents the average across 120 sentences.

The SRT in the HP300-condition (right part of left panel) was obtained at an SNR
of about −7 dB, while it was at about 0 dB SNR in the HP30 condition, which is a
much larger difference than for the corresponding BB-conditions. This demonstrates
a clear interaction between HP-filtering and envelope low-pass filtering for the ISTS
interferer (see Christensen et al., 2013). For the SSN-interferer, the model (black
symbols in the right panel of Fig. 5.2 accounted well for the effect of high-pass filtering,
while it predicted slightly lower SRTs for the BB30 and HP30 conditions than for the
BB300 and HP300 conditions, in contrast to the data. For the ISTS interferer, the
model accounted well for the effect of envelope low-pass filtering in the broad-band
conditions, but not in the corresponding high-pass-filtered conditions, where only a
small effect of high-pass filtering was predicted, in contrast the data.

5.4 Model analysis

The model predictions were in good agreement with the data from Festen and Plomp
(1990) in the conditions with unprocessed speech and the SSN, SMN, and DT
interferers, but deviated from the data in the case of the ST-R interferer. This result
was analyzed further by considering the model’s internal representation of the stimuli.
Figure 5.3 shows the time-averaged SNRenv as function of the audio and modulation-
filter center frequencies in the model for the SSN (left), SMN, (middle left), DT
(middle right), and ST-R (right) interferers. Each panel represents the contribution
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of the individual audio and modulation-filters to intelligibility in the model, where
dark areas denote greater contribution. For the SSN interferer, the main contribution
stem from modulation-filters centered below about 16 Hz and from a broad range of
audio-filter center frequencies. In contrast, for the (fluctuating) SMN, DT and ST-R
interferers, the main contribution stem from modulation-filters centered at frequencies
above 4 Hz, and mostly from filters centered above 32 Hz. Thus, in the framework
of the model, high-rate envelope fluctuations above 30 Hz are important for speech
masking release in conditions with fluctuating noise and interfering talkers. However,
even though high-rate modulation filters carry the main contribute in the model in the
ST-R condition, the measured intelligibility was found to be poor. This demonstrates
that the a high SNRenv alone, as measured in the model, is not sufficient to account for
speech intelligibility in all conditions.

Figure 5.4 shows SNRenv-patterns for each condition with vocoded speech mixed
with either SNN (top row) or ISTS (bottom row) interferers. For the SSN-interferer
in the BB-conditions (left and middle-left panels), the main contributions stem from
the modulation-filters centered below 16 Hz and mainly from the audio-filters centered
around 125 Hz. This is most likely because the fundamental frequency of the target
speech (about 120 Hz) was poorly masked by the SSN-interferer, which was spectrally
shaped to the ISTS-interferer that had a higher fundamental frequency of about 200
Hz. The dominating low-frequency audio and modulation-filter contributions in the
BB-conditions explains why the model predicts higher SRTs when this information
is removed by high-pass filtering (top right panels), and why the effect of envelope
low-pass filtering is small. For the ISTS interferer (bottom to row of Fig. 5.4) in the
BB-conditions (left panels), the main contributions stem from the modulation filters
centered above 32 Hz, and from audio-filters centered above 500 Hz. Thus, the model
is less sensitive to high-pass filtering in the case of the ISTS-interferer than for the
SSN-interferer. However, the model accounts well for the effect of envelope low-
pass filtering with the ISTS-interferer because the main contribution stem from the
modulation filters centered above 32 Hz in this condition.
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Figure 5.4: SNRenv -patterns for each condition with vocoded speech mixed with either SNN (top row) or
ISTS (bottom row) interferers. The input SNR was -2 dB and the patterns are based on the average across
150 sentences.

5.5 Discussion

The data by Festen and Plomp (1990) demonstrated better speech intelligibility in the
conditions with fluctuating interferers than for steady SSN, with the same long-term
spectrum. The predictions from the present study suggested that target speech envelope
fluctuations might be available (as quantified by the SNRenv-patterns in Fig. 5.3) at
high fluctuation rates (> 32 Hz) in conditions with modulated noise and competing
talkers but not with SSN, leading to better intelligibility. The model accounted for the
data by Festen and Plomp (1990) obtained with a competing talker that was different
from the target talker. However, in the condition where the competing talker was a
time-reversed version of the target, the model suggested that there was a high SNRenv,
while the data showed poor human performance. This demonstrates that the SNRenv is
not always sufficient to account for speech intelligibility. While the SNRenv includes
aspects of energetic and modulation masking, the remaining unexplored effect may be
attributed and defined as “informational masking” (e.g., Brungart, 2001) occurring at
levels higher up in the auditory pathway than modulation processing. Informational
masking may be caused by the identical fundamental frequencies of the target and
interferer, which may confuse the listener and make it difficult to perform a perceptual
segregation between the target and the interferer. While the model results suggest that
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the high-rate envelope fluctuations may play an important role for speech masking
release, the experiments in Festen and Plomp (1990) did not explicitly evaluate this
point. However, Christensen et al. (2013) considered the effect of removing high-
rate envelope fluctuations from the target and interfering talker (represented by the
ISTS) on speech intelligibility. Their data showed largely reduced intelligibility when
the envelope fluctuations above 30 Hz were attenuated by low-pass filtering. The
sEPSM accounted well for this effect, supporting the model-based finding that high-
rate envelope fluctuations might be important for speech intelligibility in conditions
with speech interferers. The purely envelope power-based model proposed here could
account for a large part of the considered data. However, there were specific conditions
where this approach was limited. In those cases, additional cues and auditory processes
may affect speech intelligibility, such as interference in the processing of carrier or
fundamental frequency information, which is not reflected in the model and might be
associated with (higher-level) informational masking effects.

5.6 Conclusion

The multi-resolution speech-based envelope power spectrum model accounted well
for speech masking release in conditions with modulated noise and all but one of
the conditions with competing talkers. The model predictions support the finding
of Christensen et al. (2013) that high-rate envelope fluctuations (> 30 Hz) play
an important role for the speech intelligibility in conditions with speech interferers.
However, the model could not account for a condition where the target and the masker
were from the same talker, which was attributed to effects of informational masking
not reflected in the model. Overall, the results support the hypothesis that the SNRenv

may be a useful metric for speech intelligibility prediction.
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Effects of manipulating the

signal-to-noise envelope power ratio on
speech intelligibility¶

Jørgensen and Dau (2011) suggested a new metric for speech intelligibility
prediction based on the signal-to-noise envelope power ratio (SNRenv),
calculated at the output of a modulation-frequency selective process. In the
framework of the speech-based envelope power spectrum model (sEPSM), the
SNRenv was demonstrated to account for speech intelligibility data in various
conditions with linearly and nonlinearly processed noisy speech as well as for
conditions with stationary and fluctuating interferers. Here, the relation between
the SNRenv and speech intelligibility was investigated further by systematically
varying the modulation power of either the speech or the noise before mixing the
two components, while keeping the overall power ratio of the two components
constant. A good correspondence between the data and the corresponding
sEPSM predictions was obtained when the noise was manipulated and mixed
with the unprocessed speech, consistent with the hypothesis that SNRenv is
indicative of speech intelligibility. However, discrepancies between data and
predictions occurred for conditions where the speech was manipulated and
the noise left untouched. In these conditions, distortions introduced by the
applied modulation processing were detrimental for speech intelligibility but not
reflected in the SNRenv metric, thus representing a limitation of the modeling
framework.

¶ This chapter is based on Jørgensen et al. (2014b).
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6.1 Introduction

Speech intelligibility prediction has been a major research field since the first
telecommunication technologies were introduced in the late nineteenth century. One of
the first broadly applied methods for predicting speech intelligibility was introduced by
French and Steinberg (1947) who presented the concept of the articulation index (AI).
Fundamentally, the AI predicts speech intelligibility by calculating the overall power
signal-to-noise ratio (SNR) from the speech long-term spectrum and the background
noise long-term spectrum in various frequency bands. The AI was later extended to
include corrections for hearing sensitivity loss, speech level as well as upward and
downward spread of masking. This has led to a revised prediction model denoted
the speech intelligibility index (SII; ANSI S3.5, 1997). While the SII model was
demonstrated to account for speech intelligibility data in conditions with stationary
background noise and low- and high-pass filtering, it has limitations, for example, in
reverberant conditions.

Houtgast and Steeneken (1973) demonstrated that reverberation leads to temporal
smearing of the speech signal, which is not detected by the conventional power SNR-
metric used in the SII. Houtgast and Steeneken (1971) defined the speech transmission
index (STI) as a measure of the integrity of the temporal modulations of the speech, and
demonstrated that such a metric could account for the detrimental effect of stationary
noise and reverberation on speech intelligibility. However, the STI-concept is also
limited and fails in conditions where the noisy speech mixture has been processed by
noise reduction, such as spectral subtraction (Ludvigsen et al., 1993), possibly because
the noise reduction affects the noise modulations as well as the speech modulations
(Dubbelboer and Houtgast, 2007; Jørgensen and Dau, 2011). Several extensions of
the original STI have been proposed (e.g., Payton and Braida, 1999; Goldsworthy
and Greenberg, 2004) all of which, however, were based on a comparison between
the clean speech and the noisy transmitted speech. Thus, none of the approaches
considered the effect of the noise reduction processing on the amount of “intrinsic”
modulations of the noise itself. This was done in an alternative approach by Jørgensen
and Dau (2011), which suggested to consider the signal-to-noise envelope power ratio
(SNRenv) as a measure of the amount of the useful speech modulation content available
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to the listener. It was demonstrated that the SNRenv-based metric and the STI lead to
similar predictions in conditions with reverberation and stationary noise, but only the
SNRenv-metric can also account for the detrimental effect of spectral subtraction on
speech intelligibility (Jørgensen and Dau, 2011).

In the present study, the SNRenv was computed using the multi-resolution version of
the speech-based envelope power spectrum model (sEPSM) as presented in Jørgensen
et al. (2013). This model is very similar to the version presented in Jørgensen
and Dau (2011) but, instead of measuring the SNRenv from the long-term envelope
power spectrum, the multi-resolution version of the sEPSM estimates the SNRenv in
short temporal segments, with segment durations inversely proportional to the center
frequencies of the modulation filters considered in the processing. This model was
shown to successfully predict the speech reception threshold (SRT) in conditions with
speech mixed with various stationary and fluctuating interferers as well as in conditions
with noisy speech processed by spectral subtraction and reverberation (Jørgensen et al.,
2013).

The main hypothesis of the sEPSM framework is that there is a monotonic
relationship between the SNRenv of a noisy speech stimulus and the corresponding
speech intelligibility. However, this relationship has so far not been evaluated by
systematic variation of the amount of SNRenv (while keeping the conventional power
SNR fixed). Stimuli with different SNRenv but the same power SNR can either be
obtained by a modification of the modulation content of the speech signal, the noise
interferer, or both. The analysis of the modulation content of a (speech) signal may
be straightforward, whereas it is more challenging to synthesize or process signals
such that they possess prescribed modulation properties. For example, Drullman
et al. (1994b) attempted to filter out certain modulation frequencies from a speech
stimulus using an analysis and re-synthesis framework. However, one problem with
their approach was that the synthesis step involved the original phase information,
which re-introduced the original modulation content after bandpass filtering in the
auditory system (Ghitza, 2001). A possible way to avoid the synthesis problem is to
iteratively build a signal that has a desired modulation spectrum. The development
of spectrogram reconstruction tools (e.g., Griffin and Lim, 1984; Zhu X., 2006; Sun
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and Smith III, 2012; Decorsière, 2013) makes this possible by building a real time-
domain signal corresponding to a given target spectrogram. Here, a spectrogram is
defined as a collection of sub-band envelope signals, resulting from passing the original
signal through a bandpass filterbank. Using such an approach, Elliott and Theunissen
(2009) analyzed the contribution of independent temporal and spectral modulation
frequency bands to the intelligibility of speech. They found that speech intelligibility
remained high at about 75 % words correct when restricting the temporal modulations
to frequencies below 7 Hz and the spectral modulations to rates below 3.75 cycles/kHz.
Restricting this “core” spectro-temporal modulation frequency range further had a large
detrimental effect on intelligibility.

In the present study, the spectrogram reconstruction tool described in Decorsière
(2013) was used to generate noise and speech stimuli with amplified or attenuated
modulation content. Based on the SNRenv concept, the hypothesis was that noise with
attenuated modulation content mixed with unprocessed speech as well as speech with
amplified modulation content mixed with unprocessed noise should provide better
intelligibility than unprocessed speech in noise. The modulation-processed stimuli
were used to evaluate the relationship between the SNRenv and speech intelligibility
obtained in corresponding psychoacoustic tests. The processing strategy taken here
directly manipulated either the clean speech signal or the noise alone before mixing the
two components, in an attempt to make the speech more intelligible in a given noisy
condition. This approach differs from other modulation-domain speech enhancement
strategies (e.g., Paliwal et al., 2010; So and Paliwal, 2011; Wójcicki and Loizou, 2012)
that focused on ways to attenuate the noise component of a noisy speech mixture. Here,
the focus was to enhance the modulation content of the speech relative to the noise,
before mixing the two components. Such an approach could be useful in a situation
where there is access to the speech signal before it is transmitted and mixed with
environmental noise, such as at a train station.
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6.2 Method

6.2.1 Speech material, apparatus, and procedure

Speech reception thresholds (SRT) were measured using the material provided in the
Danish Conversational Language Understanding Evaluation (CLUE; Nielsen and Dau,
2009), which is similar to the hearing in noise test (HINT; Nilsson et al., 1994). The
speech material in the CLUE test consists of 18 lists of ten unique sentences, recorded
in anechoic conditions. Each sentence represents a meaningful everyday sentence
containing five words, spoken in a natural manner, by a male speaker. The background
noise in the CLUE test is a stationary speech-shaped noise (SSN) constructed by
concatenating and superimposing the sentence material to obtain a stimulus with the
same long-term spectrum as the average long-term spectrum of the sentences. Five male
normal-hearing native Danish speakers, aged between 24 and 38 years, participated
in the study. The subjects were sitting in a double-walled insulated booth together
with the experimenter who was controlling the procedure via MATLAB. The digital
signals, sampled at 44.1 kHz, were converted to analog by a high-end RME DIGI96/8
soundcard. They were presented to the subjects diotically via Sennheiser HD580
headphones. The average sound pressure level (SPL) of the stimuli in the test was 65
dB. After each presentation, the subjects were instructed to repeat the words he/she
understood, with the possibility of guessing or passing on misunderstood words. The
experimenter recorded the correctly understood words individually.

The SNR was controlled throughout the test by changing the level of the SSN after
the listener’s response, using an adaptive procedure. If all the words of a sentence were
repeated correctly the SNR was lowered by 2 dB, otherwise it was increased by 2 dB.
The SRT was determined as the average of the SNRs calculated after the response to
the last eight sentences of a list. Further details on the speech material can be found in
Nielsen and Dau (2009).
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6.2.2 Stimulus conditions

Two stimulus conditions were considered: (i) unprocessed speech mixed with SSN that
was processed in the modulation domain as described further below (section 6.2.3) and
(ii) speech that was processed in the modulation domain and mixed with unprocessed
SSN. The modulation processing either attenuated or amplified the modulation power
in a target modulation frequency range between 4 and 16 Hz, while (ideally) providing
zero gain outside the target range. Six conditions of the target modulation gain were
considered when only the noise was processed: 20, 10, 0 ,−5,−10 and−20 dB relative
to the unprocessed noise, and seven conditions were considered when only the speech
was processed: 20, 10, 5, 0, −6, −10 and −20 dB, whereby 0 dB represented the
unprocessed reference condition. Smooth transitions between the amplified/attenuated
modulation-frequency band and the zero-gain frequency region were obtained using
raised cosine ramps in the transition bands from 1 to 4 Hz and from 16 to 22 Hz. The
effectiveness of the modulation processing was analyzed by computing the modulation
transfer function (MTF) of the processed signals relative to the unprocessed signal
as suggested by Schimmel and Atlas (2005). The MTF of a single channel, m, was
defined here as

MT Fm =
|F{|p̂m|}|
|F{|ûm|}|

, (6.1)

where p and u represent the processed and unprocessed signals, respectively, F

denotes the Fourier transform, the hat represents the analytical signal, and |·| denotes
the modulus. Note that the MTF defined here is different from the MTF-concept used in
the STI. The MTF of an entire spectrogram was taken as the average of the subchannel
MTFs, where the MTFm of the individual channels were weighted according to their
energy

MT F =
1

∑
M
m=1 ‖um‖2

M

∑
m=1
‖um‖2 ·MT Fm, (6.2)

where ‖·‖2 is the Euclidean norm.

Figure 6.1 (upper left panel) shows the MTF for the processed noises for each of the
five target modulation gains. The dashed curves represent the target MTF and the solid
curves show the obtained “actual” MTF at the output of the modulation processing
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stage that is described in more detail further below. In a perfect modulation processing
system, the dashed and solid lines would coincide. In the processing framework
presented here, the actual gain/attenuation is smaller than the target gain/attenuation,
particularly for the largest target values of +/-20 dB. The top right panel of Fig. 6.1
shows the corresponding long-term excitation patterns (Glasberg and Moore, 1990) of
the processed noises, representing the total energy of the signal at the output of a bank
of gammatone filters with one equivalent rectangular bandwidth spacing, plotted as a
function of the center frequencies of the filters. The patterns for the three negative gains
(−5, −10 and −20 dB) coincide with the one obtained for the unprocessed signal. The
pattern for 20 dB gain (light gray) lies above the unprocessed pattern (black) by more
than +5 dB at very low frequencies (< 50 Hz) and below the unprocessed pattern by
more than −5 dB at frequencies above 1200 Hz.

The lower left panel of Fig. 6.1 shows the target MTFs (dashed lines) and the actual
MTFs (solid lines) for the six conditions where the speech was processed. Each
MTF represents the average across the individual MTFs obtained for 180 sentences
without noise. The obtained actual gains/attenuations are below the respective target
gains/attenuations, particularly for the target gains of +/- 20 dB. Furthermore, the
effective frequency region of the MTF relative to the target range (4 to 16 Hz) is
shifted towards higher modulation frequencies in the conditions with modulation
enhancements, which is different from the results obtained with the processed noise.
The lower right panel of Fig. 6.1 shows the corresponding excitation patterns for
the processed speech and the unprocessed speech. The maximal deviation of the
patterns for processed speech from the one for unprocessed speech amounts to 5 dB at
frequencies above 5 kHz.

6.2.3 Modulation processing framework

The modulation processing consisted of two parts as indicated in Fig. 6.2. In part A,
the original unprocessed signal was first passed through a Gammatone filterbank, and
the Hilbert envelope was extracted at the output of each filter. The resulting set of
envelopes constituted the unprocessed spectrogram. Each envelope of the spectrogram
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Figure 6.1: Top left: Target modulation transfer functions (MTF; dashed lines) and actual MTFs (solid
lines) for the five conditions with processed noise. The grayscale corresponds to different target modulation
gains (−20, −10 −5, 10, 20 dB). Each noise signal was 22 seconds long, sampled at 22.05 kHz, and the
corresponding MTF was obtained as the average over 50 segments of 2 s each. Top right: Long-term
excitation patterns of the five processed noises and the unmodified noise (UNP). Bottom left: Target (dashed
lines) and actual (solid lines) MTFs of the processed speech for the six target modulation gains. MTFs were
averaged over the 180 sentences of the CLUE material. Bottom right: Long-term excitation patterns of the
speech for the six target modulation gains and the unprocessed speech (UNP).
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Figure 6.2: Schematic view of the two steps in the modulation processing framework. Single-lined arrows
relate to time-domain signals and double-lined arrows to multi-channel envelopes (spectrograms). Step A,
upper part, generates a target spectrogram T by separately filtering each channel of the original signal’s
spectrogram. In step B, lower part, a signal is constructed iteratively by comparing the spectrogram Si of the
current signal estimate si to the target T. The distance between the two spectrograms G and its gradient ∇G
are used to update the current signal estimate until the maximum number of iterations n is reached.

representation was filtered by a zero-phase bandpass filter with a given target MTF. To
avoid transients in the filter magnitude response, transitions between the pass-band
and the filtered band were smoothed using half raised cosine windows. The filtered
envelopes were then individually normalized such that they had the same root mean
square (RMS) value as their unfiltered counterpart. This ensured that the total power of
the envelopes in each frequency channel was only marginally affected by the envelope
filtering such that the processed signal had a similar long-term audio-domain excitation
pattern as the original signal (right panels of Fig. 6.1).

To be consistent with the definition of a spectrogram, each processed envelope had
to be non-negative. However, filtered envelopes could exhibit significant negative
sections, particularly when large positive modulation gains were provided to signals
that initially contained large envelope fluctuations, such as speech. To overcome
this, the dynamic range of the envelope was limited by raising the envelope of each
channel to the power of 1/3 before filtering. After filtering, the original dynamic range
was restored by raising the filtered envelope to the power of 3. The resulting filtered
spectrogram provided the “target” input, T, to the signal reconstruction stage (Part B) of
the modulation processing. In the signal reconstruction, indicated as Part B in Fig. 6.2,
a time-domain signal, s, was reconstructed iteratively, such that the difference between
the spectrogram of the reconstructed signal and the target spectrogram was minimal.
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The procedure was initiated by a random noise signal s0 that, for each iteration i, was
updated in the direction that reduced the distance between its spectrogram Si and the
target spectrogram T. The distance, G , between the spectrograms was given as the
square of the Frobenius matrix norm of the difference between the two spectrograms

G = ‖T−Si‖2
f ro (6.3)

The iterative procedure was terminated after 100 iterations. Details about the signal
reconstruction can be found in Decorsière (2013).

6.2.4 Speech intelligibility prediction

The processing structure of the sEPSM is illustrated in Fig. 6.3. The details of the
processing can be found in Jørgensen and Dau (2011) and Jørgensen et al. (2013).
Some of the main stages are described in the following. The first stage is a bandpass
filterbank consisting of 22 gammatone filters Glasberg and Moore (1990) with a third-
octave spacing between their center frequencies, covering the range from 63 Hz to 8
kHz. The temporal envelope of each output is extracted via the Hilbert-transform and
then low-pass filtered with a cut-off frequency of 150 Hz using a first-order Butterworth
filter. The resulting envelope is analyzed by a modulation bandpass filterbank. The
filterbank consists of eight second-order bandpass filters with octave spacing and center
frequencies covering the range from 2 - 256 Hz, in parallel with a third-order lowpass
filter with a cut-off frequency of 1 Hz.

The running temporal output of each modulation filter is divided into short segments
using rectangular windows with no overlap (Jørgensen et al., 2013) . The duration
of the window is specific for each modulation filter and equal to the inverse of the
center-frequency of a given modulation filter (or the cut-off frequency in the case of
the 1-Hz low-pass filter). For example, the window duration in the 4-Hz modulation
filter is 250 ms. For each window, the AC-coupled envelope power (variance) of the
noisy speech and the noise alone are calculated separately and normalized with the
corresponding long-term DC-power. The SNRenv of a window is estimated from the
envelope power as
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Figure 6.3: Block diagram of the processing structure of the sEPSM (Jørgensen et al., 2013). Noisy
speech and noise alone are processed separately through a gammatone bandpass filterbank followed by
envelope extraction via the Hilbert transform. Each sub-band envelope is further passed through a modulation
bandpass filterbank. The modulation- filtered temporal outputs are segmented with a segment duration
inversely related to the modulation-filter center frequency. The envelope power (variance) is computed in
each segment for the noisy speech (Penv,S+N ) and the noise alone (Penv,N ), from which the corresponding
SNRenv is derived. The segmental SNRenv is then averaged across segments and combined across modulation
filters and audio-domain (peripheral) filters. Finally, the overall SNRenv is converted to the probability of
correct response assuming an ideal observer as in Jørgensen and Dau (2011) .

SNRenv =
Penv,S+N−Penv,N

Penv,N
(6.4)

where Penv,S+N and Penv,N represent the normalized envelope power of the noisy
speech and the noise alone, respectively. For each modulation filter, the running SNRenv-
values are averaged across time, assuming that all parts of a sentence contribute equally
to intelligibility. The time-averaged SNRenv-values from the different modulation-filters
are then combined across modulation filters and across Gammatone filters, using the
“integration model” from Green and Swets (1988). The combined SNRenv is converted
to the probability of correctly recognizing the speech item using the concept of a
statistically “ideal observer” (Jørgensen and Dau, 2011) .

For the simulations, 150 sentences from the CLUE material were used. Each sentence
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was mixed with a noise token (randomly selected from the full-length noise files) over
a discrete range of SNRs. For a given SNR-value, the final percent correct prediction
was computed as the average predicted score across all sentences of a given speech
material. The prediction at each SNR was then connected by straight lines, resulting in
a continuous psychometric function, from which the SRT was estimated as the SNR
corresponding to 50% correct. The values of the parameters in the model were kept
fixed in all conditions and corresponded to those given in Table II in Jørgensen et al.

(2013).

6.3 Results

Figure 6.4 shows the results for the conditions where the noise interferer was processed
and the speech left untouched. The open symbols show measured speech intelligibility
data, represented as the change in SRT (∆SRT) relative to the unprocessed condition.
∆SRT is shown as a function of the target modulation gain, and a positive ∆SRT
reflects worse intelligibility compared to the unprocessed condition. An analysis of
variance was conducted to assess the statistical significance of the measured data. The
statistical results are presented as asterisks above the data points, with p < 0.1 for (∗)
and p < 0.01 for (∗∗) indicating significant differences from the unprocessed condition.
A non-monotonic relationship between the obtained SRT and the target modulation
gain was observed. In the range of conditions with negative gain, i.e. with attenuated
noise modulations, the SRT decreased slightly (up to about 2 dB) with decreasing gain.
In the conditions with positive gains, i.e. amplified modulations, a large decrease of
the SRT of about 9 dB was observed for the target gain of 20 dB. The filled circles
represent the predictions obtained with the sEPSM, which were in good agreement with
the data, although the model slightly overestimated the effect at large positive gains.
For direct comparison, predictions obtained with the extended SII (ESII; Rhebergen
et al., 2006), using the unprocesed SSN as a probe for the speech signal, are also shown
in Fig. 6.4 and indicated by the filled diamonds. The ESII predicted the trend in the
data for positive modulation gains, but predicted a small positive ∆SRT, i.e. a slight
decrease of speech intelligibility, for negative gains, in contrast to the measured data.
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Figure 6.4: Change of the speech reception threshold, ∆SRT, relative to the unprocessed condition (0 dB
target gain), as a function of the target modulation gain applied to the noise interferer (but not the speech
signal). Open circles represent the measured data, with error bars indicating standard errors. Asterisks
indicate a statistically significant difference to the reference condition, with p < 0.1 represented as (∗)
and p < 0.01 represented as (∗∗). The filled circles show predictions obtained with the sEPSM, and filled
diamonds show predictions using the ESII.

Figure 6.5 shows the results obtained for the conditions with processed speech (in
the presence of unprocessed noise). The open symbols show the measured data. The
SRT increased by 1.5 dB for a target modulation gain of 10 dB and by 5.5 dB for a
gain of 20 dB, i.e. representing a decrease of intelligibility. Similarly, in the conditions
with negative gains, the SRT increased by 2.7 dB for a target gain of −10 dB and by
7.3 dB for a target gain of −20 dB. Thus, the intelligibility decreased in the conditions
where a large negative or positive modulation gain was applied to the speech (alone).

The corresponding predictions obtained with the sEPSM are shown by the filled
circles and were essentially independent of the amount of negative gain, in clear contrast
to the data. Moreover, the model predicted a decrease in SRT for the conditions with
positive gains. This reflects the underlying assumption in the model linking enlarged
modulation power of the speech signal (cf. bottom left panel of Fig. 6.1) to increased
speech intelligibility. However, this relation is not supported by the data for the
conditions with modulation enhanced speech. For comparison, predictions obtained



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 116 — #136 i
i

i
i

i
i

116 6. Manipulating the envelope signal-to-noise ratio

−20 −10 0 10 20

−4

−2

0

2

4

6

8

10 (∗∗)

(∗∗)

(∗∗)

Target modulation gain (dB)

∆
S

R
T

 (
d

B
)

 

 
Data sEPSM ESII

Figure 6.5: ∆SRT relative to the unprocessed condition (0-dB target gain) as a function of the target
modulation gain applied to the speech (mixed with unprocessed noise). The open symbols represent the
measured data, the filled circles show the sEPSM predictions, and the filled diamonds show predictions using
the ESII. The error bars represent standard errors. Asterisks indicate a statistically significant difference to
the reference condition, with p < 0.1 for (∗) and p < 0.01 for (∗∗).

with the ESII are indicated by the filled diamonds in the figure where modulation
processed SSN was used as a probe for the speech. Thus, the simulations for the
processed speech conditions essentially represent a mirrored pattern of the simulations
for the processed noise conditions (around the 0-dB ∆SRT axis). The ESII appeared
to account at least partly for the reduced intelligibility for positive gains observed in
the data. However, because the ESII applied a noise probe for the speech, the inputs to
the model in the conditions with processed noise and processed speech were the same:
for the simulations in Fig. 6.4 the inputs were unprocessed SSN for the speech and
processed SSN for the noise, respectively, and vice versa in the simulations shown in
Fig. 6.5. Hence only the labels of the input signal were changed. This makes it difficult
to determine whether the trend predicted by the ESII reflects the actual underlying
cause for the reduced intelligibility in the data or if it is a consequence of the special
noise-probe signal leading to symmetric predictions in the two situations.
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6.4 Discussion

6.4.1 Modulation processing of the noise interferer

The perceptual data showed an improvement of speech intelligibility when the noise
was processed and the speech left untouched. The predictions obtained with the sEPSM
were in good agreement with the measured data in those conditions, demonstrating
that the intelligibility improvement could be accounted for by a greater SNRenv after
the modulation processing, which supports the hypothesis of a relationship between
SNRenv and speech intelligibility. In the conditions with negative target modulation
gain, the decrease of SRT obtained in the data was up to 2 dB. In the framework of
the sEPSM, this decrease was due to a reduced amount of modulation masking by the
noise, because the modulation power of the noise was effectively reduced in the range
from 4-16 Hz (cf. top leftpanel of Fig. 6.1). In contrast, the ESII was insensitive to
the effect of the reduced noise modulation power, because the short-term power SNR
remained the same as in the reference condition.

In the case of positive target modulation gains, a decrease of SRT of up to 9 dB
was observed in the data. Physically, the amplification of the noise modulations led
to strong amplitude variations of the noise’s temporal waveform, similar to amplitude
modulated noise (e.g., Festen and Plomp, 1990). In the framework of the sEPSM, the
decreased SRT observed in these conditions could be explained by less modulation
masking at relatively high modulation frequencies (> 30 Hz), as demonstrated by
Jørgensen et al. (2013). The ESII could also account for the results obtained with
positive modulation gain, based on a greater short-term power SNR. This is consistent
with earlier studies that demonstrated the usefulness of ESII for predicting speech
intelligibility in the presence of a modulated noise (Rhebergen et al., 2006). This
suggests that, the decreased SRT in the conditions with amplified noise modulation
power can be accounted for by less modulation masking as well as by less energetic
masking, indicating that those aspects are linked in these conditions. However, the
improved SRT in the conditions with attenuated noise modulation power could only be
accounted for by less modulation masking.
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6.4.2 Modulation processing of clean speech

The perceptual data showed a general reduction of speech intelligibility when the
speech was processed and the noise left untouched. The predictions from the sEPSM
were not in agreement with this aspect of the data, demonstrating a limitation of the
model framework. The sEPSM assumes that any modulation of the speech component
of the input signal is contributing to intelligibility. However, this assumption might be
violated after the processing of the speech alone, because the modulation processing
may have introduced distortions in the form of strong modulation components not
related to speech at all. To investigate this, the amount of the speech distortion was
assessed using a measure based on the Perceptual Evaluation of Speech Quality (PESQ;
ITU-T P.862, 2001). Figure 6.6 shows the amount of speech distortion, defined here
as the inverse of the PESQ-rating, scaled to a range between 0 and 1, for the different
conditions of modulation processed speech. The distortion is zero for the zero-gain
reference condition and increases with increasing or decreasing target modulation gain.
This trend corresponds well to the trend observed in the intelligibility data shown in
Fig. 6.5. The presence of distortion and the attribute of unnaturalness in the conditions
with modulation-processed speech were also reported qualitatively by the listeners,
even at high SNRs. Thus, the discrepancy between the data and the sEPSM predicitons
might be explained by distortions of the speech signal (resulting from the modulation
processing), which are not considered by the sEPSM.

There were at least two sources of the distortion when amplifying the modulation
of natural speech. First, the step in the modulation filtering process that generated
the target spectrogram represented a “blind” process, i.e. the filtering process had
no a priori information about the initial spectro-temporal structure of the speech
signal. Hence, the amplified modulation was not constrained to follow the natural
temporal structure of the speech, which could lead to modulation components not
related to speech at all. Moreover, the larger the modulation gain/attenuation was,
the further the filtered spectrogram deviated from a faithful representation of speech,
i.e. the target spectrogram could represent distorted speech rather than enhanced
speech. A second source of distortion was related to the iterative reconstruction process.
Since the spectrogram representation is generally of higher dimensionality than a real
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Figure 6.6: Objectively measured distortion of the speech signal for the different conditions of modulation
processing. The distortion is defined here as the inverse of the PESQ measure scaled to the range between 0
and 1, and each point represents the average across 50 sentences. A metric such as the SNRenv assumes that
all audible speech modulations contribute to speech intelligibility. The metric cannot account for distortions
that are not resulting from the processing applied to the mixture of speech and noise (such as spectral
subtraction).

time-domain signal, many theoretical spectrograms could result from the modulation-
filtering process, for which no corresponding real time-domain signal would exist
(Le Roux et al., 2010). Thus, the target spectrogram obtained in Fig. 6.2 (Part A)
did not necessarily correspond to an actual time-domain signal. This implied that the
objective function in (Eq. (6.3)) might never reach zero, even if the reconstruction was
successful in the sense that it reached the minimum of the objective function. The
remaining distance between the target and the obtained spectrograms would translate
into an error in the reconstructed signal, in the form of uncontrolled distortions.

6.4.3 Usefulness of modulation processing for speech intelligibility
enhancement

Ideally, according to the concept of the SNRenv, amplifying the modulations of a speech
signal by a given amount (before mixing it with the unprocessed noise) should lead to
a similar positive effect on intelligibility as attenuating the modulations in the noise
by the same amount (before mixing the noise with the unprocessed speech). This was
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Figure 6.7: Percentage of correct key words for normal hearing listeners reported by Payton et al. (1994) in
conditions with speech spoken in a conversational (open squares) and in a clear manner (open circles) mixed
with noise at 0, 5.3, and 9.5 dB SNR. Corresponding predictions by the sEPSM using the same stimuli are
indicated by the filled symbols.

reflected in the predictions by the sEPSM, showing the same predicted SRT when
applying a target modulation gain of −20 dB to the noise (left part of Fig. 6.4) as when
applying a gain of 20 dB to the speech (right part of Fig. 6.5).

However, the ability of the applied modulation processing scheme to enhance speech
intelligibility was limited to the conditions with processing of the noise alone. Attempts
to enhance the modulations of the speech did not result in improved intelligibility. The
speech considered in the present study was spoken in a conversational manner, so the
modulations of that speech might be enhanced in a natural way by articulating the
sentences more clearly, creating modulation enhanced speech free from distortions.
Such stimuli were considered in the studies of Picheny et al. (1985) and Payton et al.

(1994), which measured better intelligibility for clearly spoken speech compared to
conversationally spoken speech in normal-hearing listeners. Figure 6.7 shows the
percentage of correct key words reported by Payton et al. (1994) in conditions with
speech spoken in a conversational manner (open squares) and in a clear manner (open
circles) and mixed with noise at 0, 5.3, and 9.5 dB SNR. The word score improved
by 28, 18, and 19 % for the three SNRs, respectively, for the clearly spoken speech
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compared to the conversational speech. Corresponding predictions1 obtained with
the sEPSM are indicated by the filled symbols in Fig. 6.7, with filled black squares
representing the conversational speech conditions and the gray filled circles showing
the clear speech conditions. The sEPSM predicted an improved word score for the
clearly spoken speech consistent with the data, whereby, however, the improvement
was about 10% and thus smaller than in the data. Nevertheless, this supports the
hypothesized monotonic relationship between SNRenv and speech intelligibility, in the
case where the modulation enhanced speech was free from distortions. In contrast, the
ESII would not account for these conditions, since the differences in speaking style
would not be represented by the speech-noise probe used in this model.

The reduced amount of predicted improvement for the clearly spoken vs. conversa-
tional speech might result from an inconsistency in the way intelligibility was evaluated
by Payton et al. (1994) in their measurement procedure and by the model. In the
behavioral data, the percentage of correct score represented the number of correctly
identified keywords of a given sentence, i.e., not the intelligibility of the sentence as
a whole. In contrast, the model predictions reflected the average intelligibility of the
whole sentence, including non-keywords, which could bias the model towards smaller
amounts of improvement. Nevertheless, the agreement between the predictions and
the data support the hypothesis that enhancing the speech modulation should lead to a
speech intelligibility improvement. The improvement observed in the data from Payton
et al. (1994) may well represent an upper limit of the potential benefit provided by an
artificial speech modulation enhancement approach.

The benefit of processing either the noise or the speech alone before mixing appeared
to be modest compared to other approaches of speech intelligibility enhancement, where
the mixture of speech and noise is modified. For example, Wójcicki and Loizou (2012)
demonstrated that discarding noise-dominated modulation-domain spectral components
based on an SNRenv-like metric led to improvements of intelligibility of up to 13 dB
SRT. Their approach was fundamentally different from the one considered in the present

1 The parameters of the ideal observer in the sEPSM (Jørgensen et al., 2013) were adjusted to minimize
the root-mean-square error of the predictions and the data in the conditions with conversational speech.
The complete parameter set was k = 0.42, q = 0.5, σS = 5, and m = 8000.
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study, since they focused on noise-removal rather than modifying the unmixed signals
to optimize intelligibility. The benefit of the present approach is that the enhancement
could, in principle, be obtained by a filter-like operation, without having to estimate
the noise component. In practice, the enhancement could be performed as some pre-
processing of the speech signal that could optimize intelligibility, before it is mixed with
noise. However, noise-removal could, in principle, also be achieved with the present
modulation processing framework, by modifying the setup of the target spectrogram
(Part A of Fig. 6.2) such that it produces a target that is a noise-reduced version of the
noisy speech mixture.

6.5 Summary and conclusions

The effect of manipulating the SNRenv on speech intelligibility was investigated by
systematically varying the modulation power of either the speech or the noise before
mixing the two components. Improvements of the SRT for normal-hearing listeners
were obtained in conditions where the modulation power of the noise was modified,
leaving the speech untouched. Predictions from the sEPSM accounted well for this
effect, supporting the hypothesis that the SNRenv is indicative of speech intelligibility.
However, a large detriment of the SRT was obtained when the speech modulation
power was modified and the noise left untouched, which could not be accounted
for by the sEPSM. This discrepancy might be explained by distortions introduced
by the modulation processing, which were not reflected in the SNRenv metric, thus
representing a limitation of the modeling framework.
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7
Perceptual and model-based evaluation

of speech intelligibility in mobile
telecommunication systems||

In the development process of modern telecommunication systems, such as
mobile phones, it is common practice to use computer models to objectively
evaluate the transmission quality of the system, instead of time-consuming
perceptual listening tests. Such models have typically focused on the quality
of the transmitted speech, while little or no attention has been provided to
speech intelligibility. The present study investigated to what extent two state-
of-the art speech intelligibility models could predict the intelligibility of noisy
speech transmitted through mobile phones. Sentences from the Danish
Dantale II speech material (Wagener et al., 2003) were mixed with three
different kinds of background noise, transmitted through three different mobile
phones, and recorded at the receiver via a local network simulator. The speech
intelligibility of the transmitted sentences was assessed by six normal-hearing
listeners and model predictions were compared to the perceptual data. A good
correspondence between the measured data and the predictions from one
of the models was found in the conditions with speech-shaped background
noise, whereas deviations were observed in conditions with “Traffic” and “Pub”
noise. Overall, the results suggest that speech intelligibility models inspired by
auditory signal processing can be useful for the objective evaluation of speech
transmission through mobile phones.

|| This chapter is based on Jørgensen et al. (2014a).

123
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7.1 Introduction

Speech transmission through modern telecommunication devices, such as mobile
phones, has traditionally been evaluated mainly in terms of speech quality. One reason
for the focus on speech quality, rather than speech intelligibility, might be that mobile
phone communication typically occurs at signal-to-noise ratios (SNR) where speech
intelligibility is not compromised. In situations with very poor intelligibility, people
generally either terminate the conversation or put themselves in a position where the
SNR is increased. However, in a mobile telecommunication situation, such as when
the talker is situated in a car or a train, the transmitted speech signal can, in fact, be
largely affect by the presence of background noise surrounding the talker, which is
difficult to move away from. The listener at the receiving end might have difficulty
understanding the transmitted speech, even if he or she was situated in a quiet room.
In such conditions, estimates of speech intelligibility could provide an additional
important performance parameter of the mobile telecommunication system, in addition
to a speech quality evaluation.

The perceptual evaluation of speech quality and intelligibility, based on listening
tests, has generally been considered to be more reliable than objective prediction
models for complex environmental or conversational conditions (Gierlich and Kettler,
2006). However, perceptual evaluations are very time consuming, requiring the use of
several listeners and hours of testing per condition. Thus, a reliable objective tool for
predicting human speech intelligibility performance in a given acoustic condition would
be very valuable in the development process of new telecommunication systems. The
objective evaluation method recommended by the International Telecommunication
Union is the “perceptual evaluation of speech quality” (PESQ; ITU-T P.862, 2001)
model. This model has been shown to correlate well with the perceptual quality ratings
quantified by the mean opinion score (MOS; ITU-T P.800, 1996). Several studies
have attempted to use PESQ for speech intelligibility prediction in addition to speech
quality (e.g., Liu et al., 2006; Beerends et al., 2009; Kondo, 2011). For example,
Liu et al. (2006) reported a good correlation of the PESQ metric to perceptual scores.
However, the listening test applied by Liu et al. (2006) was based on a rating of listening
effort, rather than a quantitative measure of the number of speech items that had been
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understood. It is therefore unclear to what extent the perceptual data reported by Liu
et al. (2006) reflect aspects of quality rather than intelligibility. In contrast, Beerends
et al. (2009) found a poor correlation of PESQ predictions to perceptual intelligibility
scores of consonant-vowel-consonant stimuli. The PESQ score was generally found
to be at floor level for all conditions. Similarly, Kondo (2011) observed a floor effect
when comparing PESQ predictions to perceptual speech intelligibility obtained using
a dynamic rhyme test. Thus, the PESQ metric as provided in ITU-T P.862 (2001)
appears to be inappropriate for speech intelligibility prediction and it might, therefore,
be advantageous to consider prediction models designed for speech intelligibility.

Several objective speech intelligibility metrics have been proposed, the first of which
and most widely used one is the articulation index (AI; ANSI S3.5, 1969). The AI
essentially measures the amount of audible speech, based on information about the
SNR and the human hearing threshold in several frequency bands that cover the overall
frequency spectrum of speech. The AI model was later modified to include aspects of
auditory masking and hearing loss, and was published as a new standard under the name
"speech intelligibility index" (SII; ANSI S3.5, 1997). However, the SII is inherently
limited to conditions with a stationary background noise, and fails in more realistic
conditions with fluctuating noise backgrounds, such as speech babble in a cafeteria.
To overcome this limitation, Rhebergen and Versfeld (2005) presented the extended
speech intelligibility index (ESII), which could account for the speech intelligibility
in conditions with various types of fluctuating interferers. However, the AI, SII, and
ESII models were designed to account for the effects of reduced bandwidth of early
telecommunication systems, and cannot directly be applied to conditions where the
noisy speech mixture has been processed by nonlinear noise reduction and low bit-rate
coding used in modern telecommunication systems.

Recently, an alternative metric for predicting speech intelligibility was proposed
(Jørgensen and Dau, 2011), which is based on a measure of the SNR in the envelope
domain (SNRenv). The SNRenv measures the relative strength of the speech and the
noise envelope fluctuations, inspired by earlier work indicating that such a metric might
be related to speech intelligibility (Dubbelboer and Houtgast, 2008). The metric is
computed using the speech-based envelope power spectrum model (sEPSM; Jørgensen
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Transmitting
mobile terminal
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Speech coding

Transmission network
Receiving
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Nonlinear 
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input

Figure 7.1: Illustration of the basic elements of a transmission chain in a modern telecommunication system,
such as a mobile phone. The acoustic input is picked up by the microphone of the transmitting device and
typically processed by noise reduction and echo-canceling algorithms. The signal is transformed via a speech
coder and the resulting coefficients are transmitted using a digital transmission network. Finally, the signal
is picked up by the receiving device, decoded, and played back via the devices’ loudspeaker. The vertical
arrow indicates the point of evaluation considered in the present study.

and Dau, 2011; Jørgensen et al., 2013), which effectively mimics key aspects of human
auditory signal processing. The key difference between the ESII and the sEPSM is that
the sEPSM analyses the temporal modulation characteristics of the noisy speech and
those of the background noise, using the concept of a modulation filterbank. The model
was demonstrated to account for conditions with various stationary and fluctuating
interferers as well as the effects of reverberation and nonlinear noise reduction. The
sEPSM framework might therefore be applicable for predicting the speech intelligibility
performance of mobile phones.

Several aspects of the mobile phone signal transmission chain may influence the
quality and intelligibility of transmitted speech. These include the surrounding acoustic
environment, the microphone characteristics, the digital signal processing in the
phone (typically including noise reduction and echo-canceling) as well as the digital
transmission network (Gierlich and Kettler, 2006). Figure 7.1 illustrates the very basic
elements of such a transmission chain. Several studies have focused on the evaluation of
different aspects of the transmission chain, such as speech coding/decoding algorithms
(McLoughlin et al., 2002), echo-canceling (Hänsler, 1994), noise reduction algorithms
(Westerlund et al., 2005), and effects of network transmission (ETSI TR 102 251,
2003). However, in order to include the combined effect of the various nonlinear steps
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of the transmission chain, an evaluation should consider the transmission chain as a
whole, from the acoustic input through the transmitting phone to the signal picked up
by the receiver (Gierlich and Kettler, 2006). In the present study, the transmitted signal
was evaluated at the point just after it had been decoded by the receiving phone, as
indicated by the vertical arrow on Fig. 7.1. Thus, the loudspeaker characteristics or
other components of the signal processing that were specific to the receiving phone
were not included. The aim was to obtain a realistic simulation of a telecommunication
situation, by including the combined effects of the acoustic environment surrounding
the transmitting mobile phone, the signal processing specific to the phone, and the
digital transmission network.

The present investigation consisted of two parts. First, speech intelligibility was
measured perceptually in six normal hearing-listeners considering different noisy
conditions and the effects of the transmission through three commercially available
mobile phones. The aim was to investigate to what extent speech intelligibility
performance varied across the mobile phones in the different noise environments.
Second, predictions using the sEPSM and the ESII were obtained and compared to the
measured data, in order to investigate to what extent these speech intelligibility models
could be used for the objective evaluation of speech transmission through the mobile
phones.

7.2 Method

7.2.1 Stimuli

Sentences from the Danish Dantale II speech corpus (Wagener et al., 2003), spoken by
a female talker, were used as the target speech stimuli. The speech corpus consists of
160 different five-word sentences with a grammatically correct structure (name + verb
+ numeral + adjective + object), but with unpredictable meaning, which allows reusing
the sentences as many times as required for the same listener. The sentences were
acoustically mixed with noise and recorded digitally using a setup according to ETSI
EG 202 396-1 (2008), which simulated a one-way mobile telecommunication situation,
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as illustrated in Fig. 7.2. The setup consisted of a Brüel & Kjær 4128-D Head and torso
simulator (HATS) geometrically centered between four loudspeakers in a standardized
listening room (IEC 268-13, 1985). The mobile phone under test was attached to the
HATS using the Brüel & Kjær Handset Positioner Type 4606. Binaural noise signals
were supplied to the loudspeakers such that the two left loudspeakers played back the
left channel and the right speakers played back the right channel of the binaural signal.
The four loudspeaker signals were decorrelated by introducing delays of 0, 11, 17, and
29 ms to the individual signals. The mouth speaker of the HATS played back the target
speech. The frequency response of the loudspeakers as well as the mouth speaker of
the HATS were equalized using the ear-microphones of the HATS as described in ETSI
EG 202 396-1 (2008). The mobile phone under test was connected to a Rohde and
Schwarz CMD 55 local network simulator (LNS) through a locally established GSM
network and the electrical output signal from the LNS was recorded using the Matlab
software package and an RME Fireface UCX soundcard.

Individual recordings of all 160 sentences mixed with each noise type at each SNR
for each phone were stored digitally with a sampling rate of 44.1 kHz. In addition
to the signal from the LNS, a reference signal from a Brüel & Kjær 4938 1/4-inch
microphone positioned close to the input microphone of the mobile phone was recorded
for all conditions. In this setup, and throughout this paper, the SNR was defined as the
relative speech and noise levels measured with the reference microphone.

7.2.2 Perceptual evaluation

Conditions

Three commercially available mobile phones from three different manufactures were
considered, denoted here as A, B, and C. The phones were released on the market in
the years 2002, 2008, and 2010, respectively. Three types of background noise were
considered: Dantale II Speech shaped noise (SSN; Wagener et al., 2003), “Traffic”,
and “Pub” noise from the noise database provided in ETSI EG 202 396-1 (2008).
Moreover, two reference conditions with SSN background noise were considered: the
broadband signal from the reference microphone, denoted as “Ref”, and the signal from
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Soundcard
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Figure 7.2: Sketch of the setup used to simulate a one-way telecommunication situation in the present study.
See main text for further details.

the reference microphone filtered with the modified intermediate reference system (IRS;
ITU-T P.830, 1996) transfer function (bandpass filter with −10-dB cut-off frequencies
of 260 Hz and 3750 Hz), denoted as “Ref BP”. All conditions were evaluated at four
SNRs, which were chosen to cover the range from about 40% to 90% intelligibility
in a given condition, based on pilot measurements. All conditions and SNRs were
tested twice for each listener. In total, 2 x 44 (3 phones x 3 noises x 4 SNRs + 2 Ref
conditions x 4 SNRs) conditions were evaluated per listener.

Apparatus and procedure

The perceptual evaluation was conducted in a double-walled sound insulated booth
where the listener and the experimenter were seated. The sentences were presented
to the listener’s right ear via Sennheiser HD 650 headphones, which were equalized
to have a flat frequency response at the ear reference point. The stimuli were filtered
with the modified IRS receive transfer function to simulate a standard acoustic output
of a receiving mobile phone. A noisy speech recording was presented to the listener,
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with the noise starting 1.6 seconds before the sentence and ending 1.2 seconds after
it. The stimulus was faded in and out using 100 ms Hanning ramps. The gain of the
playback system was adjusted independently for the Ref and Ref BP conditions, such
that sentences mixed with SSN at 0-dB SNR were presented at 70 dB SPL, respectively.
Similarly, the gain was adjusted such that the sentences mixed with SSN at 0-dB SNR
transmitted through phone A were presented at 70 dB SPL. This level was then kept
fixed and used for all other mobile phone conditions. Therefore, the presentation level
depended on the noise type, the phone type and the SNR condition. The task of the
listeners was to repeat as many words of the presented sentences as possible. The
listeners were allowed to guess. The experimenter noted the number of correct words
on a computer screen hidden from the listener. The test was divided into three sessions
of approx. two hours per listener. Two lists of 10 sentences were used for each phone
and SNR configuration. Additional 80 sentences were used for training before the first
and the second session, and 40 sentences before the third session, in order to familiarize
the listeners with the different test conditions.

Listeners

Six native Danish listeners with audiometric thresholds below 20 dB HL from 250 Hz
to 8 kHz participated in the evaluation and were paid for their participation. None of
the listeners had previous experience with psychoacoustic testing.

7.2.3 Simulations

The model predictions were based on a subset of 30 of the 160 sentences for each
condition. The simulations for each sentence were performed separately in all
conditions, and the results were averaged across the 30 sentences. The stimuli were
truncated in time such that the onsets for the speech and the noise were the same.
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Separation of speech and noise components

The models considered here require separate access to the speech and the noise at the
output of the transmission system. However, the separate transmission of the speech
and the noise through the mobile phones would not reflect the situation considered
in the perceptual evaluation, since the nonlinear behavior of the transmission system
affected the noisy speech mixture (used in the perceptual evaluation) in a different
way than the speech and the noise alone. Therefore, estimates of the noise and
the speech components were obtained from the noisy speech mixture after mobile
phone transmission. This was achieved using the method suggested by Hagerman and
Olofsson (2004), briefly described in the following. Two input signals ain and bin were
defined from the speech and noise signals as:

ain(t) = s(t)+n(t) and (7.1)

bin(t) = s(t)−n(t), (7.2)

where s and n denote the speech and the noise components at the input to the mobile
phone, respectively and t represents time. The separated speech and noise components,
s′out(t) and n′out(t), were then obtained as:

s′out(t)+
1
2

E1(t) =
1
2
(aout(t)+bout(t)) and (7.3)

n′out(t)+
1
2

E2(t) =
1
2
(aout(t)−bout(t)), (7.4)

where aout(t) and bout(t) denote the recorded signal mixtures. The error terms, E1(t)

and E2(t) can be estimated using the methods described by Hagerman and Olofsson
(2004), but were neglected here for simplicity.

sEPSM-based simulations

The sEPSM framework assumes a priori information about the noise component of a
noisy speech mixture. Thus, for the sEPSM-predictions, the inputs to the model for a



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 132 — #152 i
i

i
i

i
i

132 7. Speech intelligibility in mobile phones

given condition were the transmitted mixture, aout , and the estimated noise component
n′out . From these inputs, the SNRenv was computed and converted to a probability of
correct responses using an “ideal observer”, as described in detail in Jørgensen et al.

(2013). The ideal observer included four parameters that were taken from Table II in
Jørgensen et al. (2013). However, the parameter k of the model’s ideal observer was
adjusted here such that the model predictions provided a good fit to the perceptual data
in the Ref condition. All model parameters were then kept fixed in all other conditions.

ESII-based simulations

The ESII required access to the long-term level of the speech component and the
waveform of the noise component at the output of the speech transmission system
under test. A SSN signal was used as a probe for the speech component, following
Rhebergen and Versfeld (2005) and Rhebergen et al. (2006). Specifically, the inputs to
the ESII in a given condition were the transmitted SSN-speech probe with a root-mean-
squared (rms) level equal to the rms level of s′out(t) and the separated noise component
n′out(t). The output of the ESII was a SII-value between 0 and 1, which was transformed
to a percentage of correct responses using the transfer function suggested by Amlani
et al. (2002):

Pcorrect = 1−10(−SII+K)/Q. (7.5)

K and Q were free parameters with values that were obtained using a minimum-mean-
square fit of the transfer function to the perceptually obtained percent correct values
in the two reference conditions (Ref and Ref BP). Figure 7.3 shows the perceptual
percentage of correct words as a function of the corresponding SII (circles), together
with the obtained transfer function (solid line). This function was then used for all
other conditions.
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Figure 7.3: Psychoacoustic data plotted as a function of the corresponding SII (black circles), for the two
reference conditions, and the corresponding ESII transfer function (dashed line).

7.3 Results

7.3.1 Perceptual data

The percentage of correct responses for the individual listeners (averaged across the
two repeated presentations) are shown in Fig. 7.4, for the Ref condition (left panel)
and the Ref BP condition (right panel). A psychometric function with two parameters
(Wagener et al., 2003), the slope (S50) and the 50-% point (SRT50), was fitted to the
mean results of each individual listener in a given condition:

P(SNR) =
[
1+ e−4S50·(SNR−SRT50)

]−1
. (7.6)

The parameters were averaged across the listeners to obtain a group-mean psychometric
function. The obtained functions for the Ref and the Ref BP conditions are shown as
solid black lines in Fig. 7.4. Using the same approach, Fig. 7.5 shows the psychometric
functions for all conditions with SSN (left panel), Pub noise (middle panel), and Traffic
noise (right panel). The shaded area surrounding each function represents one standard
error of the function’s parameters. The psychometric functions for the Ref and Ref
BP conditions were clearly above those for the mobile phones for input SNRs above
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Figure 7.4: Percentage of correct responses for the individual listeners for the Ref (left panel) and the Ref
BP conditions (right panel), and the corresponding group-mean psychometric functions (solid black line).
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Figure 7.5: Psychometric functions for all the considered conditions with SSN (left panel), with Pub noise
(middle panel), and with Traffic noise (right panel). The shaded area surrounding each function represents
one standard error of the parameters of the psychometric function.

at and −4 dB. This demonstrates worse intelligibility for the phone conditions than
for the Ref condition. Moreover, the slopes of the functions in the Ref and Ref BP
conditions were steeper than those of the phone conditions. Specifically, for the SSN
conditions (left panel), the psychometric functions for the three phones differed in
their horizontal position. In contrast, the functions were much closer to each other in
the conditions with Pub (middle panel) and Traffic (right panel) noise. This reflects a
greater variability in the perceptual data for the Pub and Traffic-noise conditions than
for the SSN conditions.



i
i

“phd_thesis_book” — 2014/3/6 — 11:48 — page 135 — #155 i
i

i
i

i
i

7.3 Results 135

Ref Ref BP A B C

−6

−4

−2

0

2

4

6

8
SSN

S
R

T
7

0
 (

d
B

)

 

 

Data

sEPSM

ESII

A B C

Pub

A B C

Traffic

Figure 7.6: SRT70 obtained from the perceptual psychometric functions (open squares), for all the conditions
with SSN (left panel), with Pub noise (middle panel), and with Traffic noise (right panel). The vertical
bars denote one standard error. Predictions from the sEPSM is indicated by the filled black squares, and
predictions from the ESII is indicated by the filled gray squares.

In order to quantify the differences between the obtained results, the following anal-
ysis was based on the speech reception thresholds determined from the psychometric
functions as the SNR corresponding to 70% correct (SRT70). The SRT70 was chosen
because this point lied roughly in the middle of the measured range of percent correct.
Figure 7.6 shows SRT70 (open squares) obtained from the perceptual data for the
conditions with SSN (left panel), Pub noise (middle panel), and Traffic noise (right
panel). The vertical bars denote one standard error.

For the SSN conditions, the SRT70 for the Ref condition was obtained at an SNR of
-3.5 dB, followed by a slightly higher SRT70 for the Ref BP condition at -3.0 dB. The
SRT70 for the three phones were obtained at higher SNRs than the reference conditions,
with the lowest SRT70 (best intelligibility) obtained for phone B at an SNR of -0.9 dB,
followed by phones A and C, which were both obtained at an SNR of 1.2 dB. Similar
patterns of results were found for the Pub noise with a generally higher SRT70, and for
the Traffic noise with a generally lower SRT70. For any given phone, the lowest SRT70

was obtained for the Traffic noise followed by the SSN and the Pub noise.

A one-way analysis of variance performed on the data for the three phones revealed
that the SRT70 was significantly different across the phones for the SSN conditions
(p < 0.05), but not for the Pub and the Traffic noises. A multiple comparison analysis
with Bonferroni correction performed on all SSN conditions showed that the SRT70

for the Ref condition was significantly lower than the SRT70s for all three phones
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(p< 0.05). Thus, the transmission chain led to significant decreases of the intelligibility
for all phones, with respect to the reference condition. Moreover, the SRT70 for phone
B was significantly lower than for phone C. Finally, the SRT70s for the Ref and the
Ref BP conditions were not significantly different, demonstrating that band limiting
imposed by the IRS-filter had very little influence on the obtained intelligibility.

A two-way analysis of variance with phone-type and noise-type as factors and
individual listener SRT70s as observations revealed a significant effect of phone type
(F2,36 = 5.1, p = 0.0112) and noise type (F2,36 = 20.38, p < 0.0001), which means
that the listener group average cannot be considered equal across phones, nor across
noises for a given phone. There was no significant interaction, which means that the
two factors were additive, i.e., the pattern of SRTs for the phones was not significantly
different across the three noise types.

7.3.2 Model predictions

Psychometric functions (Eqn. 7.6) were fitted to the predicted results in the correspond-
ing conditions. Figure 7.6 shows predicted SRT70 obtained with the sEPSM (black
filled squares) and the ESII (gray filled squares) for all considered conditions. The
sEPSM accounted well for the data in the SSN conditions, with a root-mean-squared
error (RMSE) of 0.51 dB. Moreover, the sEPSM predicted the same pattern of results
as seen in the data for the Pub and Traffic noises, but with a vertical offset of about -8
dB for the Pub noise and -5 dB for the Traffic noise. The ESII accounted for the two
reference conditions, and predicted the right trend for phones B and C. However, the
ESII failed to predict the overall pattern of results across the three mobile phones seen
in the data.
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7.4 Discussion

7.4.1 Simulation of a realistic one-way communication situation

One aim of the present study was to investigate to what extent speech intelligibility
performance varied across three commercially available mobile phones in realistic
telecommunication situations. The situations included different (noisy) acoustic
environments where the mobile phones transmitted speech via a local network
simulator. This setup included occasional signal dropouts which were reflected in the
corresponding recordings of the noisy speech as silent periods, sometimes removing
entire words from the target sentence and, thus, potentially affecting the intelligibility.
The dropouts were randomly occurring, as they would in a real telecommunication
system and were, therefore, considered to contribute to the realism of the systems that
were evaluated. Another element of the communication system simulation was that
the gain of the playback system was fixed for the perceptual and objective evaluation
procedures. This implied that the overall level of the presented stimuli varied across the
phones, reflecting the effect of the noise reduction and the signal processing specific to
a given phone. This level variation was considered as an inherent part of the system,
contributing to the realism of the simulation, and was therefore not compensated for in
the playback system.

One drawback of simulating the transmission chain as a whole was that it is
difficult to disentangle which aspects of the transmission led to the differences in
the performance across the phones. However, such a level of analytical detail was
sacrificed in order to provide an overall impression of the performance of a given phone
in a realistic communication situation.

7.4.2 Perceptual evaluation of speech intelligibility in modern
telecommunication

The results from the perceptual evaluation showed that the conditions with SSN
provided the lowest variability across the listeners and, thus, the highest sensitivity in
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terms of detecting significant performance differences across the phones. The pattern of
results for the different phones were very similar across the noise types, suggesting that
it may be sufficient to use SSN for assessing the relative performance across the devices.
This is in agreement with a recent study by Wong et al. (2012), which concluded that
the SSN was a good predictor of the intelligibility in more realistic background noises.

The maximal difference in SRT70 obtained for the three phones with the SSN
amounted to about 2 dB, which was reflected in a difference of the psychometric
functions for phone C and B of 25% at an SNR of 0 dB. Such a difference might be
crucial in an everyday communication situation, and motivates the use of intelligibility
as a critical performance parameter of mobile phones. The measured psychometric
functions also revealed a difference of 40% between phone C and the Ref condition
at an SNR of 0 dB. This shows that there should be potential for improved speech
intelligibility in future mobile phone systems.

7.4.3 Performance of the prediction models

Another aim of the present study was to investigate to what extent an objective
speech intelligibility model could replace a panel of human listeners for evaluating the
performance of a modern mobile phone. The sEPSM framework accounted qualitatively
for the differences in SRT70 across the three different mobile phones considered in this
study, in all three considered background noise conditions, i.e. the predicted rank order
across the phones was in agreement with the data. Moreover, the model accounted
quantitatively for the data obtained with SSN showing an RMS error of only 0.51
dB. This suggested that this metric might be useful for performance discrimination
in the development process of mobile phones. However, the predictions for the Pub
and Traffic noises were offset vertically by -8 and -5 dB, respectively, implying that
the model was too sensitive in those conditions. For all mobile phones, the sEPSM
predicted a better intelligibility for the Pub noise compared to SSN, which is in contrast
to the data. Thus, the predicted rank order across the three noises was not in agreement
with the data. This discrepancy might be related to possible errors in the separation
process of the speech and noise signals after the transmission through the mobile phone.
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Further analysis of the model’s internal representation of the stimuli may reveal the
source of the prediction errors, which was beyond the scope of this study.

The predictions from the ESII were in agreement with the data for the Ref and Ref
BP conditions, but failed to accurately account for the different SRT70 across the mobile
phones. Therefore, this metric did not seem appropriate for performance discrimination
of the mobile phones considered in the present study.

7.5 Summary and conclusions

Speech intelligibility performance was assessed for three commercially available
mobile phones in three different noise scenarios. The results showed clear differences
in speech intelligibility across the three mobile phones of up to 2 dB of the SRT70 and
across the three noise conditions. Speech transmission via the considered mobile phones
led to a decreased speech intelligibility, relative to the reference condition without
speech transmission through the mobile phones, demonstrating a substantial room
for improvement with respect to optimization of the mobile phone signal processing
for speech intelligibility. A good correspondence between the predictions from the
sEPSM and the measured perceptual intelligibility was obtained in the conditions with
a stationary speech-shaped background noise. This suggests that the sEPSM might be
useful for objective speech intelligibility prediction in the development and evaluation
of mobile phone algorithms.
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8
General discussion

8.1 Summary of main results

This thesis described the development and evaluation of a new model framework
for speech intelligibility prediction. The key hypothesis of the approach, outlined in
Chapter 2, was that the signal-to-noise envelope power ratio (SNRenv) may be used as
the “decision metric” for predicting speech intelligibility in noise. This was inspired by
earlier work by Dubbelboer and Houtgast (2008), where a similar metric was used to
predict speech intelligibility, based on a simple modulated pure-tone signal. Moreover,
the model included modulation frequency selective processing, motivated by several
studies demonstrating that such a concept is crucial in order to account for perceptual
data obtained with amplitude modulated stimuli (e.g., Dau et al., 1997a,b; Kohlrausch
et al., 2000; Dau et al., 1999; Ewert and Dau, 2000; Ewert et al., 2002).

Chapter 2 described the details of the new framework, where the SNRenv was
measured from the envelope power spectra of noisy speech and noise alone at the
output of a modulation bandpass filterbank following peripheral auditory filtering.
The envelope power of the stimuli were normalized with the DC1 component of the
envelope power spectrum, implying that the SNRenv effectively reflects the amount
of modulation masking by the noise. This approach was earlier considered in the
framework of the envelope power spectrum model (EPSM; Ewert and Dau, 2000),
where the signal-to-noise metric in the envelope domain was shown to predict amplitude

1 The DC component of the envelope power spectrum is mathematically equivalent to the squared time-
averaged amplitude of the envelope, from which the spectrum is calculated.
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modulation detection and masking data. The new model was therefore denoted the
speech-based EPSM (sEPSM).

While the original EPSM assumed a simple decision criterion relating SNRenv to
detectability, the sEPSM introduced the concept of an “ideal observer”, which included
parameters that were assumed to be related to a specific speech material. This enabled
the model to account for differences in the response set size and redundancy of the
considered speech stimuli, assuming that the model had access to the noisy speech
mixture and the noise alone. The sEPSM was demonstrated to account for effects of
background noise, reverberation, and spectral subtraction processing on the speech
reception thresholds in normal-hearing listeners. It outperformed the classical speech
transmission index (STI) model, which failed to account for the effect of spectral
subtraction. It was suggested that the success of the sEPSM was caused by the
estimation of the noise envelope power, as a part of the SNRenv decision metric. The
noise envelope power, and thus the amount of modulation masking, increased after
the spectral subtraction processing, which could account for the reduced intelligibility
obtained in these conditions. In contrast, modulation masking is not reflected in
the STI since it measures the reduction in modulation power of the speech, which
is equivalent to assuming a constant modulation noise floor. Overall, the results of
Chapter 2 indicated that the modulation filterbank and the decision metric based on
the SNRenv were crucial components in the model for successful speech intelligibility
prediction. However, it was unclear whether the model would account for distortions
that affect mainly the spectral content (but not the temporal modulation content) of the
speech, such as phase jitter.

Chapter 3 investigated the role of spectro-temporal modulation processing for speech
perception by comparing predictions from the sEPSM from Chapter 2 to two modified
versions. One version, denoted as 2D-sEPSM, assumed a two-dimensional modulation
filtering stage, inspired by earlier work of Elhilali et al. (2003) that suggested such
a stage might be crucial to account for the effect of phase jitter distortion on speech
intelligibility. The other model version kept the one-dimensional (temporal) modulation
filtering as in the original sEPSM, but introduced an across audio-frequency mechanism
that evaluated the variability of the modulation filter outputs across the (peripheral)
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audio-frequency axis, inspired by models of comodulation masking release (CMR;
Buus, 1985; Piechowiak et al., 2007; Dau et al., 2013). This version was denoted
sEPSMX. The role of the decision metric was studied by comparing predictions from
the different sEPSM versions, which all considered the SNRenv as the decision metric,
to predictions from the spectro-temporal modulation index (STMI; Elhilali et al.,
2003) and the STI, which both incorporate a measure of the integrity of the speech
modulations (via the the modulation transfer function, MTF) as the decision metric.
The predictions from all models were compared to measured data in conditions with
reverberation, spectral subtraction processing and phase jitter distortion. The results
showed that only the models based on the SNRenv decision metric could account for
the whole data set, whereas the MTF-based models failed to account for spectral
subtraction processing. Moreover, only those models that considered some across-
channel processing could account for the effects caused by the phase jitter distortion.
The sEPSMX provided the best predictions (in terms of least root-mean-squared errors),
suggesting that the 2D modulation filterbank processing as assumed in the STMI
(and implemented in the 2D-sEPSM) might not be crucial for speech intelligibility
prediction.

The models presented in Chapter 2 and 3 considered the SNRenv based on long-

term estimates of the envelope power. These models would therefore not be able
to account for conditions in which speech is mixed with a non-stationary interferer.
In such conditions, speech intelligibility has been demonstrated to be better than in
conditions with a stationary interferer; an effect referred to as speech masking release.
A non-stationary interferer would actually contain a dominant long-term envelope
power, which would lead to more modulation masking compared to the situation with
a stationary noise, i.e., the opposite to a speech masking release. To overcome this
limitation, Chapter 4 presented a multi-resolution version of the sEPSM (mr-sEPSM),
inspired by the short-term estimation of the SII introduced with the Extended SII model
(ESII; Rhebergen and Versfeld, 2005). Instead of estimating the envelope power
from the long-term envelope power spectra, the multi-resolution version estimated
the envelope power from the time-domain envelope waveforms at the output of the
modulation filterbank. The outputs from the modulation filterbank were segmented
with durations that were inversely related to the center frequencies of a the modulation
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filters, i.e., long windows were used at low modulation center frequencies and short
windows at high modulation center frequencies. This allowed the model to capture
information reflected in both slowly varying low-frequency modulations as well as
fast fluctuating high-frequency modulations in the noisy speech. This effectively
allowed the model to evaluate the SNRenv in the temporal dips of the fluctuating
interferer, and thus to capture the potential release from modulation masking in those
time instances. The multi-resolution sEPSM was demonstrated to account for the
effect of various stationary and fluctuating interferers, as well as for conditions with
reverberation and spectral subtraction, demonstrating an improvement over the original
(long-term) sEPSM and the ESII, which failed for reverberation and spectral subtraction
processing. The combination of the multi-resolution model with the across-channel
variance mechanism described in Chapter 3 should allow the model to also account for
the conditions with phase jitter.

An analysis of the internal representation of the stimuli in the mr-sEPSM revealed
that the release from masking predicted by the model resulted from a greater SNRenv

in the modulation frequency channels centered at modulation frequencies above about
16 Hz. This suggested that relatively high-rate modulations were important for the
masking release effect. This was investigated further in Chapter 5 where predictions
from the multi-resolution sEPSM were compared to data from Christensen et al. (2013),
which considered the effect of attenuating high-rate modulations from the target and
the interfering talker on speech intelligibility. Their data showed that envelope low-
pass filtering with a cutoff frequency of 30 Hz led to lower speech intelligibility
than with a cutoff frequency of 300 Hz. The model accounted well for this effect,
supporting the model-based finding from Chapter 4 that high-rate modulations can be
important for speech intelligibility in conditions with speech interferers. Chapter 5
also compared model predictions in conditions with speech mixed with different types
of fluctuating interferers to corresponding data from Festen and Plomp (1990). The
sEPSM predictions were in good agreement with the data in the conditions with
fluctuating noise and interfering talkers, except for one condition where the interferer
consisted of time-reversed speech from the same talker as the target. In this case,
the intelligibility data may have been influenced by the listeners’ ability to segregate
the target and the interfering speaker. Such an effect is not included in the sEPSM
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framework, which “only” represents the amount of modulation masking. The additional
masking observed in the data may be related to “informational masking”, which
might reflect an interference in the processing of carrier (or fundamental frequency)
information that is not reflected in the model.

Chapter 6 challenged further the general application of the sEPSM framework
for speech intelligibility prediction. The hypothesized relationship between SNRenv

and speech intelligibility was investigated using stimuli that were manipulated to
have different value of SNRenv, while keeping the same acoustic long-term power
SNR. This was done by modifying the modulation power of speech before mixing
it with unprocessed stationary speech-shaped noise or by modifying the modulation
power of the noise before mixing it with the unprocessed speech. The predictions
were in agreement with the corresponding perceptual data in the conditions with
processed noise. However, the model failed to capture the effects of manipulating the
speech (alone) on the intelligibility. The model predicted that speech intelligibility
should increase when the modulation power of the speech was enhanced; in contrast,
a reduction of intelligibility was observed in the data. An analysis of the stimuli
suggested that the processed speech stimuli were distorted, which might explain the
reduced intelligibility. The distortions were introduced by the modulation processing
framework, because the enhanced modulation content of the speech was not restricted to
follow the natural modulation of the clean speech, but might have contained modulation
components not related to speech at all. This was not captured in the SNRenv-metric,
because the sEPSM considers all modulations in the noisy speech input that are
not related to the noise as belonging to the speech - and thus as beneficial. The
conditions with processed speech alone thus demonstrated a clear limitation of this
model framework. However, it was argued that this failure is not a principal limitation
of the SNRenv concept, but rather a limitation of the model used to estimate the SNRenv.
This was supported by simulations of conditions where speech modulations were
enhanced in a natural way by instructing the talker to pronounce the words very clearly
(Payton et al., 1994). The model predicted a greater intelligibility for the clearly spoken
speech compared to conversationally spoken speech, in agreement with the perceptual
data. The results of Chapter 6, thus, supported the hypothesis of a relationship between
SNRenv and speech intelligibility.
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Chapter 7 evaluated the usefulness of the sEPSM to predict speech intelligibility in a
practical scenario. The aim of this study was to evaluate the intelligibility of speech
transmitted through modern telecommunication systems, such as mobile phones, and
to assess whether the sEPSM could be used to predict the intelligibility performance
of the phones. Predictions were compared to perceptual data obtained with three
different mobile phones in conditions with three different types of background noise.
The perceptual data showed that the intelligibility became worse when the speech was
transmitted through any of the phones, compared to the reference condition without any
phones. The intelligibility of the transmitted speech with a given type of background
noise varied across the different phones, most likely reflecting differences in the noise
reduction processing in the three phones. The variation across the phones was similar
for all types of background noise, suggesting that one of the noise types would be
sufficient to discriminate the performance across phones. The conditions with stationary
speech-shaped noise led to the lowest variability across the listeners, and thus the most
reliable data. The sEPSM accounted for the overall pattern of results across the three
phones for all noise types, and closely matched the data in the conditions with speech-
shaped noise. However, the model generally predicted too good performance for the two
other noise types. This discrepancy might be related to the way the noise component of
the transmitted noisy speech was estimated, but further analysis is required to clarify
this effect in the model. Overall, the results from Chapter 7 demonstrated that the
model was applicable as an objective tool for speech intelligibility assessment in the
development process of mobile phones.

8.2 The role of modulation frequency selectivity for
speech intelligibility

One main hypothesis in the sEPSM framework is that modulation frequency selectivity
is crucial for speech intelligibility. However, several speech intelligibility models like
the SII and ESII, have been presented in the literature that do not include this concept,
and nevertheless, they were shown to perform well in various conditions. This raises
the question of whether the modulation frequency selectivity is a crucial component
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of a speech intelligibility model. One critical condition that appears to discriminate
the models with and without modulation frequency selectivity is reverberation. This
condition is interesting because reverberation represents a highly ecologically relevant
condition, which is very common in everyday environments. The predictions from the
“modulation low-pass” version of the multi-resolution sEPSM without a modulation
filterbank (gray triangles in Fig. 4.6) could account for the data in the conditions with
reverberation and spectral subtraction, indicating that modulation frequency selectivity
might not be crucial for these conditions. This was in contrast to the analysis described
in Chapter 2, which suggested that the modulation filterbank actually was important for
the model to account for spectral subtraction. However, the model version without the
modulation filterbank did, in fact, include modulation frequency selective processing in
the form of the multi-resolution segmentation, because the different segment durations
preserved modulation frequencies down to 1/td Hz, where td was the duration of the
segment. In contrast, as demonstrated in Chapter 4, a model without any modulation
frequency selectivity process, such as the ESII, fails to account for the effect of
reverberation, even though it represents a fine temporal resolution. Similarly, the
short time objective intelligibility (STOI; Taal et al., 2011) model, which considers
a modulation-based decision metric but no modulation frequency selectivity, fails to
account for the effects of reverberation. Thus, in such a condition, the failure of these
models might not be due to the decision metric, but because of the lack of modulation
frequency selectivity. Overall, the concept of modulation frequency selectivity, either
in the form of a modulation bandpass filterbank or a multi-resolution segmentation,
was crucial for the sEPSM to account for reverberation. This is consistent with the STI
model, which also included modulation frequency selectivity and can account for effects
of reverberation. The results of this thesis therefore further supports the hypothesis that
modulation frequency selective processing is crucial for speech intelligibility in some
conditions. The concept of modulation frequency selectivity has also been supported by
results from physiological studies in animals (Langner and Schreiner, 1988; Schreiner
and Urbas, 1988), neural imaging in humans (Xiang et al., 2013), auditory modeling
(e.g., Dau et al., 1997a; Verhey et al., 1999; Derleth and Dau, 2000; Jepsen et al.,
2008), sound texture synthesis (McDermott and Simoncelli, 2011), and auditory scene
analysis (Elhilali et al., 2009).
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8.3 Limitations of the modeling framework

One general limitation of the proposed model framework is related to the decision
metric: the SNRenv metric is a concept based on a the envelope power ratio of the
speech and the noise components, estimated from a noisy speech mixture. As such, the
SNRenv is, in principle, only valid in conditions where the noise component of the noisy
speech mixture can be specified. This is the case when the noise is additive, i.e., when
the noise and the speech components are independent signals from which the envelope
power can be computed. In contrast, the SNRenv would be difficult to determine in
conditions where, for example, an ideal binary mask (IBM) was applied to a noisy
speech mixture with a very low SNR (e.g., Kjems et al., 2009). In such a case, the noise
and speech components, and thus their envelope power, are not independent because
the noise is modulated with the spectro-temporal structure of the speech. However,
even though the SNRenv-metric has limitations, the concept of an intelligibility decision
metric defined in the envelope domain might still be valid and could be defined in a
different way than using the envelope power. For example, Goldsworthy and Greenberg
(2004) suggested to compute an SNR in the envelope domain from the cross-correlation
coefficient r of the clean and the processed envelope signals:

SNRenv
∗ =

r
1− r

. (8.1)

In this case, r (the numerator) would represent the amount of target speech information,
and 1 − r (the denominator) would describe the amount of non-target speech
information. Similar approaches have also been considered recently where r was used
as the decision metric directly (Christiansen et al., 2010; Taal et al., 2011). The STOI
model (Taal et al., 2011) was demonstrated to successfully predict speech intelligibility
in conditions with IBM-processed speech and in conditions with single-channel noise
reduction. This approach may also account for some of the conditions with processed
speech considered in this thesis, such as the conditions with modulation processed
speech considered in Chapter 6, where the envelope-power based metric failed. One
benefit of the correlation-based metric is that it includes information about the envelope
phase, which is not captured by the envelope power metric. A decision metric based on
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correlation will therefore be sensitive to within-channel phase differences between the
processed and the original envelope, which might be crucial in some cases, such as with
the phase jitter distortion considered in Chapter 3. This suggests that an SNRenv-metric
based on a cross-correlation between the clean speech and the processed (noisy) speech
envelope, via a template matching process, might present a more successful strategy in
some cases. One drawback of a cross-correlation based decision metric is, however,
that the cause for a reduced correlation between the clean and processed envelopes is
difficult to directly relate to a physical source, since it can result from any difference
between the clean and the processed noisy signal. In contrast, with an envelope-power
based metric, the physical source that causes a reduction in the decision metric must be
a change in the envelope power of the speech, the noise or both. Thus, the envelope
power might still be an attractive concept because it allows to characterize intelligibility
based on a physically measurable quantity, namely the envelope power spectrum of the
noise and the mixture, without assuming a specific template.

8.4 Perspectives

The sEPSM framework is effectively a monaural model of speech intelligibility.
However, a general model should be applicable in realistic scenarios with spatially
distributed targets and interferers. Typically, speech intelligibility is greater when
the target and the interferer are spatially separated, compared to the situation where
they are colocated, an effect referred to as “spatial release from masking” (e.g, Plomp
and Mimpen, 1981; Bronkhorst and Plomp, 1992; Hawley et al., 2004). Spatial
release from masking may be regarded as consisting of two components, one arising
from improvements in SNR at the “better ear” closest to the target, mainly caused
by headshadow, and another due to “binaural interaction”, possibly facilitated by
interaural time differences between the target and the interferer (Durlach, 1963; Culling
and Summerfield, 1995; Breebaart et al., 2001). The sEPSM could be extended to
separately evaluate the input signals to the left and right ear, whereby the better ear effect
could be modeled. In order to account for effects of binaural interaction, the sEPSM
should be combined with a model of binaural processing, such as the equalization
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cancelation model (EC; Durlach, 1963). Such a framework might allow the evaluation
of the relative contribution of the better-ear effect and the binaural interaction on the
spatial release from masking in various target and interferer configurations. Several
model approaches have already considered speech intelligibility in spatial scenarios
(e.g., Beutelmann and Brand, 2006; Beutelmann et al., 2010; Lavandier and Culling,
2010; Lavandier et al., 2012). However, these models are typically based on the
SII or STI that have been demonstrated to be limited in certain monaural conditions.
Thus, it would be interesting to investigate if a binaural model combined with the
SNRenv decision metric could provide a more general framework for prediction speech
intelligibility in realistic spatial scenarios.

So far, the sEPSM has relied on a priori information about the noise component
of the noisy speech mixture in order to predict speech intelligibility. However, this
might be difficult to achieve outside the laboratory, and a “blind” estimation of the
SNRenv would therefore be valuable for speech intelligibility evaluation in practical
applications. This might be obtained by estimating the noise and speech sources using
principles from computational auditory scene analysis (Wang, 2005). For example,
binaural cues and pitch information might help to estimate an ideal binary modulation
mask, which would directly correspond to a blind estimation of SNRenv that could
be used to predict speech intelligibility. A corresponding approach was considered
by Wójcicki and Loizou (2012) where the aim was to perform noise reduction in
the modulation domain, rather than to predict intelligibility. They demonstrated that
the blind estimation of the noise led to qualitatively similar results as using a priori

information. It would be interesting to investigate if a similar approach could be applied
in the sEPSM framework for speech intelligibility prediction.

The current version of the sEPSM assumes that one of the sources of reduced speech
intelligibility is modulation masking. Moreover, it assumes that the listener can always
distinguish between the target and the interferer. However, in some conditions of
speech mixed with a speech interferer, the listener may confuse target and interfering
talkers. This confusion has often been referred to as “informational masking” (e.g.,
Brungart, 2001). Informational masking has been suggested to be associated with
the listeners’ inability to perceptually segregate the target and the interfering sources
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(Shinn-Cunningham, 2008), which is related to the concept of auditory streaming,
where acoustic events are grouped into distinct perceptual objects depending on their
spectro-temporal properties (Bregman, 1990). Recently, models of computational
auditory scene analysis have been shown to account for a one-versus-two stream
percept of synthetic signals, as well as the transition between the two percepts (Elhilali
et al., 2009; Shamma et al., 2011; Christiansen et al., 2014). A similar modeling
concept might be applied to determine the perceptual grouping of one or more speech
and noise sources, whereby such a model could be combined with the sEPSM to predict
aspects of informational masking in relation to auditory stream segregation.
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Speech intelligibility depends on various factors related to auditory 
processing and sound perception, as well as on the acoustic properties of the 
sound that enters the ear. However, a clear understanding of speech 
perception in complex acoustic conditions and, in particular, a quantitative 
description of the involved auditory processes, provides a major challenge in 
speech and hearing research. This thesis presents a computational model 
that attempts to predict speech intelligibility performance of normal-hearing 
listeners in various adverse conditions. The model combines the concept of 
modulation-frequency selectivity in the auditory processing of sound, with a 
decision metric for intelligibility that is based on the signal-to-noise envelope 
power ratio (SNRenv). The proposed speech-based envelope power spectrum 
model (sEPSM) is evaluated in conditions with stationary and fluctuating 
interferers, reverberation and various types of processed noisy speech, 
including noisy speech transmitted through mobile phones.  
Overall, the results of this thesis support the hypothesis that the SNRenv is a 
powerful objective metric for speech intelligibility prediction. Moreover, the 
findings suggest that the concept of modulation-frequency selective 
processing in the auditory system is crucial for human speech perception. 
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