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Abstract

Accurate spatial audio recordings are important for a range of applications, from the creation

of realistic virtual sound environments to the evaluation of communication devices, such as

hearing instruments and mobile phones. Spherical microphone arrays are particularly well-

suited for capturing spatial audio in three dimensions. However, practical constraints limit

the number of microphones that can be used and thus the maximum spatial resolution and

frequency bandwidth that can be achieved. Further, most important sound sources are near

the horizontal plane, where human spatial hearing is also most accurate. This thesis therefore

investigated whether the horizontal performance of spherical microphone arrays could be

improved (i) through an appropriate placement of a fixed number of transducers on the sphere,

and (ii) by applying mixed-order ambisonics (MOA) processing. MOA combines higher-order

ambisonics (HOA) with additional, horizontally oriented spherical harmonic functions of

higher orders. Simulations of a MOA array, with a higher density of microphones near the

equator, and an array with a nearly uniform distribution of microphones were compared

in terms of spatial resolution and robustness. A MOA array was constructed, and some of

the simulation results were validated with measurements. Results showed that for MOA, the

spatial resolution was improved for horizontal sources at mid to high frequencies and the

robustness to noise and measurement errors was similar to that of HOA. The properties of

MOA microphone layouts and processing were investigated further by considering several

order combinations. It was shown that the performance for horizontal vs. elevated sources

can be adjusted by varying the order combination, but that a benefit of the higher horizontal

orders can only be seen at mid to high frequencies as the need for regularization limits spatial

directivity at lower frequencies. Finally, the MOA array was also evaluated in terms of sound

field reconstruction error in a head-sized region. Results provided a physical validation of the

functioning of the MOA microphone array and further showed that the MOA approach results

in a somewhat larger “sweet area” for horizontal sources than for elevated sound sources.

While the focus was on the technical evaluation of the developed MOA system, potential

perceptual effects concerning MOA and microphone array recordings in general are also

discussed. The system developed in this work provides new possibilities for the investigation

of human perception in realistic and complex acoustic environments.
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Resumé

Præcise rumlige lydoptagelser er vigtige i en række af anvendelsesområder, fra skabelsen af

realistiske virtuelle lydmiljøer til evalueringen af kommunikationsapparater såsom høreappa-

rater og mobiltelefoner. Sfæriske mikrofon-arrays er særligt velegnede til at optage rumlig lyd

i tre dimensioner. Praktiske problemstillinger begrænser dog antallet af mikrofoner der kan

anvendes, hvilket begrænser den maksimale rumlige opløsning samt frekvens-båndbredden

der kan opnås. Ydermere befinder de fleste vigtige lydkilder sig typisk nær det horisontale plan,

hvor den menneskelige rumlige hørelse også er mest nøjagtig. Denne afhandling undersøgte

derfor hvorvidt den horisontale ydeevne af sfæriske mikrofon-arrays kunne forbedres (i)

ved en passende placering af et givent antal af mikrofoner på kuglen, og (ii) ved at anvende

mixed-order ambisonics (MOA) processering. MOA kombinerer højere-ordens ambisonics

(HOA) med yderligere, horisontalt orienterede sfæriske harmoniske funktioner af højere

orden. Simulationer af et MOA-array med en højere densitet af mikrofoner nær ækvator,

samt et array med en nær uniform fordeling af mikrofoner blev sammenlignet i form af rumlig

opløsning og robusthed. Et MOA-array blev konstrueret, og en del af simulationerne blev

valideret med fysiske målinger. Resultaterne for MOA viste, at den rumlige opløsning var

forbedret for horisontalt placerede lydkilder ved mellem og høje frekvenser, og at robustheden

overfor støj og målefejl var sammenlignelig med robustheden ved HOA. Egenskaberne ved

MOA mikrofonplaceringen og processeringen blev yderligere undersøgt ved at betragte flere

kombinationer af forskellige ordener. Det blev vist, at ydeevnen for horisontale lydkilder

i forhold til eleverede lydkilder kan justeres ved at variere kombinationerne af ordenerne,

men at fordelen ved højere horisontale ordener kun ses ved mellem og høje frekvenser, da

behovet for regularisering begrænser den rumlige direktivitet ved lave frekvenser. Slutteligt

blev MOA-arrayet også evalueret i forhold til rekonstruktionen af lydfelter i et område svarende

til størrelsen på et hoved. Resultaterne gav en fysisk validering af funktionaliteten af MOA

mikrofon-arrayet og viste yderligere, at MOA-tilgangsvinklen giver et noget større område

med en god reproduktion af lydfelter for horisontale lydkilder end for lydkilder med eleverede

placeringer. Selv om det primære fokus var på den tekniske evaluering af det udviklede MOA

system, er potentielle perceptuelle effekter af MOA og optagelser ved hjælp af mikrofon-arrays

generelt også diskuteret. Systemet, som blev udviklet i forbindelse med dette projekt, giver

nye muligheder for at undersøge menneskelig perception i realistiske og komplekse akustiske

miljøer.
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1
General introduction

1.1 A cocktail party: from life to lab

One of the central goals in hearing research is to better understand the “cocktail-party effect”:

how listeners are able to extract information about their environment from a complex acoustic

scene around them, and how they are able to attend to specific sources in that environment.

The healthy auditory system has a remarkable ability to focus on and process information

in adverse acoustic conditions. Hearing-impaired listeners, on the other hand, often report

great difficulties in understanding speech in everyday conditions, where many sound sources

and reverberation are encountered. These difficulties in complex, noisy situations frequently

persist even when these listeners have been fitted with hearing aids, and also affect cochlear

implant users. One of the biggest challenges faced by hearing instrument manufacturers is

improving speech intelligibility and the users’ awareness of their surroundings in dynamic,

complex conditions.

The ability to test listeners in realistic acoustic environments in a repeatable and controlled

manner could provide new insights into the processing strategies employed by the auditory

system in adverse conditions, and could benefit the development and testing of advanced

hearing instruments. However, studies of listener performance in more realistic environments

have so far been held back by the complexity of running lengthy field tests and, until recently,

by the difficulty of reproducing acoustic scenes in a realistic and repeatable manner in the

laboratory. To address this problem, recent work at the Centre for Applied Hearing Research

(CAHR) and elsewhere has focused on the development and application of virtual sound

environments (VSEs) for hearing research (e.g. Minnaar et al., 2010; Seeber et al., 2010; Grimm

et al., 2014). At CAHR, a loudspeaker-based virtual sound environment (“Spacelab”) was

installed, and a room-auralization framework, the LoRA toolbox, was developed by Favrot and

Buchholz (2010), allowing a realistic playback of simulated room acoustics.

However, scenes with dynamic, spatially extended, or a large number of sound sources

are generally difficult to simulate. Moreover, if the goal is to investigate a specific, existing

room or space, it can be difficult and time consuming to obtain the necessary parameters

and to fine-tune the acoustic model for an accurate reproduction (Bork, 2005; Cubick, 2011).

Limitations of the various acoustic models, such as the number of reflections considered, or

the way late reverberation is simulated can also impact the perception of the simulated rooms

(Zahorik, 2009). Thus, it would be advantageous to be able to capture the acoustic space,

or to record the spatial acoustic scene directly. The work presented in this thesis addresses

1
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the development and evaluation of a microphone array system that allows the recording of

dynamic, real-life acoustic scenes.

In order to record and reproduce spatial sounds, it is necessary to spatially sample the sound

field, which is usually achieved with an array of microphones. Spherical microphone arrays, in

particular, have the advantage that they can capture the spatial properties of the sound field in

all directions around the array. Spherical arrays have seen increasing use in diverse applications

from spatial audio (Abhayapala and Ward, 2002; Meyer and Elko, 2004), beamforming (Meyer

and Elko, 2002; Li and Duraiswami, 2007) to room acoustic measurements (Gover et al., 2004;

Park and Rafaely, 2005). As the objective is to recreate an acoustic scene around a single

listener in a virtual environment, the use of such a spherical microphone array and the higher

order ambisonics (Daniel, 2000; Moreau et al., 2006) technique is proposed in this work. The

approach is based on a spherical harmonic decomposition of the sound field, and has the

advantage that reproduction errors are minimized within the “sweet spot” around the listeners

head.

With regards to the configuration of the array, a new approach has been taken. Instead of

using a uniform distribution of microphones on the sphere, the microphones are arranged

in a way that better matches the capabilities of human hearing: providing maximum spatial

resolution in the horizontal plane, while still recording vertical (height) information. This is

achieved by placing more microphones near the equator, and employing a matching mixed-

order ambisonics scheme. Mixed-order ambisonics allows for a fully three-dimensional sound

field to be reproduced around the listener, but with more horizontal detail where most real-life

sound sources are situated, and where spatial hearing is most acute (Blauert, 1997b).

The term “acoustic scene” is used in this context to denote the physical sound field around

the listener created by the various sound sources and the acoustic space, as opposed to the

“auditory scene”, which already implies analysis (i.e. source segregation, streaming) by the

auditory system (Bregman, 1994). It follows that the main aim in this work has been to preserve

the physical properties of the recorded scene as closely as possible.

In order to investigate spatial perception itself, ideally one must produce a sound field that

is physically “correct”, and does not rely on perceptual effects to position sound sources. Any

departure from a purely physically-based reproduction introduces a new variable, whose

potential effect on the measurement in question must be carefully evaluated. Similarly,

technical devices, such as hearing aids or mobile phones with multiple microphones and

beamforming algorithms, can only be expected to behave as designed in realistic sound fields.

However, it is clear that with current technologies, it is not possible to capture and reproduce a

sound field with a high enough accuracy and a large enough bandwidth that perceptual effects

can be neglected (Spors et al., 2013). Although this comprises future work, these limitations

underscore the importance of perceptually evaluating spatial audio systems. Nonetheless,

accurate reproduction can be obtained for a more restricted range in frequency and space,

and it is therefore essential before any perceptual evaluation to thoroughly characterize the

physical limitations of the applied methods. These physical limitations are investigated in

detail in this work.
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1.2 Overview of the thesis

The thesis comprises 6 chapters and an appendix. Some of the chapters are based on already

published or submitted manuscripts, as indicated in each chapter. An overview of the topics

covered by the various chapters is presented below.

Chapter 2 provides a brief overview of spatial hearing, as well as spatial audio recording

and reproduction techniques applicable to virtual sound environments, such as binarual

synthesis, wave field synthesis (WFS), higher-order ambisonics (HOA) and directional audio

coding (DirAC). An emphasis is placed on HOA, which serves as a basis for the methods applied

in this work.

Chapter 3 introduces the concept of mixed-order ambisonics (MOA), and presents the

design and evaluation of a MOA microphone array. The goal set out in this study was to design

and evaluate a microphone array capable of capturing a fully three-dimensional representation

of the sound field, but with more detail in the horizontal plane. Simulations of a MOA array,

featuring an uneven distribution of microphones over the sphere, were compared with an HOA

array (e.g. as proposed by Daniel et al., 2003) with a nearly-uniform microphone layout. The

comparison was made in terms of physical measures related to the array output, adapted from

literature on beamforming (e.g. Li and Duraiswami, 2007), as well as in terms of measures of the

reproduced sound field introduced by Gerzon (1992). Some of the existing metrics had to be

adapted to the mixed-order approach due to the elevation dependence of array performance.

An effort was made to provide realistic simulations of transducer self-noise and characteristic

variations, in order to predict the real-life performance of the microphone arrays. Finally, a

prototype mixed-order array was constructed, and some of the simulated performance metrics

were validated with measurements.The study demonstrates the feasibility of using MOA for

microphone arrays, but also highlights that the advantages of the technique are restricted to

higher frequencies, due to limitations imposed by the need for regularization.

The study presented in Chapter 4 follows the approach presented in the previous chapter,

but now investigates the impact of using different order combinations in mixed-order

ambisonics. An appropriate microphone layout for each order combination is derived using

a method that distributes rings of microphones on a sphere. The aim of this study was to

investigate how performance for horizontal vs. elevated sources can be adjusted by changing

the order combination and applying a matching array layout.

So far, the focus has been on differentiating between horizontal and vertical performance

characteristics of the microphone array. The size of the “sweet area”, in which the sound field

is reproduced with low error, was not explicitly considered. In Chapter 5, this is investigated

by evaluating the error of the reproduced sound field as a function of the distance from

the origin, using both simulations and measurements of the MOA microphone array. The

effects of deviations from ideal transducer characteristics are also considered. The error of

the reproduced sound field is of interest, as the listener’s head or the device under test should

ideally be encompassed by the “sweet area” in the virtual environment. It is a property of

ambisonics that the error is a function of the product of the radius and the frequency. For a
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fixed radius, like the size of a listener’s head, the error increases with frequency, and provides

an upper frequency limit for physically correct reconstruction.

In Chapter 6, the main findings of the thesis are summarized. The advantages and

limitations of the proposed array system, as well as directions for further improvement are

considered, with a focus on potential perceptual effects. The perspectives for the application

of the array are discussed.

An additional project concerned with a more fundamental aspect of auditory perception,

namely frequency selectivity, was also carried out and forms a part of this thesis. In addition

to spatial cues, the frequency selective properties of the auditory system play a crucial role in

its ability to segregate one sound source from another, and thus in making sense of a complex

acoustic environment. Specifically, the nonlinear behavior of the cochlea may play a key role

in this respect. However, since the results of this investigation were not directly related to the

main topic of this thesis, they are presented in the appendix.

Chapter A investigates two approaches of estimating the bandwidth of nonlinear auditory

filters using a very simple, schematic auditory model. It is shown that, depending on the

structure of the model, the interaction between a compressive nonlinearity and the bandwidth

estimation method can lead to different estimates of the auditory filter bandwidth. This has

implications on the interpretation of psychophysical estimates of human auditory frequency

selectivity derived from simultaneous and forward masking experiments. In Chapter B a

more complete auditory model was applied to investigate and further analyze differences

in frequency selectivity between the two masking paradigms that have been reported in

the literature. Specifically, it was tested in model whether the nonlinear phenomenon of

suppression can explain the observed frequency selectivity differences.



i
i

“main” — 2015/1/29 — 15:09 — page 5 — #23 i
i

i
i

i
i

2
Background

2.1 Virtual sound environments

A virtual sound environment attempts to create an acoustic scene that the listener perceives

as a convincing (i.e. authentic or plausible) auditory scene. The exact methods employed can

vary greatly, but the basic approach is that a representation of the acoustic scene (whether

simulated or recorded) is processed and presented to the listener, either through loudspeakers

or headphones, eliciting some of the auditory cues related to spatial hearing. The methods can

be differentiated broadly based on (i) how the acoustic scene is represented, (ii) the techniques

with which the scene is presented to the listener, and (iii) the overall goals in terms of fidelity,

i.e whether the focus is authenticity, plausibility or artistic effect.

The first point is most closely related to how the acoustic scene itself is constructed. If the

scene is simulated, it may be represented as a collection of virtual sources in a virtual acoustic

space, with various parameters, such as the dimensions of the room and the location of the

sources. If the scene is recorded directly, it is usually represented as multi-channel sound

data, where the channels may correspond directly to loudspeaker signals, or to elements in a

mathematical representation of the sound field, such as higher-order ambisonics.

The distinction between simulation and recording is not exclusive, as the acoustic scene can

also be constructed by combining simulated and recorded elements, such as when anechoic

recordings of real sources are placed in a simulated acoustic space, or when a recording in a

real space is modified by the recording engineer by mixing various recorded signals. The latter

is the case for many recordings produced for artistic or entertainment purposes.

The second point refers to the techniques used to reconstruct and deliver the acoustic

signal to the ears of the listener. The main options here are delivery through headphones,

requiring only two channels, and loudspeaker-based systems using anything from two up to

tens or even hundreds of channels. The specific spatial audio techniques, such as binaural

synthesis, wave-field synthesis or higher-order ambisonics determine the signals that the

headphones or loudspeakers need to be driven with to recreate the desired scene.

Regarding the final point, it is important to distinguish between different possible goals of

a virtual sound environment in terms of fidelity with regard to a real or simulated reference.

At one extreme, full physical fidelity, the goal is to have the same acoustic signal enter the

listener’s ears as if he or she had been present in the reference environment. This is the general

aim of sound field synthesis techniques like WFS and HOA. In practice, full physical fidelity

is only realizable with significant limitations, either regarding the scene itself (i.e. anechoic

5
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conditions, limited source positions) or with respect to the frequency range. In these cases,

the potential perceptual effects of the errors in the acoustic signals need to be evaluated.

Another possibility is to give up on the demand of reproducing the acoustic signal exactly,

and instead attempt to recreate a scene that is perceptually indistinguishable from, or at least

similar to, the reference scene. A downside of this approach is that, even if human perception

is not changed substantially in a given scenario, technical devices may not behave in the

expected way in the virtual environment, as the physical sound field can be significantly

different. Directional Audio Coding (DirAC; Pulkki, 1997) is an example of a technique that

aims at perceptual fidelity.

Further down the spectrum, approaches exist without the goal of matching an explicit

reference scene, rather aiming at presenting a plausible auditory scene to the listener. Most

spatial audio systems used for music and entertainment, such as typical cinema surround

systems, fall under this category. Finally, at the other extreme, it may not be desirable to

present realistic or plausible auditory scenes at all, if the goal is, for example, to convey non-

speech information through auditory means (e. g. data sonification), or to present imagined

or artificial sounds for artistic effect.

In practice it is often difficult to evaluate perceptually-based methods in terms of fidelity,

due to the difficulty of providing a direct comparison with an appropriate reference scene.

The definition of quality attributes and attribute identification techniques (e. g. Rumsey, 2002;

Berg and Rumsey, 2006) can aid in this case the subjective quality evaluation of spatial audio

systems, without the need for an explicit reference. In contrast, comparing repeatable technical

measures of the reference and reproduced sound fields is much more straightforward, and

has been – until recently – the primary method of evaluating sound field synthesis systems,

whose primary goal has been full physical fidelity. Nonetheless, successful approaches exist

aiming both at physical (e.g. WFS, HOA) and perceptual (e.g. DirAC) fidelity.

The aim of the approach in this work has primarily been to preserve physical fidelity, while

attempting to optimize the impact of physical limitations in a way that better matches human

spatial hearing. As the “receiver” is ultimately a human listener, in the following, a short

overview of the properties of human spatial hearing is provided.

2.2 Spatial hearing

Although vision is arguably our primary sense used for navigating in space, the spatial

information gathered by the auditory system is crucial in directing attention and providing

a sense of awareness of our surroundings, especially in directions outside of the visual field,

whether in real or virtual environments (Blauert, 1997a; Shilling and Shinn-Cunningham,

2002). Additionally, spatial information has been shown to enhance the ability to focus on a

specific source among a multitude of sound sources, termed the “cocktail-party” effect (e. g.

Hawley et al., 2004).

Thus, one of the primary goals of a convincing virtual sound environment is to present

spatial information to the listener, through the activation of one or more of the spatial hearing
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mechanisms of the auditory system. This section provides a brief overview of the major

auditory cues involved in spatial hearing. A more detailed review is provided by e.g. Akeroyd

(2006), and an exhaustive treatment of the the subject is given by Blauert (1997b).

The human auditory system is able to extract spatial information both from a single ear

(monaural cues), and by exploiting the differences between the signals reaching the two ears

(binaural cues). Localization refers to the ability to assign a spatial location to a sound source.

Localization in the horizontal plane is primarily based on interaural time and level differences

(ITDs and ILDs). ITDs are caused by a difference in time of arrival to the ears for sound sources

that are located away from the median plane, in the range of about 0 to 600 µs, depending on

the azimuth angle of the source. For continuous sounds, these time differences are translated

to phase differences. For pure tones, sensitivity to ITDs diminishes above about 1.5 kHz, but for

wideband signals, envelope ITDs can be detected also at higher frequencies. In contrast, ILDs

are detectable in a wide frequency range, but for distant sources the head only has a significant

shadowing effect above about 1 kHz (maximum of 10-20 dB, increasing with frequency). The

auditory system seems to use both ITDs and ILDs for localization, with ITDs dominating at

lower frequencies, at least in quiet (Wightman and Kistler, 1992). For close sources (with

a distance below 1 m), however, large ILDs can occur at lower frequencies due to the large

difference in distance to the source between ears (Shinn-Cunningham et al., 2000). Thus, ILDs

serve as an important distance cue for close sources.

Elevation-dependent spectral cues introduced by the outer ear allow localization in the

vertical direction. These cues occur as high frequency peaks and notches between about

4 and at least 17 kHz (Hebrank and Wright, 1974; Algazi et al., 2001b). The exact spectral

configuration is highly dependent on the shape and size of the listener’s ears and head, which

introduces significant individual differences in the measured transfer functions of the outer

ear (Algazi et al., 2001b). Low-frequency spectral cues (below 3 kHz) due to reflections from

the shoulders and torso may also aid the auditory system in estimating elevation (Algazi et al.,

2001a).

The localization performance of the auditory system varies with angle, and is best in

front of the listener, with the minimum audible angle (MAA) of about 1° in azimuth and 4° in

elevation (Perrott and Saberi, 1990). Localization performance is thus better in the horizontal

than vertical directions for sources close to the median plane, but horizontal localization

degrades towards the sides. Makous and Middlebrooks (1990) found localization errors of

between 2° and 20°, with better horizontal localization in front of the subject, but better vertical

localization for more peripheral source positions.

In contrast to localization, distance perception in humans is relatively inaccurate, with

listeners typically underestimating distance (Zahorik et al., 2005). The main acoustic cue in

anechoic environments appears to be intensity and high-frequency attenuation, whereas in

reverberant environments the direct-to-reverberant energy ratio provides a robust distance

cue. An attribute related to distance perception is externalization, or the perception of a sound

source being outside the head. Normally, real-life sound sources are perceived as externalized,

but in certain cases, especially when listening through headphones, sounds can be perceived
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as being inside the head. In reverberant environments, dynamic ILD fluctuations seem to be

involved in the perception of externalization and distance (Catic et al., 2013).

Other spatial attributes that have been linked to specific cues include spaciousness (the

perceived size of the environment) and apparent source width (the spatial extent of a sound

source), both of which appear to be associated with the amount of correlation between the

signals reaching the two ears (interaural cross-correlation; IACC) (Blauert, 1997b).

Overall, the localization ability of the auditory system is quite robust, and it will use

whatever cues or combination of cues that are available in noisy conditions (Akeroyd, 2006).

This is an advantage for spatial audio applications, as many systems will work “well enough”

in practice even if coherent spatial cues are only provided in a limited frequency range (Spors

et al., 2013).

In addition to providing information about the acoustic environment, binaural hearing

can aid in the separation of competing sound sources. Detection levels of signals masked by a

noise are lowered by the introduction of one or more cues corresponding to a spatial separation

between them. This effect is known as binaural masking level difference (BMLD) or spatial

release from masking, and can provide a gain in detectability of up to about 15 dB (Akeroyd,

2006). For speech intelligibility tasks, improvements of up to 6–15 dB in speech reception

thresholds have been reported, with higher improvement in cases where the non-spatial

features of the target and masker are otherwise similar (Shinn-Cunningham, 2002).

2.3 The acoustic scene

2.3.1 Representing the acoustic scenes

Acoustic scenes can be represented in a number of ways, combining both measured and

simulated elements. This section provides a brief overview of the various ways in which an

acoustic scene can be captured or constructed, and highlights the advantages and drawbacks

of the different approaches.

The acoustic scene is defined here as a collection of sound sources in an acoustic

environment. The acoustic environment represents the transmission path from the source

to the listener, which is typically a room, but can also be an outdoor location, or a smaller

enclosure, such as a car.

First, the representation of the sound source will be considered. To help differentiate

between approaches, it is useful to separate the concept of a sound source further into a

combination of (i) an audio signal, and (ii) the spatial attributes of the source. The audio signal

corresponds to the sound emitted by the source, but without spatial information. This can be,

for example, a time signal from a physical sound generation model, like a physical model of a

plucked string or a speech synthesizer. More often, a single-channel anechoic recording of a

sound source is used as the audio signal. The spatial attributes of the source in turn determine

how the audio signal is emitted and interacts with the acoustic environment, potentially in

a frequency-dependent way. The list of spatial attributes depend on the complexity of the
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model, but include the position (possibly changing) and the spatial directivity of the source.

The directivity can be specified by a simple source model, such as a plane wave or point source,

or specified explicitly, based on a more complex source model or measured data. For instance,

surrounding microphone arrays can capture sound sources with complex spatial directivities

(Zotter, 2009).

For most practical purposes, the acoustic environment as a transmission path can be

considered as a linear, time invariant system (Jacobsen and Juhl, 2013). This means that the

effect of the acoustic environment on the sound source at a receiver position is described by

the impulse response for the source-receiver pair. This impulse response can be obtained

from a model, or through a measurement of the acoustic space. The time invariance does not

hold for a moving source (or a moving receiver), because the transmission path changes at

each time instant. This introduces an additional difficulty in handling such sources, as the

impulse response needs to be constantly updated.

Accurate simulations of the acoustic environment are usually based on a geometrical

model of the space, including absorption and scattering coefficients of the reflecting surfaces.

Commercial room acoustic simulation programs (e. g. ODEON; Christensen and Koutsouris,

2013) can provide realistic simulations of rooms, typically using a combination of image

source and ray tracing methods in order to generate an impulse response for a specific source-

receiver pair (Vorländer, 2008). Methods providing real-time room acoustic simulations for

virtual environments have also been presented, with newer methods also handling dynamic

scenes with a moving listener or source (e.g. Noisternig et al., 2008; Schröder and Vorländer,

2011; Grimm et al., 2014). In music and entertainment applications, often much simpler

mathematical or signal processing models are used to generate “good sounding” reverberation,

without attempting to match a specific, physical environment (Gardner, 2002).

Impulse responses of a real room or space can also be obtained by measurement.

This entails placing a sound source, typically a loudspeaker, and one or more receivers

(microphones) in the acoustic space. As one impulse response only describes the transfer

path between one source-receiver pair, a detailed mapping of the room may require many

measurements. These impulse responses can then be convolved with an anechoic audio signal,

allowing a placement of a virtual source at the measured locations in the acoustic space. An

important consideration with this approach is that the directivity of the virtual source will be

determined by the directivity of the physical sound source (i.e. the loudspeaker) that was used

to obtain the impulse response. If the intended directivity of the virtual source (e.g. a human

speaker, or a musical instrument) is very different from that of the measurement device, the

results may not be realistic. Compact loudspeaker arrays that allow the radiation of arbitrary

directivities can be applied (Zotter, 2009) in this case.

A second consideration is the choice of method for capturing spatial sound: the recording

microphones and their positions have to be chosen in accordance with the spatial audio

reproduction technique that will be applied. Standard microphone arrangements using two

or more microphones exist for stereo and surround sound techniques (Huber and Runstein,
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2013), while for sound field synthesis methods, microphone arrays with tens or hundreds of

positions need to be used.

Instead of just measuring impulse responses in the acoustic space, a complete scene,

including both the sound sources and the environment, can be recorded directly using one of

the microphone techniques described above. This affords the least flexibility, but allows the

capture of moving sources, as well as extended or diffuse sources that cannot be handled with

impulse-response based approaches.

2.3.2 Acoustic scenes for virtual environments

In terms of constructing realistic acoustic scenes for virtual environments, the three most

relevant representations of the acoustic scene are considered to be: (i) simulated acoustic

scene, with a virtual source placed in a room acoustic model, and convolution with an anechoic

audio signal; (ii) measured acoustics with impulse responses in several source receiver pairs,

virtual sources added through convolution with anechoic signals; and (iii) direct recording of

the acoustic scene.

The first approach (representing the acoustic scene as a model) is most flexible. Within

the limitations of the specific acoustic model, any room or space can be simulated, and the

source and receiver positions can be chosen freely. A further advantage is that the model

itself is not necessarily coupled to the reproduction method, and thus the output can be

adapted to suit different playback systems. The major disadvantage is the need for detailed

geometrical and acoustical data, and the considerable effort required to set up and fine tune

the model, especially for very complex scenes. Further, all models employ simplifications of

the underlying physics in order to provide a reasonable computation time (Vorländer, 2008).

Small rooms and enclosures are typically not handled well by these algorithms. Thus, these

models cannot be expected to provide a physically fully accurate simulation of a given room,

but rather provide a good match for various room acoustic parameters, which in many cases

may be sufficient. For example, Favrot and Buchholz (2010) showed that for auralizations using

their loudspeaker-based room auralization (LoRA) system, parameters such as early decay

and reverberation time, clarity, speech transmission index and interaural cross correlation

were generally well maintained in the reproduced virtual environment. Moreover, comparing

speech intelligibility in the real room, vs. an auralization using again the LoRA system, Cubick

et al. (2013) found that while absolute intelligibility scores differed between the real and virtual

rooms, the speech intelligibility benefit from a beamforming hearing-aid was similar. This

highlights that while simulation-based virtual scenes may not be able to provide an exact

match to a specific, real environment, they can be useful for evaluating hearing instruments,

for instance.

The advantage of the second approach (measuring impulse responses) is that the acoustics

of the real location are directly captured. It is thus straightforward to virtualize a specific

space. The response of the room can be applied to any anechoic audio signal, and thus the

signal emitted by the sound source, but not its location, can freely be changed in the virtual
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scene. Averaging techniques can be used to improve the signal-to-noise ratio (SNR) of the

measurement, and “virtual arrays”, where a single microphone is used to sample the array

position in succession, can also be used (e.g. Bernschütz et al., 2010). Some disadvantages

have already been mentioned, including the need for a separate measurement for each source

and receiver location that is to be auralized, the inability to handle moving sources with this

method, as well as the close link to the reproduction system. This approach has been primarily

applied to capture, analyze and reproduce concert hall acoustics (e.g. Farina and Ayalon,

2003).

Finally, a full recording can potentially capture all the nuances of the acoustic scene.

However, the recording is subject to the artifacts and limitations of the spatial sound

reproduction technique applied, such as spatial aliasing and limited SNR. Nonetheless, direct

recordings of sound scenes were successfully applied by Minnaar et al. (2013) in order to

investigate the preference of different hearing-aid settings in a virtual environment. Koski

et al. (2013) used a combination of directly recorded background noise and spatial impulse

responses to construct a virtual scene, where speech intelligibility scores closely matched

those of the real environment.

In summary, while simulated virtual scenes are more flexible, reproducing multiple,

potentially moving sound sources, and complex background noises is difficult. In such cases,

recording the acoustic scene appears to be a better approach.

2.4 Spatial sound reproduction techniques

Given an acoustic scene that has been defined in some form, either as a set of parameters

describing the sound sources and the environment, or as a set of audio signals containing

spatial information, the sound scene must be rendered to the listener using one of the available

spatial audio techniques. Two major presentation methods have been used for spatial audio:

headphone-based and loudspeaker-based methods. In the following, a brief overview of the

various methods is provided, with an emphasis on loudspeaker-based approaches.

2.4.1 Headphone-based reproduction

Headphone-based spatial audio methods are based on providing signals with (simulated or

measured) binaural cues to the listener. Because the acoustic signals are generated directly at

the ears, the listener’s own ears and head do not provide spatial cues in this case. Consequently,

the spatial hearing cues have to be included in the signal itself. These cues are typically

represented as head-related transfer functions (HRTFs), which include the direction (and

distance) dependent filtering effects of the head (and potentially the torso). The HRTFs

can be included directly in the recording, such as when the recording is made with small

microphones placed in a person’s ears, or with an artificial head. Alternatively, an anechoic

signal can be spatialized by filtering it with a measured or simulated HRTF corresponding

to the intended direction (and distance) of the sound source (binaural synthesis). Typically,



i
i

“main” — 2015/1/29 — 15:09 — page 12 — #30 i
i

i
i

i
i

12 2. Background

HRTFs are measured in an anechoic environment, in which case they do not provide any

information about the acoustic space. However, the binaural response can also be measured

or simulated in a room, and is known as a binaural room impulse response (BRIR). Binarual

technology is discussed in more detail in, e.g., Hammershøi and Møller (2005).

Headphone-based presentation allows for a precise control of the signals reaching the ears

of the listener. Spatial sound presented over headphones can be very convincing, especially if

the listener’s own HRTFs are used. However, it is often impractical or impossible to measure

HRTFs for each listener, and thus another person’s or a set of general “non-individual” HRTFs

must be used. Because of significant variations in head sizes and ear shapes, the applied

HRTFs may be significantly different from those of the listener. This discrepancy can lead to a

degradation in localization performance, front-back confusions, and lack of externalization

(e.g. Hammershøi and Møller, 2005), and represents the main difficulty in applying headphone-

based methods. Some improvement, especially in terms of front-back confusions, can be

achieved if head tracking is used, and the HRTFs are dynamically updated in order to allow

head-rotation (Begault et al., 2001).

From the perspective of virtual environment applications, the main advantages of

headphone-based presentation over loudspeaker-based methods can be summarized as (i)

relatively simple technical setup including only two audio channels, and (ii) precise control over

acoustic cues. The primary disadvantages are (i) problems created by non-individual HRTFs,

(ii) the requirement for head-tracking for virtual environments and (iii) the fact that external

communication devices, e.g. phones or hearing aids, cannot be used easily in conjunction

with headphones.

2.4.2 Loudspeaker-based reproduction

In contrast to headphone-based methods, in the case of presentation over loudspeakers, the

listeners’ own ears are exposed to the sound field, enabling the use of their own pinna cues.

In addition, listeners can easily wear hearing aids or headsets in the playback environment.

Several techniques are available to create spatial sound around the listener with loudspeakers.

These techniques differ mainly in the supported loudspeaker geometries, the employed signal

processing and in their aims regarding physically-based or perception-based reproduction.

The simplest spatial loudspeaker system, the stereo setup, employs only two loudspeakers

with about 60° separation, in front of the listener. With corresponding microphone and

panning techniques, it is possible to position sounds fairly accurately (often called “phantom

sources” in this context) between the loudspeakers, at least if the listener is seated equidistantly

from the loudspeakers. Despite the fact that the sound field generated in this manner differs

significantly from that of a real source, valid ITD and ILD cues are created at the listener’s

ears (e.g. Spors et al., 2013). The effect breaks down if the listener moves closer to one of the

speakers. Two loudspeakers using cross-talk cancellation methods can also be used to deliver

binaural audio that would normally require playback through headphones. In this case the

effect of the listener’s own ears are compensated for, and the spatial cues are again included in
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the signal itself (see Sec. 2.4.1). Various extensions of the stereo concept have been used for

cinema surround systems, but these systems are typically aimed at providing well-localizable

sounds only in the front, and ambiance in the other directions.

More advanced approaches use physical or perceptual criteria to (re)synthesize the desired

sound field using from anywhere between a few to hundreds of loudspeakers, and are generally

capable of reproducing virtual sources in arbitrary directions (at least in the horizontal plane).

Some of the techniques applicable to virtual environments are described below. A more

detailed review of spatial sound reproduction over loudspeakers is given in Spors et al. (2013).

2.4.3 Sound field synthesis methods

In the following, two sound field synthesis methods will be presented that aim at physically

reconstructing the desired (measured or simulated) sound field, using a distribution of loud-

speakers (termed “secondary sources” in the theoretical context). These two techniques are

not exclusively reproduction techniques, as they also enable a physically-based representation

of the acoustic scene.

Wave-field synthesis

Wave-field synthesis (WFS) is a physically-based sound field synthesis technique based on the

principle of acoustic holography (or “holophony”), originally proposed by Berkhout (1988).

It is based on an approximation of the Kirchoff-Helmholtz integral, which states that at any

point within a source-free region, the sound pressure is completely determined by the sound

pressure and its directional gradient on the surface of the region boundary (e.g. Spors et

al., 2008). The synthesis of a sound field would then strictly require knowledge of both the

sound pressure and its directional gradient, as well as a set of monopole and dipole secondary

sources (Daniel et al., 2003). In the derivation of WFS, approximations are made such that

only monopoles are used as secondary sources, and knowledge of only one field quantity, the

directional gradient of the pressure, is needed. In practice, this implies that a closely spaced

set of loudspeakers can recreate the desired sound field, if the directional gradient of the

desired sound field is known at the points corresponding to the loudspeakers. WFS setups

most often use simulated sound fields due to practical difficulties in creating the microphone

configurations that would be required (Daniel et al., 2003). In addition, for curved secondary

source geometries, an appropriate subset of secondary sources, radiating in the propagation

direction of the virtual wave, needs to be selected (Spors et al., 2008). This secondary source

selection is less straightforward with measured sound fields.

WFS has the advantage that the reproduction area is large. The listener can move in this area

with the apparent position of the virtual sound sources staying constant, just like they would

with real sound sources. However, aliasing errors will also be present in the entire listening

area above the aliasing frequency, given by the frequency above which the loudspeaker spacing

exceeds half a wavelength (Spors et al., 2013). Covering the full audible bandwidth would

require a loudspeaker spacing of less than 2 cm, which is not feasible with current loudspeaker
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designs. However, it has been reported that good localization performance is maintained

for up to 20 cm loudspeaker spacing, due to the fact that low-frequency ITD cues are well

preserved, and that localization is indeed independent of the listening position (e.g. Spors

et al., 2013). Another limitation, due to the number of loudspeakers required, is that current

implementations of WFS are practically limited to a horizontal line of loudspeakers, and thus

operate only in the horizontal plane. On the other hand, the layout of loudspeakers is generally

more flexible than with the main alternative, higher order ambisonics. Commercial as well as

open-source implementations of the technique are readily available (Geier and Spors, 2012),

and research into the perception of sound fields synthesized with WFS is ongoing (Spors et al.,

2013), especially with regards to coloration artifacts.

Higher-order ambisonics

Higher-order ambisonics (HOA) is a technique based on a spherical (or circular) harmonics

decomposition of the sound field. Much like the Fourier transform in the time domain,

spherical harmonics represent a set of orthogonal basis functions with which the sound

field on a spherical surface (or circle) can be described. The basic concept of ambisonics

was introduced by Gerzon (1973), as a way to represent, record, and play back spatial audio.

Classical ambisonics used only zero and first order spherical harmonics, which correspond to

physically realizable, omnidirectional and figure-of-eight microphone characteristics. This

allowed the development of a microphone to directly record first order ambisonics (Farrar,

1979). Significant work was done by Daniel (2000) and Daniel et al. (2003) to extend the

technique to using higher orders. Daniel (2003) explicitly considered the radius of the

loudspeaker array by considering the secondary sources as monopoles (and not as plane wave

sources). This led to the most general formulation of ambisonics, near-field compensated

higher-order ambisonics (NFC-HOA). NFC-HOA, like WFS, aims at reproducing a physically

accurate sound field inside the listening area. In fact, Spors et al. (2008) showed that the two

techniques are related, and that NFC-HOA can also be derived from the Kirchoff-Helmholtz

integral for spherical (or circular) geometries, but with a slightly different set of assumptions

than WFS. The behaviors of HOA and WFS, however, differ markedly in some aspects.

HOA exhibits a pronounced “sweet-area” at the center of the reproduction array. The

error in the reproduced sound field increases with both frequency and distance from the

center, and is a result of the properties of the spherical harmonics expansion, in that the

contribution of high-order components vanishes towards the origin. In HOA reproduction, the

upper frequency limit is not determined directly by the transducer spacing, but rather by the

maximum order of the expansion, and the considered reproduction area. Ward and Abhayapala

(2001) provided a rule of thumb regarding the spherical harmonics order M required to obtain

a reproduction error of less than 4 % within a radius r as

M =
¡

2π f r

c

¤

, (2.1)

from which the upper frequency limit of physically correct reconstruction, flim, assuming a
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radius of r = 9 cm evaluates to approx. M ·600 Hz. In terms of single-user virtual environments,

this behavior can be considered as an advantage, because for a limited (e.g. head sized)

reproduction area, a higher upper frequency limit can be obtained than the aliasing frequency

for a comparable WFS setup. This comes at the cost of higher errors outside of the sweet spot.

One of the main advantages of HOA over WFS is that the playback of recorded sound

fields is relatively straightforward. While no microphones exist that realize spatial directivities

of higher-order spherical harmonics, Abhayapala and Ward (2002) and Meyer and Agnello

(2003) proposed spherical microphone arrays that can be used to estimate these higher order

components. Further work investigated the properties of spherical arrays specifically in the

context of spatial sound (e.g. Poletti, 2005; Moreau et al., 2006).

With HOA, three dimensional recording and reproduction are feasible, and 3D HOA systems

are available in several laboratories. However, the approach still suffers from the need for a high

number of microphones and loudspeakers. The maximum order of the spherical harmonics

expansion depends on the number of transducers used. For a 3D and a horizontal-only setup,

respectively, the minimum number of required transducers is (M +1)2 and 2M +1 (Ward and

Abhayapala, 2001). From Eq. 2.1, it can be seen that a physically correct reproduction of up to

20 kHz would require an order of 34, which would in turn require 1225 loudspeakers for 3D,

and 69 for horizontal-only reproduction. It is likely that even if that many loudspeakers were

installed, other error sources like reflections, noise, non-ideal loudspeaker characteristics,

etc., would not allow accurate reconstruction at very high frequencies. Both HOA and WFS

assume anechoic conditions in the playback environment, and thus strong reflections in the

reproduction room can be detrimental to reproduction quality. In practice, however, similarly

to WFS, HOA systems with a reasonable number of loudspeakers show fair localization and

distance perception (e.g. Bertet et al., 2007; Favrot and Buchholz, 2009; Braun and Frank, 2011).

2.4.4 Directional audio coding

Directional audio coding (DirAC) (Pulkki, 2007) is a technique that specifically aims at a

perceptually valid, rather than a physically valid, reconstruction of the target sound scene. It is

based on a time-frequency analysis of the sound field, where a direction and diffuseness

analysis is performed for each time-frequency bin. The input to DirAC in its original

formulation is a recording from a first-order ambisonic microphone. Based on the diffuseness

analysis, the audio signal is divided into a diffuse and a non-diffuse stream. In the synthesis

part, the non-diffuse stream is reproduced using the estimated direction over a loudspeaker

array with vector-base amplitude panning (VBAP) (Pulkki, 1997), which itself is an extension

of the stereophonic panning principle to three dimensions. For synthesizing the diffuse part

of the signal, a first-order virtual microphone is formed in the direction of each loudspeaker

by a weighted sum of the first-order ambisonic components. But unlike in ambisonics, the

signals are then decorrelated for each loudspeaker. This is intended to remove coloration

and “phasing” artifacts resulting from highly correlated signals being presented over multiple

loudspeakers.
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While DirAC clearly does not produce a physically accurate sound field and involves non-

linear processing, subjective evaluation suggests that the perceived quality of the reproduction

is good for a variety of loudspeaker layouts (Vilkamo et al., 2009). A recent study (Koski et al.,

2013) compared speech reception thresholds (SRTs) for one particular reference scene and

the same scene reproduced using DirAC, and showed that for the best matching conditions,

SRTs were within 2 dB for both normal-hearing and hearing-impaired listeners. It is, however,

unclear how the nonlinear signal processing employed would affect other percepts, and how

technical devices would perform in sound fields generated with DirAC.

2.4.5 Other approaches

Alternatives to the approaches mentioned so far include methods based on an inversion of

measured transfer functions between the microphones and the loudspeakers in the listening

environment (e.g. Kirkeby et al., 1996). Such an approach was presented by Minnaar et al. (2013)

for the playback of recordings made with a spherical microphone array. Inversion techniques

are practical as they are relatively easy to implement, and can also equalize microphone and

loudspeaker responses, as well as the room response in one step. However, a new set of filters

need to be measured using the same microphone array for each new playback location, or if

any modifications are made to the playback environment. Therefore, such a method is not

easily applicable for spatial audio recordings that are to be widely shared.

Another approach specifically aimed at spatial hearing research was presented by Seeber

et al. (2010), termed the “simulated open-field environment”. In this approach, the focus is

on a fine control of the individual room reflections. The reflections are computed using a

room model, and each reflection is presented from individual, or pairs of loudspeakers. This

allows for an accurate simulation particularly of the early reverberation in small rooms, but

the approach is not well-suited for the reproduction of arbitrary sound scenes, including more

diffuse, busy environments. A similar approach, using single loudspeakers for individual

room reflections, is available as one of the rendering methods in the LoRA system (Favrot and

Buchholz, 2010).

2.5 Summary and choice of method

In this chapter, an overview of the techniques applicable to the representation and reproduc-

tion of virtual sound scenes was presented. In this work, it was decided to investigate the

recording of real scenes, in order to capture busy and dynamic environments. To this end, a

technique based on HOA was chosen as it allows both recording and playback of 3D spatial

audio, using spherical arrays of microphones and loudspeakers. HOA provides a sweet spot

at the center of the reproduction array, which was deemed appropriate for use by a single

person seated in the center. It also aims at a physically accurate reproduction of the sound

field, which was desired in order to minimize psychophysical assumptions, and to be able to

investigate technical devices, like hearing aids.
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A mixed-order ambisonics microphone arraya

Abstract

Spherical microphone arrays can be used to capture the spatial characteristics

of acoustic scenes for analysis or reproduction, but practical constraints limit

the number of microphones that can be used, and thus the maximum spatial

resolution and frequency bandwidth that can be achieved. In this paper, a mixed-

order ambisonics (MOA) approach is proposed to improve the horizontal spatial

resolution of microphone arrays with a given number of transducers. A MOA array

was realized, and its performance and robustness to variations in microphone

characteristics and self-noise were investigated through both simulations and

measurements. Results showed that higher horizontal resolution is achieved at

mid to high frequencies, with a small increase in usable bandwidth. Robustness

to various errors was similar to that of higher-order ambisonics (HOA) arrays.

3.1 Introduction

Advances in technology in the last decade have increasingly enabled the use of microphone

array techniques in spatial audio recording and reproduction. There has also been increasing

interest in applying spatial audio reproduction techniques, such as wavefield synthesis and

higher-order ambisonics (HOA), to create virtual sound environments (VSEs) for research

purposes. Such environments can create complex and realistic acoustic scenes around

a listener, facilitating basic research into spatial hearing, or aiding the development and

evaluation of hearing instruments and other communication devices (Minnaar et al., 2010).

Spherical microphone arrays are particularly well-suited for spatial audio applications, as

they can capture the spatial characteristics of the sound field in all directions. Consequently,

there have been a number of studies investigating the design of spherical arrays and their

application to sound field analysis and reproduction (e.g., Abhayapala and Ward, 2002; Meyer

and Elko, 2004; Rafaely, 2005; Poletti, 2005; Moreau et al., 2006; Li and Duraiswami, 2007). A

spherical-harmonics-based decomposition of the sound field fits naturally with the spherical

geometry, and was employed in much of the related work, although other processing strategies

exist as well (e.g. DirAC, Pulkki, 2007). Recent arrays have used a rigid-sphere configuration

a Portions of this manuscript were previously presented in Marschall et al. (2012).
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18 3. A mixed-order ambisonics microphone array

to avoid singularities at certain frequencies (see e.g. Rafaely, 2005), and evenly distributed

microphones on the sphere for uniform sampling of the sound field.

To reproduce acoustic scenes with realism and high quality, high resolution and wide

bandwidth, as well as low noise are needed, which places stringent requirements on the

recording array. Therefore, it is important to evaluate the expected performance of such an

array in the face of various errors and noise sources.

In particular, to achieve a high resolution in three dimensions, a high number of

microphones are required. The spatial resolution and the usable frequency range are

proportional to the order M of the spherical harmonics decomposition employed. The number

of transducers required to capture spherical harmonics up to order M is at least (M + 1)2

(Abhayapala and Ward, 2002). This means that for higher orders, each additional order entails

a large increase in the number of required transducers.

However, the most important sound sources are generally situated near the horizontal

plane, and this is also where human auditory localization is most accurate, at least for frontal

directions (Blauert, 1997b). Further, increasing spatial resolution in only two dimensions

requires far fewer additional transducers than for three dimensions (Daniel, 2000). On the

reproduction side, typical loudspeaker layouts are thus often restricted to the horizontal

plane, or only use a few loudspeakers for height reproduction. In order to accommodate

loudspeaker arrays with a greater number of speakers placed near the horizontal plane,

Daniel (2000) proposed mixed-order ambisonics (MOA), and mixed-order playback was

investigated by several authors (Travis, 2009; Trevino et al., 2010; Käsbach et al., 2011). Using

MOA, a given number of transducers may be arranged in a way that better matches human

perception: providing maximum resolution in the horizontal plane, while still retaining vertical

spatial information. Thus, layouts with a non-uniform distribution of transducers could help

bridge the gap between horizontal-only and three-dimensional spatial sound recording and

reproduction.

In contrast to MOA playback however, recording in mixed order has not yet been studied

in detail. Preliminary work by the present authors suggested that horizontal directivity may

be improved by using mixed-order processing and a corresponding array layout for spherical

microphone arrays (Favrot et al., 2011; Favrot and Marschall, 2012). This paper, which is an

extended version of the study presented in Marschall et al. (2012), aims to provide (i) a more

thorough introduction to the MOA concept for microphone arrays, (ii) a detailed comparison

of MOA and HOA through the evaluation of two example microphone layouts, as well as (iii)

an experimental validation of MOA through measurements on an array prototype.

The advantages and limitations of the mixed-order approach were evaluated by comparing

an example 52-channel MOA array to a HOA array that uses the same number of transducers,

but with a nearly uniform distribution of microphones over the sphere. The arrays’ responses to

plane waves were simulated, taking into account the characteristics of a commercially available

array microphone, including self-noise, as well as amplitude and phase response variations. A

set of beamforming measures were considered to quantify the performance limits of the array

itself. White noise gain, directivity index, −3 dB beamwidth, and maximum sidelobe levels
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were calculated for both arrays. In order to investigate the reproduced sound field, measures

introduced by Gerzon were applied (Gerzon, 1992; Craven, 2003) to a simulated reproduction

over an ideal loudspeaker array. Finally, validation measurements were performed on a

prototype MOA array in free field, using a single loudspeaker as a sound source.

The paper begins with a summary of spherical harmonics decomposition, as well as higher-

order and mixed-order ambisonics processing in Section 3.2. The details of the simulation and

experimental setup are presented in Section 3.3. The applied objective measures are defined

and the simulation results are described in Section 3.4, while the measurement results are

detailed in Section 3.5. Finally, the findings are discussed and summarized in Sections 3.6 and

3.7.

3.2 Background

In this section, the principle of spherical arrays, as well as the mixed-order ambisonics

approach are briefly summarized. For a more detailed introduction into spherical arrays

for sound recording, refer to e.g. Meyer and Elko (2004) or Moreau et al. (2006).

In the following, the “ambisonics notation” as in e.g. Daniel et al. (2003) and Moreau et al.

(2006) is followed. In the spherical coordinate system used, a point is described by its radius r ,

azimuth angle θ (−π≤ θ ≤π), and elevation from the horizontal plane δ (−π/2≤δ≤π/2).

3.2.1 Pressure on a rigid sphere

The pressure on the surface of a rigid sphere of radius R at point (R ,θ ,δ), using spherical

harmonics expansion, and omitting the implied time dependence of e +iωt , is given as (Moreau

et al., 2006):

p (k R ,θ ,δ) =
∞
∑

m=0

Wm (k R )
m
∑

n=0

∑

σ=±1

Bσmn Y σ
mn (θ ,δ) , (3.1)

where k is the wavenumber, Wm (k R ) is the radial function, describing the radial and frequency

dependence of the pressure, Bσmn are the Fourier-Bessel series coefficients or ambisonics

components, and Y σ
mn (θ ,δ) are the real-valued spherical harmonics functions, defined as

Y σ
mn (θ ,δ) =

√

√

(2m +1)(2−δ0,n )
(m −n )!
(m +n )!

Pmn (sinδ)

×







cos nθ ifσ=+1

sin nθ ifσ=−1
,

(3.2)

and where Pmn (sinδ) are the associated Legendre functions, and δ0,n = 1 if n = 0 and is 0

otherwise.

For a rigid sphere, the radial function at r =R is given as (Meyer and Elko, 2004):
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Wm (k R ) = i m

�

jm (k R )−
j ′m (k R )

h (2)′m (k R )
h (2)m (k R )

�

, (3.3)

where jm are spherical Bessel functions of the first kind, and h (2)m are spherical Hankel functions

of the second kind, both of order m , and the primes indicate derivatives with respect to the

argument.

3.2.2 Encoding

The encoding process equates to determining the coefficients Bσmn from a set of pressures pq

measured at Q discrete positions (θq ,δq ). The discrete spatial sampling means that the series

in Eq. (3.1) has to be truncated at a finite order M in practice, and the expression becomes

an approximation of the pressure. The total number of spherical harmonics functions (K )

included in the series up to order M is K = (M +1)2 (Moreau et al., 2006).

With the above, Eq. (3.1) may be represented in matrix form as follows, noting that the

equality only holds strictly if the considered sound field is spatially band limited to orders

below M :

p= Y ·diag[Wm (k R )] ·b , (3.4)

where p= [p1, p2, . . . , pQ ]T is a column vector of measured pressure values, Y is a Q ×K matrix,

where each row contains K spherical harmonics functions sampled at the angle corresponding

to the q -th microphone:

Y=







Y +1
00 (θ1,δ1) · · · Y −1

M M (θ1,δ1)
...

...
...

Y +1
00 (θQ ,δQ ) · · · Y −1

M M (θQ ,δQ )






, (3.5)

diag[Wm (k R )] is a diagonal matrix with K elements, containing the appropriate value of the

radial function Wm (k R ) for each k -th spherical harmonic, and b= [B+1
00 , . . . , Bσmn , . . . , B−1

M M ]
T is

a column vector of K series coefficients (ambisonics signals).

The encoding, or the estimation of the coefficients eb' b from the measured pressures p

can be accomplished by inverting Eq. (3.4), providing a least-squares solution for eb:

eb= diag
�

1

Wm (k R )

�

·Y+ ·p , (3.6)

where Y+ indicates the Moore-Penrose pseudo-inverse of Y.

3.2.3 Limitations of a spherical array

Eq. (3.6) is also termed the encoding equation. Two limitations of the array processing are

already apparent from this equation. First, the encoding involves inverting the radial function

Wm (k R ), which has low magnitudes at low frequencies and high orders (Meyer and Elko, 2004;

Moreau et al., 2006). In other words, the contribution of high order spherical harmonics at
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low frequencies (relative to the size of the array) is low, and thus trying to estimate these

harmonics from the measured pressures leads to a very high amplification of the transducer

signals. The amplification in practice has to be limited due to the limited signal-to-noise ratio

(SNR) of the microphone signals. This is achieved by applying regularization to 1/Wm (k R )

(see Sec. 3.2.5), which leads to a reduction of the effective spherical harmonics order at low

frequencies (Moreau et al., 2006). The selection of the regularization parameter is a tradeoff

between acceptable noise amplification and array directivity at low frequencies.

A second limitation is that the pseudo-inverse operation on matrix Y in the encoding can

lead to high errors if Y is not well-conditioned. The condition number of Y depends on the

array layout (the sampling scheme) and the maximum order M . If the spherical harmonics

functions are properly sampled, they form an approximately orthonormal basis. In this case

Y is invertible with low error, and the condition number will be close to one (Moreau et al.,

2006). For a quasi-regular sampling scheme, there need to be Q ≥ K = (M +1)2 transducers to

capture spherical harmonics of order M (Rafaely, 2005). The maximum order determines the

maximum directivity or spatial resolution achievable with the array.

At high frequencies, when the sampling distance exceeds half the wavelength, aliasing error

becomes dominant and the directive properties of the array break down. More specifically,

as the spatial frequency content of the sound field is generally not bandlimited, higher-order

spherical harmonics are aliased into lower orders when the sampling scheme is insufficient to

capture them. The exact pattern of aliasing is determined by the sampling scheme (Rafaely

et al., 2007). Aliasing error is only significant at high frequencies, because the contribution of

the aliased higher order components, as described by the radial function Wm (k R ), is low at

low frequencies (i.e. low k R ).

3.2.4 Mixed-order ambisonics

The idea behind MOA is to optimize the performance of a system with a given number of

transducers or channels, by using only a subset of a higher-order set of spherical harmonics

functions. As it was mentioned in Sec. 3.2.3, for 3D HOA, at least (M+1)2 transducers are needed

to capture or reproduce spherical harmonics components up to the M -th order. However, if

only horizontal reproduction is desired, the number of transducers needed is only (2M +1)

(Daniel et al., 2003). One way to view MOA is as a combination of a higher-order planar

representation with a lower-order periphonic (3D) representation. This leads to the mixed-

order scheme considered in this paper, but alternate schemes have also been proposed (Travis,

2009).

The mixed-order scheme applied here uses a full set of spherical harmonic functions (SHFs)

Y σ
mn up to an order M3D . Additionally, horizontal SHFs (with indices n =m) are selected for

orders M2D >M3D .
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With MOA, Eq. (3.1) is then approximated by:

p (k R ,θ ,δ)'
M3D
∑

m=0

Wm (k R )
m
∑

n=0

∑

σ=±1

Bσmn Y σ
mn (θ ,δ)

+
M2D
∑

m=M3D+1

Wm (k R )
∑

σ=±1

Bσmm Y σ
mm (θ ,δ) .

(3.7)

The MOA representation can also be described in matrix form by Equations (3.4)–(3.6), but

with a mixed-order SHF matrix Y, and with the corresponding K -long vector of mixed-order

coefficients:

b=
�

B+1
00 . . . Bσmn . . . BσM3D M3D

. . . Bσmm . . . B−1
M2D M2D

�T
. (3.8)

The number of mixed-order coefficients K for an order combination of M2D /M3D is given by

K = (M3D +1)2+2(M2D −M3D ) . (3.9)

3.2.5 Array processing

To derive the ambisonics signals from the measured pressures in practice, the regularized

filtering approach described in e.g. Moreau et al. (2006) was used. This is obtained by the

addition of regularization filters Fm to Eq. (3.6). The coefficients eb can then be obtained from

the sampled pressures p as using the encoding matrix E as

eb= diag
�

Fm (k R )
Wm (k R )

�

·Y+

︸ ︷︷ ︸

E

·p . (3.10)

where Fm (k R ) are defined as

Fm (k R ,λ) =
|Wm (k R )|2

|Wm (k R )|2+λ2
, (3.11)

and where λ is the regularization parameter. The regularization filters limit excessive

amplification when the magnitude of Wm (k R ) is small (see Sec. 3.2.3).

3.2.6 Decoding

Decoding refers to the process of obtaining the L-long vector of desired signals s from the set

of ambisonics signals b with

s=D ·b , (3.12)

where the L × K matrix D is the decoding matrix, and s and b may be functions of time or

frequency.

If the goal is to reproduce the sound field described by b over a set of loudspeakers, then

desired signals are the appropriate set of driving signals for those loudspeakers. For a regular

layout of L loudspeakers, assumed to be in the far field and located at (θl ,δl ), the rows of the
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decoding matrix (for “basic” decoding) are simply given as (Daniel et al., 2003)

dl =
1

L

�

Y +1
00 (θl ,δl ) · · ·Y −1

M M (θl ,δl )
�

=
1

L
yl .

(3.13)

Thus, the signal for loudspeaker l is

s (θl ,δl ) =
1

L
yl ·b , (3.14)

which states that the driving signal for each loudspeaker is given by the weighted sum of the

ambisonics signals, and where the weights are obtained by sampling the spherical harmonics

functions in the directions of the loudspeakers. Looked at another way, Eq. 3.14 defines a

plane-wave decomposition beamformer (Rafaely, 2004; Rafaely, 2005), thus showing that for a

regular loudspeaker layout and assuming plane wave sources, the loudspeaker signal is given

by a beam formed in the direction of the loudspeaker. The properties of the beam therefore also

relate to the characteristics of the reproduced sound field. With this in mind, well-established

performance measures for beamforming can be applied to quantify the performance of the

array output directly.

3.3 Methods

3.3.1 Microphone array design

A MOA microphone array with 52 channels was designed by the present authors and custom

built by Brüel & Kjær. This array was applied in this study as an example array both for the

simulation-based analysis described in Sec. 3.3.2 and the corresponding measurement-based

analysis and verification described in Sec. 3.3.3.

The array consists of rings at different elevation angles, as shown in Figures 3.1 and 3.2

(left panel). There are seven rings with 2×2, 2×6, 2×10, and 1×16 microphones, at elevation

angles ±80◦, ±55◦, ±29◦, and 0◦, respectively. The radius was 5 cm, which provided a good

compromise between low-frequency microphone noise amplification and spatial aliasing

(see Sec. 3.2.3). The layout was designed based on a slightly modified version of the method

presented in Chapter 4, generating a suitable layout for an order combination of M2D = 7 and

M3D = 5. An optimization of the elevation angle of the rings was performed, minimizing the

condition number of the matrix Y (Li and Duraiswami, 2007). The obtained 52-transducer

MOA layout has a condition number of 1.7 for a 7/5 order combination.

To allow a fair comparison between the MOA and HOA approach, a HOA layout with the

same number of transducers (52) was simulated (see Figure 3.2, right panel), but with a nearly

uniform distribution of microphones based on a t-design (Hardin and Sloane, 1996).

As this layout did not allow the capture of 6th order components with sufficiently low error

(condition number of 4.7 for 6th order, versus 1.4 for 5th order), only a HOA order of M = 5
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Figure 3.1: The realized 52-channel mixed-order ambisonics microphone array.
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Figure 3.2: Microphone layout of the 52-channel, MOA array (left panel), and HOA array (right panel).

was used. In fact, the 52-channel t-design is given by Hardin and Sloane (1996) as a 9-design,

which means that spherical harmonics of only up to 4th order satisfy the sampling condition

with negligible error (see Sec. III.C. in Rafaely, 2005). However, the condition number and

orthonormality error were deemed sufficiently low to use 5th order in practice.

3.3.2 Simulation framework

A simulation framework was developed in MATLAB that implements the complete signal

processing chain: (i) incoming plane or spherical waves (see Sec. 3.2.1), (ii) the array processing

based on the spherical harmonics decomposition of the sound field (Sec. 3.2.2 and 3.2.5), and
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Figure 3.3: Self-noise power spectrum of the simulated array microphone .

Magnitude response 100 Hz – 5 kHz: ±2 dB

50 Hz – 10 kHz: ±3 dB

10 kHz – 20 kHz: +5/−3 dB

Phase response 100 Hz – 3 kHz: <±5◦

3 kHz – 10 kHz: <±10◦

Table 3.1: Amplitude and phase characteristics of the simulated microphone.

(iii) the decoding and reproduction by a loudspeaker array (see Sec. 3.2.6). The processing

was implemented in the frequency domain, and performed for each frequency bin.

Different system limitations that need to be taken into account when realizing a mi-

crophone array were also considered. Microphone self-noise as well as variations in the

amplitude and phase characteristics of the individual transducers were simulated based on

the specifications of the B&K type 4959 microphone used in the MOA array (Brüel & Kjær,

2012).

Each simulated pressure measurement p̂q (e.g. the simulated complex pressures in p in

Eq. 3.10) was perturbed by:

epq = Ae iφ · p̂q + n̂ . (3.15)

Microphone self-noise was simulated by adding the complex noise term n̂ , whose magnitude

corresponds to the self-noise spectrum shown in Figure 3.3, with random phase. To simulate

microphone sensitivity and phase variations, each transducer was assigned a frequency-

dependent amplitude characteristic A and phase characteristicφ. These characteristics were

defined as a relative deviations, and were drawn randomly from a set of example characteristics

conforming to the specifications, which are detailed in Table 3.1.

All simulated sound sources were plane waves, with a flat spectrum and a total amplitude of

82 dB SPL (corresponding to a spectral density of 40 dB SPL/Hz). The regularization parameter

was set to λ= 0.01.
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3.3.3 Measurement setup

To verify the simulation-based analysis detailed above, measurements were made in the small

anechoic chamber of the Technical University of Denmark (with free space volume of 60m3,

and a lower limiting frequency of 100 Hz). Since only the MOA microphone array described in

Sec. 3.3.1 was physically available, measurements were only performed on this array. A single

Dynaudio BM6P loudspeaker was used as a sound source, mounted either in the horizontal

plane, or at 20◦ elevation as seen from the center of the array. The distance from the base of

the loudspeaker to the base of the microphone array was 2.5 m. Similarly to the simulations

described in Sec. 3.3.2, the loudspeaker was driven with white noise, and the level adjusted

to measure about 82 dB SPL (lin. weighting) at the position of the array. The magnitude

response of the loudspeaker was compensated for using a reference microphone placed on-

axis, 1 m from the loudspeaker, measuring ±3 dB in the range 100 Hz–10 kHz at the reference

location after compensation. For the elevated position, the loudspeaker had to be positioned

off-axis to the microphone array position due to mounting restrictions, resulting in a trough

in the magnitude response at the loudspeaker’s crossover frequency. Frequency response

compensation was not employed in this case in order to avoid excessive gain at this frequency.

The measurements were made using the B&K Pulse platform, recording the 52-channel

microphone signal with a sampling frequency of 32 kHz. The data were then transferred to

MATLAB where all the array signal processing was performed. Welch’s method was applied to

10 s segments of the processed signals to obtain an estimate of the power spectral density, which

then enabled the application of the same performance measures as used for the simulation

study.

3.3.4 Performance measures

An inherent difficulty in MOA microphone array design is selecting appropriate measures to

objectively evaluate array performance, as the properties of the array vary with elevation angle.

Here, a set of measures were considered to investigate errors both at the array output and in

the reproduced sound field.

For a look direction (θ0,δ0), the output of the beamformer in the frequency domain can be

written as (cf. Eq. 3.14, omitting the 1
L normalization)

s (θ0,δ0, f ) = y0b( f ) (3.16)

with y0 being the K -long row vector of SHFs evaluated at (θ0,δ0), and b the obtained ambisonics

signals after array encoding.

For the beamforming measures, which are further described in Sections 3.4.1, an equiangle

sampling scheme was used, assuming a regular grid of 128 points along the azimuth θ and 64

points along the elevation angle δ, where the output of the array at each point was given by

Eq. 3.16.

For measures of the reproduced sound field considered in Sections 3.4.2 and 3.5.2, decoding
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was simulated over a loudspeaker array consisting of 204 plane-wave sources, arranged

according to a t-design (Hardin and Sloane, 1996). A large number of virtual loudspeakers

were chosen to reduce reproduction error for k r <M (i.e., inside the “sweet area”) (Solvang,

2008) in order to ensure that the observed errors were primarily due to the processing by

the microphone array. Various psychoacoustic decoder optimizations, such as “max rE ” and

“in-phase” decoding (Daniel, 2000) were not considered here, as the goal was to simulate the

reconstruction of the sound field captured by the array.

3.4 Simulation results

3.4.1 Beamformer-based measures

Beam pattern

The beam pattern describes the output of the array to a plane wave from a fixed direction as a

function of the look direction (θ0,δ0) according to Eq. 3.16, and is a direct illustration of the

spatial selectivity realized by the array.

Figure 3.4 shows typical beam patterns for the MOA array (panels A and B) and the HOA

array (panel C) plotted for a single plane wave, with a cylindrical projection of the spherical

coordinate system. For the MOA array and a source in the horizontal plane (panel A), the

main lobe of the beam pattern is narrower along the azimuth than along the elevation. This

highlights the higher azimuthal directivity of the MOA array for horizontal sources. Panel B

displays the beam pattern for a source at the zenith, with the projection rotated so that the main

lobe can easily be seen, showing that it is equally wide in both directions, and demonstrating

that the beamwidth changes with elevation angle. The beam pattern for the HOA array (Panel

C) is independent of the look direction and is similar to that of the MOA array for the elevated

source.

White noise gain

The white noise gain (WNG) is a common measure for estimating the robustness of microphone

arrays to microphone self-noise, amplitude and phase variations as well as position error

(Meyer and Elko, 2004). Assuming uncorrelated white noise on each transducer, the WNG

shows how much this noise is reduced (or amplified) by the array processing. A higher WNG

means the array is more robust. The WNG can be interpreted as the signal power at the

output of the beamformer over the sensor self-noise power (Meyer and Elko, 2004), and can

be calculated as

WNG= 10 log10

�

|y0b0|2

(y0E)H (y0E)

�

, (3.17)

with the nominator being the square of the array output for a unit amplitude plane wave from

the look direction (θ0,δ0) (cf. Eq. 3.16), and E being the encoding matrix (cf. Eq. 3.6).

WNG was simulated for a horizontal (0,0) and an elevated (0,+π/2) beamformer look

direction (Figure 3.5) for both the MOA (top panel) and the HOA array (bottom panel). As
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Figure 3.4: Beam patterns for the MOA array at 5 kHz for a horizontal (θ ,δ) = (0, 0) (panel A) and a vertical (0,π/2)
source (panel B). The beam pattern for the HOA array for a horizontal source is shown in panel C. The color scale
indicates the normalized response magnitude in dB.

expected, the WNG shows a bandpass characteristic centered at an optimum frequency defined

as (Park and Rafaely, 2005)

fopt =
c M

2πR
(3.18)

where c is the sound velocity. The effect of regularization in limiting noise amplification can

be seen below about 3 kHz for both arrays: a WNG of above -10 dB is maintained even at

low frequencies, meaning that sensor noise is not amplified by more than 10 dB. Without

regularization, the noise amplification would quickly exceed acceptable levels and severely

limit the usable bandwidth.

For the HOA array, both elevated and horizontal directions display the same bandpass

characteristic around fopt = 5500 Hz, corresponding to M = 5. For the MOA array, the WNG

for the elevated look direction is similar to that of the 5th-order HOA array. For the horizontal
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Figure 3.5: White noise gain for the MOA (top panel) and HOA (bottom panel) array, for a horizontal and an elevated
source.

direction the optimum frequency is shifted upward to fopt = 7600 Hz, corresponding to M

= 7, due to the inclusion of additional spherical harmonic functions. This in turn leads to

a reduction of the WNG as compared to the elevated source for frequencies between 3 and

6 kHz. Thus, the robustness of MOA encoding is similar to the robustness of an M3D order

HOA encoding for elevated sources, and to that of an M2D order HOA encoding for horizontal

sources.

Directivity Index

The directivity index (DI) describes the spatial directivity of the microphone array and can be

defined as the ratio of the beamformer output in the plane wave incidence direction relative

to the average of the output of the same beamformer for all look directions:

DI = 10 log10

�

|y0b0|2
1
L

∑L
n=1 |yn b0|2

�

(3.19)

A regular grid ofL = 350 points was assumed around the array from which the look and

incidence directions were selected. In order to analyze the directivity of horizontal vs. elevated

sources, DIs were averaged for incidence directions above |δ|> 30◦ (“elevated sources") and

for directions |δ|< 10◦ (“horizontal sources").

Figure 3.6 shows elevated and horizontal averaged DIs for the MOA (top) and HOA (bottom)

arrays. Dashed horizontal lines represent the theoretical maximum achievable DI for orders

M = 1 to 7, given as 20 log10(M +1) (Meyer and Elko, 2004). At low frequencies, for both arrays,

the DI increases with frequency, highlighting the effect of regularization, which has the effect
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Figure 3.6: Directivity index for the MOA (top) and HOA (bottom) arrays, for horizontal (solid lines) and for elevated
sources (dotted lines).

of attenuating high orders at low frequencies, and thus decreasing spatial resolution. At high

frequencies, directivity is reduced again due to spatial aliasing.

For the 5th order HOA array, DIs for both elevated and horizontal source directions reach

the theoretical value corresponding to M = 5. For the 7/5 MOA array, the elevated DI reaches

the value for M = 5, and is very similar to the DI obtained for HOA. The horizontal DI, however,

only reaches a maximum value corresponding to just below M = 6, but well below the applied

horizontal order M = 7. This means that the 3D directivity of encoded horizontal sources

is only slightly higher than for HOA 5th order. However, MOA beam patterns have different

horizontal and vertical widths (cf. Fig. 3.4) and therefore the 3D directivity index does not fully

reveal the potential benefit of MOA vs. HOA for horizontal sources.

Beamwidth and sidelobe level

The 3 dB beamwidth is a commonly used measure of beamformer resolution, and describes

the angular width of the main lobe of the beam pattern (see Figure 3.4) at the −3 dB points

relative to the maximum. Due to the expectation that the resolution of the MOA array differs

in the horizontal and vertical directions, the beamwidth was evaluated both along the azimuth

and along the elevation angle. In addition to the beamwidth, which only carries information

about the main lobe, the level of the side lobes also influence the total spatial selectivity of

the array. The maximum sidelobe level (MSL) is defined as the difference in level between

the main lobe and the second highest peak (sidelobe) in the beam pattern, and describes the

minimum attenuation the array provides in directions outside of the main lobe. However, the

ambisonics formulation used here does not seek to minimize sidelobes; instead, it aims at
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Figure 3.7: 3 dB beamwidth for the MOA and HOA arrays, along the azimuth (panel A) and along the elevation
(panel B). The maximum sidelobe level (MSL) is shown in panel C. Source direction is horizontal.

providing an accurate reproduction of the sound pressure. The sidelobes levels were therefore

evaluated as a diagnostic measure rather than a performance measure.

Figure 3.7 shows the simulation results for the MOA and HOA arrays. The beamwidth

and MSL were calculated for 3 horizontal source directions and averaged. Panel A shows the

beamwidth measured along the azimuth for both arrays. The beamwidths are identical up to

about 3 kHz, decreasing with frequency. The gradual decrease, mirroring increasing DI, again

shows the effect of regularization. Above 3 kHz, it can be seen that the HOA beamwidth (dashed

lines) stays constant up to the aliasing frequency as the maximum resolution for order M3D

is reached. The MOA beamwidth (solid lines) continues to decrease until the corresponding

resolution for M2D is reached. This illustrates that the MOA array provides a narrower beam

along the azimuth, but also that due to regularization this beam pattern is only reached at

higher frequencies.

Panel B in the same figure shows that the vertical beamwidth is essentially identical between

MOA and HOA for the entire frequency range, and reaches a maximum corresponding to an

order of 5. This again shows that, as expected, HOA provides a beam pattern that has a circular

cross-section, thus the resolution is the same in the horizontal and vertical directions, and that

with MOA the vertical beamwidth is limited by the periphonic order M3D . Elevated sources
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Figure 3.8: Effective order (based on rE ) for the MOA array for different source elevation angles. Ideal (top panel)
and noisy simulation (bottom panel) is shown. Thick lines represent the mean, thin lines one standard deviation
from the mean for the noisy simulation.

were not investigated with this measure, as it was already shown that the beam pattern for

elevated sources with MOA is similar to that with HOA.

Looking at the MSL shown in panel C, it can be seen that it is generally high at very low

frequencies, indicating a prominent back lobe. For most of the operating frequency range

the MSL is around −15 dB. At higher frequencies (above 8 kHz) the MSL increases again due

to aliasing error becoming more and more dominant. Above 10 kHz, the source direction

becomes ambiguous, the beam pattern splits up into several lobes and thus the MSL reaches 0

dB. The MOA and HOA arrays behave similarly except for frequencies between 5–8 kHz, where

the MOA array has slightly lower sidelobe levels. This is might be due to the more densely

located transducers on the equator contributing to a better sampling of horizontal sound

sources.

3.4.2 Sound-field-based measures

Effective order

The simulated plane waves encoded by the array were decoded onto a virtual, 204-element

regular loudspeaker array (see Secs. 3.2.6 and 3.3.4). At the center of the virtual array, the

rE measure , the sum of all loudspeaker signals G =
∑

i g i , as well as the sum of the squared

loudspeaker signals E =
∑

i g 2
i were calculated (Gerzon, 1992; Craven, 2003), where g i is the

driving signal for loudspeaker i . The rE measure is the magnitude of the “energy vector” ~E ,

defined as

~E =

∑

i g 2
i · ~ui

∑

i g 2
i

, (3.20)
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Figure 3.9: Effective order (based on rE ). Comparison of MOA (solid lines) and HOA (dashed lines) for a horizontal
source. Ideal (top panel) and noisy simulation (bottom panel) is shown. Thick lines represent the mean, thin lines
one standard deviation from the mean for the noisy simulation.

where ~ui is a unit vector pointing in the direction of the i -th loudspeaker.

The ideal value of rE for 3D ambisonics of order M (i.e. for ideal ambisonics components

and a regular loudspeaker layout with a sufficient number of loudspeakers) is given by Daniel

(2000) as

rE =
M

M +1
, (3.21)

from which the effective order may be expressed as

Meff =
rE

1− rE
. (3.22)

This measure is used here as an indication of the directionality of the reproduced sound

field. For a high effective order (and rE ) sound energy originates from a small portion of the

array (so it is highly directional), whereas a low effective order means that the sound energy

is produced by several loudspeakers, and the original plane wave is “blurred". The above

measure is considered both in ideal and noisy form, in order to evaluate the impact of errors

introduced by the microphones.

Figure 3.8 shows the effective order simulated for the MOA array for different elevation

angles with and without adding noise and microphone characteristic variations. For the noise-

free condition (top panel), the effective order increases with frequency for all three elevation

angles up to 2–3 kHz. Again, the maximum effective order in this frequency region is limited by

regularization, which was applied even in the noise-free condition. As can be seen, the applied

regularization scheme does not result in a completely smooth change of rE with frequency,

and a step-like behavior with peaks is seen as higher orders are introduced. Above 2 kHz, the



i
i

“main” — 2015/1/29 — 15:09 — page 34 — #52 i
i

i
i

i
i

34 3. A mixed-order ambisonics microphone array

effective order is higher for the horizontal source than for the elevated sources, showing the

result of the MOA processing. Finally, the effective order decreases sharply from above 7–8

kHz due to increasing spatial aliasing error.

The bottom panel shows the mean of 20 simulation runs with noise, where for each run,

a new amplitude and phase characteristic was assigned to each microphone. In this more

realistic configuration, the effective order is not affected strongly below 1 kHz, but above that

frequency the effective order is reduced compared to the ideal case. For the elevated source, an

effective order of between 4 and 5 is maintained in the 1–6 kHz range. For the horizontal source,

the effective order exceeds that of the horizontal source above about 2 kHz, albeit peaking just

below the chosen M2D order of 7. The addition of self-noise by itself was not found to have a

marked effect on the simulations above about 200 Hz, in accordance with previous findings

(Rafaely, 2005), but not shown here. Thus the variations in array performance show the effect

of the amplitude and phase characteristic variations. Between about 1–6 kHz, the effective

order (and rE ) is reduced and varies more strongly with changes in transducer characteristics.

Figure 3.9 shows the same measure, but now comparing MOA (solid line) and HOA (dashed

line) for a horizontal source, both with and without noise and characteristic variations. The

HOA array behaves very similarly to an elevated source position in the previous comparison

(cf. Figure 3.8). Differences between MOA and HOA are seen above 2 kHz, where MOA reaches

higher effective orders. It can also be seen from the figure that the usable bandwidth of the

MOA array is slightly extended as compared to the HOA array.

Array response and background noise

Figure 3.10 shows the sum of all loudspeaker signals G as well as the sum of the squared

loudspeaker signals E (thick lines), for three plane wave sources incident on the MOA array.

G corresponds to the sound pressure level at the very center of the reproduction array, and

shows a flat response at 40 dB/Hz, as expected, up to the aliasing frequency of about 8 kHz

for all three elevation angles. The measure G considers a phase-coherent addition of the

loudspeaker signals, which in practice occurs only at low frequencies. In fact, the response at

the very central point of the listening area is only dependent on the 0th order (omnidirectional)

component, as the directional components are canceled (i.e. their integral over the sphere is

0).

A closer approximation of the high frequency behavior in the reproduced sound field,

especially at a slightly off-center position, is given by the energetic sum of the loudspeaker

signals E . Using “basic” decoding, the system tries to achieve a flat pressure response. This

in turn means that towards low frequencies where coherent addition occurs, the energetic

sum E is reduced, as can be seen in Figure 3.10 (bottom panel). It can be seen, however, that

the reproduced energy of sound sources is essentially independent of the elevation angle.

Fluctuations in G , as well a sharp increase of E are evident above about 8 kHz due to spatial

aliasing.

In the same figure, thin lines show the G and E measures with only the microphone self-
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Figure 3.10: Power spectral density of the sum (G ) and the energetic sum (E ) of the loudspeaker signals, for a
source at three different elevation angles, for the MOA array. Thick lines show the response for a plane wave of
40 dB SPL/Hz. The smoothed spectrum of the array output with no signal applied to the microphones (i.e. the
predicted noise floor) is also plotted with thin lines.

noise applied, indicating the predicted noise floor in the reproduction system. Looking at G ,

the simulated noise floor is highest at low frequencies, and the lowest in the range between

500 and 1000 Hz, varying in the range of about 30 dB. For a signal spectrum level of about

40 dB SPL/Hz (roughly the spectrum level of loud speech at 1 m up to about 1 kHz; Olsen,

1998), the signal-to-noise ratio varies between 40 and 60 dB. The SNR predicted by the E

measure is markedly smaller, especially at frequencies below 3 kHz, which reveals potential

noise problems at more off-center positions, and may indicate the need for applying more

regularization in practice. At the very lowest frequencies this measure likely underestimates

the SNR due to the coherent addition of loudspeaker signals, as mentioned before.

The HOA array showed a small decrease (6 dB max.) in background noise power between

3 and 6 kHz, as expected from the higher WNG of HOA at these frequencies (cf. Fig. 3.5).

However, as results were otherwise almost identical to those of the MOA array, they are not

shown here.

3.5 Measurement results

Selected results from the simulation-based microphone array analysis presented in the

previous section were validated with measurements on the physical MOA array, set up as

described in Sec. 3.3.3. In order to obtain the beam patterns to calculate the beamformer-

based measures, the same grid of array look directions as described in Sec. 3.3.4 was taken.

Similarly, for the sound-field-based analysis, the measured signals were decoded onto the

virtual loudspeaker array described in Sec. 3.3.4.
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Figure 3.11: Comparison of measured (solid lines) and simulated (dotted lines) beamwidth and MSL for the MOA
array. The top panel shows the 3 dB beamwidth in the azimuth (thick lines) and elevation directions (thin lines).
The bottom panel shows the MSL (thick lines only). Results are for a source in the horizontal plane.

3.5.1 Beamformer-based measures

Beamwidth and sidelobe level

Figure 3.11 shows a comparison of measured and simulated beamwidth and MSL data.

Identically to Section 3.4.1, the beamwidth is calculated along both the elevation and the

azimuth, but is now displayed in one figure with thin and thick lines, respectively. It can be

seen that both the measured beamwidth and MSL data closely match the simulations over

the whole frequency range tested, suggesting that the simulation parameters chosen can

accurately predict the actual behavior of the physical array.

3.5.2 Sound-field-based measures

Array response and background noise

Figure 3.12 shows the microphone array response at the center of a virtual loudspeaker array,

both with a signal applied (a horizontal source), and in quiet. Similarly to Figure 3.10, both the

sum and the energetic sum are displayed. Measured results are plotted with solid, simulations

with dotted lines. Looking at the array response with the signal applied (thick lines), it can be

seen that the measured spectrum matches the simulations well, although response variations

exist in the measured result. These are partly due to the spectral fluctuations of the white noise

signal itself, and any measurement errors or errors introduced by the microphone array may

contribute as well.

Although overall the noise floor (thin lines) follows the predictions quite well, the

background noise in the measurement is somewhat higher than predicted above about 300 Hz.
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Figure 3.12: Comparison of measured and simulated array response (thick lines) and background noise (thin lines).
The top panel shows the power spectral density of the sum (G ), the bottom panel the power spectral density of the
energetic sum (E ) of the loudspeaker signals for a source in the horizontal plane.

Some tonal noise components are apparent (e.g. a strong peak at 8 kHz), which are due to

noise in the electronics somewhere along the signal path, as they were not present in the

acoustic field. Such noise components can be especially detrimental if they affect groups of

channels, as they introduce correlated noise, which is amplified more than given by the white

noise gain. Aside from these peaks, dynamic range is as predicted and discussed in Sec. 3.4.2.

Effective order

The effective order for a measured source situated in the horizontal plane, as well as for a

source at 20◦ elevation is displayed in Figure 3.13. The effective order for both sources is similar

up to about 2 kHz, being limited by regularization, as seen previously in the simulated analysis

in Sec. 3.4.2. However, above this frequency, the horizontal source achieves a higher effective

order, reaching up to order 6. This shows the desired result of MOA processing, although it

also demonstrates that an effective order of 7 is not reached under real-world conditions (cf.

Fig 3.8). A large drop in effective order is seen for the elevated source just under 2 kHz. This,

however, was confirmed to be a result of the loudspeaker frequency response at the position

of the array. Due to mounting restrictions, the loudspeaker was not facing the microphone

array directly at the elevated position, thus introducing a trough in the frequency response at

the crossover frequency. Aside from this, the measured power spectrum at the microphone

position for the elevated source was not lower than for the horizontal source, indicating that

the decreased effective order at other frequencies was not due to a lower SNR, but rather to

the effect of MOA processing.
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Figure 3.13: Comparison of effective order (based on rE ) for a measured horizontal and elevated source.

3.6 Discussion

3.6.1 MOA vs. HOA

One of the main goals of this paper has been to investigate the applicability of the MOA

approach to microphone arrays. The aim of the MOA approach itself has been to combine a 3D

(periphonic) representation of a certain order with a higher-order horizontal representation,

taking advantage of the fact that (i) an increase in resolution in only two dimensions may be

achieved by a smaller increase in the number of transducers, and (ii) that the properties of

human hearing make it desirable to provide a better resolution in the horizontal plane when a

limited number of transducers are available. The desired properties of a MOA system therefore

depend on the direction of the source. For an arbitrary source direction, it should provide

at least the performance of an HOA system of order M3D . For horizontal sources, it should

approach the performance of a higher, M2D -order system.

Based on the results, the MOA microphone array presented here meets these criteria

partially. The DI, beamwidth and rE measures all show that performance for horizontal

sources is improved, with a small increase in the usable bandwidth over the HOA array. While

the beamwidth approaches the levels corresponding to order M2D , the rE and DI measures

only show a smaller improvement. Whereas the beamwidth can be separated into horizontal

and vertical components, the DI and the rE measures are affected by horizontal and vertical

spatial directivity concurrently. Therefore these measures cannot be expected to reach levels

corresponding to order M2D with the current mixed-order approach, which essentially only

affects horizontal directivity.

It is important to note, that improved performance for horizontal sources is only seen for

mid to high frequencies, above about 3 kHz. The increased spatial resolution for horizontal

sources has the cost of decreased robustness (i.e. more noise amplification) at mid frequencies,

as evidenced by the WNG measure. At lower frequencies the regularization scheme limits

performance, and the MOA array behaves similarly to an HOA array of order M3D . Unlike

playback systems, microphone arrays can only take advantage of the higher orders in the

frequency range where these orders can be captured without excessive amplification of the
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microphone signals. As pointed out by Daniel (2009), this frequency range decreases as the

order increases, and is a major limitation in building arrays of very high orders.

3.6.2 The effect of regularization and noise

Although it was not investigated here explicitly, the above suggests that it is important to

evaluate the role of regularization in limiting performance in the MOA recording setup. The

regularization parameter λ needs to be chosen carefully, considering the available signal-to-

noise ratio. Further, alternate regularization schemes that may be better suited for MOA need

to be investigated. Nonetheless, MOA seems to provide a viable extension of HOA that is also

applicable to microphone arrays. The utility of the extra horizontal orders will ultimately

have to be evaluated in accordance with the exact application. While microphone self-noise

does not seem to affect the considered performance measures directly at higher frequencies

because of adequate SNR, the noise may nonetheless become audible, and perceptual aspects

will need to be considered. Listening tests can help determine the optimal trade-off between

increased spatial acuity and background noise during playback.

Variations in the amplitude and phase characteristics of the transducers showed a marked

effect on array performance above about 1 kHz, directly influencing the directionality of

the reproduced sound field. These variations can – at least partly – be compensated for if

the microphone characteristics are known. For the transducers used in the array, only the

sensitivity was matched (at 250 Hz); therefore applying frequency response correction filters

may offer a way to improve performance.

The results have also shown that correlated noise across microphone channels may not be

negligible in practice, and needs to be considered in microphone array design.

3.6.3 Alternate approaches

An alternate MOA scheme has been proposed by Travis (2009), which may be better suited

for more unequal order combinations. However, as seen from the effective order and array

response measures (see Figs. 3.8 and 3.10), the problems put forward in the aforementioned

study were not observed here, likely due to the already high periphonic (3D) order used in

this work. It is clear, however, that highly unequal order combinations in the current MOA

scheme show undesirable behavior, and potential advantages with alternate schemes should

be investigated in future work.

Although spatial audio reproduction is the main focus of this paper, the MOA approach

could also be utilized in beamforming applications where increased discrimination of

horizontal sources is desired, for example.

3.7 Conclusions

This paper investigated applying the mixed-order ambisonics approach to microphone arrays.

Specifically, two example arrays using 52 transducers were simulated: one using a quasi-regular
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distribution of microphones and HOA processing, and the second using a higher density of

microphones on the equator and MOA processing. Further, measurements on a physical

realization of the MOA array were used to validate the simulations.

It was shown that a higher horizontal spatial directivity is obtained for the MOA array, but

only above 3 kHz for the considered radius of 5 cm. For lower frequencies the regularization

applied limited directivity, and the HOA and MOA arrays behaved similarly. In terms of

robustness, the WNG was shown to be elevation dependent for the MOA array, with the

peak of the WNG shifted up in frequency for a horizontal source. The WNG was otherwise

comparable to that of the HOA array. Measurements of the MOA array prototype verified

that the array performance can accurately be simulated if the transducer characteristics are

taken into account, and confirmed that higher horizontal directivity with adequate SNR can

be attained in practice.

It is clear that the trade-off between background noise and spatial resolution is a crucial

parameter in microphone array processing for audio applications. Further, the consideration

of a more realistic playback environment, various decoding strategies, and the handling of

frequencies above the aliasing limit present questions that must be addressed with subjective

tests in future work.
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4
Performance assessment of mixed-order

ambisonics for spherical microphone arraysb

Abstract

Mixed-order ambisonics (MOA) combines planar (2D) higher-order ambisonics

(HOA) with lower-order periphonic (3D) ambisonics. MOA encoding from

spherical microphone arrays has the potential to provide versatile recordings

that can be played back using 2D, 3D or mixed systems. A procedure to generate

suitable layouts for a given MOA order combination is introduced, consisting

of rings of microphones at several elevation angles. Robustness and directivity

measures were evaluated for four MOA layouts, each optimized for a planar order

of 7, and a periphonic order of 1, 3, 5 and 7. Results showed that for non-horizontal

directions, the MOA arrays behaved similarly to a HOA array of the corresponding,

periphonic order. The inclusion of the higher-order, horizontally oriented SHFs led

to increased directivity for horizontal sources, as a result of decreased horizontal

beamwidth.

4.1 Introduction

Sound field recording techniques have received increasing attention in the last two decades.

Several applications, e.g. in psychoacoustics and hearing instrument testing, require a realistic

reproduction of these sound fields, i.e., of the spatial characteristics of the recorded scene.

For these applications, high-quality recordings, scalable to playback setups of different sizes,

either planar (2D) or periphonic (3D), are desirable.

Higher-order ambisonics (HOA) is a technique for either 2D or 3D systems (Moreau et al.,

2006) that can process recordings from spherical microphone arrays for playback on arrays

with various numbers of loudspeakers. More recently, mixed-order ambisonics (MOA) was

investigated, which combines horizontal 2D HOA with lower order 3D ambisonics (Favrot et al.,

2011). MOA for spherical microphone arrays can improve, compared to HOA, the directivity

of horizontal sources while retaining some directivity for elevated sources (see Chapter 3).

MOA recordings are very versatile and compatible with HOA playback. A MOA recording of

combination order M2D /M3D could be played back (i) on either regular 3D or 2D loudspeaker

arrays (using up to M3D order and M2D order HOA, respectively) or (ii) on 3D arrays with a

b This chapter is revised version of Favrot and Marschall (2012).

41
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higher density of loudspeakers on the horizontal plane (using MOA with a combination order

of up to M2D /M3D ). It is desired that the encoded MOA signals be of similar quality than HOA

signals of corresponding orders. The term “quality” here refers to (i) robustness to sensor noise

and amplitude and phase mismatches and (ii) spatial resolution, i.e., the directivity of the

array.

This study investigates the directivity and robustness of MOA encoding from spherical

microphone arrays for different order combinations, for a fixed 2D order paired with various

3D orders. Because of the hybrid nature of MOA, a set of performance measures or metrics

need to be evaluated, separately considering horizontal and vertical characteristics. First, a

procedure to generate suitable microphone layouts for a given MOA order combination is

introduced. Second, standard metrics are evaluated for the proposed MOA layouts in both

horizontal and vertical directions. The metrics are compared to corresponding values for 2D

and 3D HOA. Finally, the effect of the regularization on MOA encoding is discussed.

4.2 Background

First, the principle of MOA encoding using spherical arrays is briefly described here. The

notations and nomenclature follow Moreau et al. (2006) and use spherical coordinates where

a point in space is described by its radius r , azimuth θ (−π≤ θ ≤π) and elevation δ (−π/2≤
δ≤π/2) in relation to the origin O (the center of the spherical array).

4.2.1 Pressure on a sphere

The pressure p at a point (R ,θ ,δ) on the surface of a solid sphere can be approximated by

(Moreau et al., 2006):

p (k R ,θ ,δ) =
M
∑

m=0

Wm (k R )
m
∑

n=0

∑

σ=±1

Bσmn Y σ
mn (θ ,δ), (4.1)

with k being the wave number, Wm (k R ) the weighting factor for the rigid sphere as described

in Moreau et al. (2006), Bσmn the Fourier-Bessel series coefficients or ambisonics components

of the sound field, and Y σ
mn (θ ,δ) the real-valued spherical harmonic functions (SHFs) (Daniel,

2000) defined as

Y σ
mn (θ ,δ) =

√

√

(2m +1)(2−δ0,n )
(m −n )!
(m +n )!

Pmn (sinδ)

×







cos nθ ifσ=+1

sin nθ ifσ=−1
,

(4.2)

with δ0,n = 1 for n = 0, and 0 for n > 0, and where Pmn are the Schmidt semi-normalized

associated Legendre functions of degree m and order n . The approximation gets more

precise with increasing M . Considering the Q pressure signals captured by microphones
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flush-mounted on the surface of the sphere, Eq. 4.1 can be written in matrix form as

s= T ·b , (4.3)

where b is the column vector of the K = (M +1)2 ambisonics components Bσmn , s is a column

vector of Q microphone pressure signals, and T represents the transfer matrix of size Q ×K

written as

T= Y ·diag [Wm (k R )] , (4.4)

with the columns Y containing the SHFs evaluated at each microphone position (θq ,δq ).

4.2.2 Mixed-order ambisonics

The MOA scheme (Favrot et al., 2011) relies on a selection of SHFs. The MOA harmonic

functions for an order combination of M2D /M3D consist of all SHFs up to order M3D , and

horizontally-oriented functions (with indices n =m) from order m =M3D + 1 to M2D . The

number of MOA harmonics K is then:

K = (M3D +1)2+2(M2D −M3D ) . (4.5)

The matrix of MOA SHFs will be denoted eY.

4.2.3 Encoding

MOA components are encoded from the Q microphone signals using the ambisonic method

(see Chapter 3). The frequency-dependent array encoding matrix E( f ) (K ×Q ) derives the

coefficients b (ambisonics signals) from the sampled pressures p as

b( f ) = E( f )p( f ) , (4.6)

and is obtained by inverting Eq. 4.3. Using the regularized filtering approach described in e.g.

Moreau et al. (2006), the encoding matrix E is approximated by

E( f )≈ diag

�

W ∗
m (k R )

|Wm (k R )|2+λ2

�

eY+ , (4.7)

where eY+ is the pseudo-inverse of eY and λ is a regularization parameter. The regularization

prevents the classical problem of excessive amplification of high orders at low frequencies,

which, in practice, would lead to high noise levels at low frequencies (e.g. Moreau et al., 2006).

4.3 Methods

In order to investigate the performance of MOA spherical arrays for different mixed-order

combinations, suitable sensor layouts first need to be derived for a given order combination.
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i δi Qi

0 0 2M2D +1

1 . . . Nr /2 ±π2
i

Nr /2+ε

 �

1− 2δi
π

�

Qe
2 +1

£

Table 4.1: Specification of the investigated MOA layouts. Elevation angles δi and number of transducers Qi for
ring i .

4.3.1 Generating ring layouts

Similarly to HOA, the encoding of MOA signals relies on a least-squares minimization operation

(the pseudo-inverse in Eq. 4.6). Therefore, a low condition number κ(eY) of the SHF matrix

is necessary for a robust encoding of MOA signals. A prerequisite is that the number of

transducers Q is greater than or equal to the number of MOA harmonics K (cf. Eq. 4.5),

otherwise the system of equations in Eq. 4.3 is underdetermined. In practice, a higher number

of sensors is needed to obtain good robustness, especially if the layout is irregular. In addition,

the SHFs evaluated at the sensor positions should form an orthonormal basis. For MOA, one

straightforward way to achieve the orthonormality of the horizontal harmonics is to sample

the horizontal ring (the equator) with equiangular spacing.

The following procedure describes the generation of example layouts that were used in this

study for a given M2D and M3D order. The layouts consist of rings of Qi transducers with an

equiangular spacing in azimuth and with an elevation angle of δi . First, each layout includes a

horizontal ring (i.e. withδ0 = 0) of Q0 = 2M2D +1 transducers, in order to sample the horizontal

SHFs up to order M2D . Second, the total number of transducers on the rest of the rings, in

order to fulfill Q > K , should at least be equal to

K − (2M2D +1) =M 2
3D . (4.8)

Here, more transducers than the minimum are chosen such that

Qe =







M 2
3D +2 for even M3D

M 2
3D for odd M3D

. (4.9)

Then, the number of elevated (δ 6= 0) rings Nr is chosen as

Nr =







M3D for even M3D

M3D +1 for odd M3D

. (4.10)

Table 4.1 describes the elevation angle δi of ring i consisting of Qi transducers. The d.e
brackets represent the ceiling function and ε= 1 for even M3D and ε= 0 for odd M3D .

In order to verify that this procedure provides suitable example layouts, the condition

number κ(eY)was evaluated for M2D = 7 and M3D = 1 . . . 7, and listed in Table 4.2. None of the

condition numbers are� 1, which indicates that the matrix eY is not ill-conditioned.
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M3D 1 2 3 4 5 6 7

Q 17 21 25 39 49 81 101

K 16 19 24 31 40 51 64

κ(eY) 2.80 2.54 2.11 1.87 1.63 1.51 1.71

Table 4.2: Condition number of matrix eY with layouts for various order combinations. The number of transducers
Q , and the number of spherical harmonic components K are also given for each order combination.

Figure 4.1: Example layouts for order combinations 7/1, 7/3 and 7/5.

As an example, the layouts obtained for combination orders 7/1, 7/3 and 7/5 are shown in

Fig. 4.1. Sensors locations are indicated by red circles.

4.3.2 Metrics

Since MOA introduces an elevation dependence and considers horizontal and vertical

directions separately, array performance metrics should be chosen and evaluated accordingly.

Using spherical microphone arrays for sound field reproduction entails similar signal

processing to their use in beamforming, as the loudspeaker feeds for a regular loudspeaker

array can be obtained by beams formed in the direction of the loudspeakers (e.g. Moreau et al.,

2006). Established performance measures for spherical array beamforming (Meyer and Elko,

2004) are therefore relevant for the present study and are described in the following section.

For a look direction (θ0,δ0) and for a regular beam pattern, the output of the beamformer can

be written as (Meyer and Elko, 2004)

y (θ0,δ0, f ) = y0b( f ) , (4.11)

with y0 being the vector of K SHFs evaluated at (θ0,δ0), and b the obtained ambisonics signals

after array processing. Fig 4.2 shows beam patterns, i.e., the beamformer output plotted as a

function incoming plane wave direction, for a look direction of (θ0 = 0,δ0 = 0), and for M2D = 7

and M3D = 1,3,5 and 7. A sphere radius of 5 cm and a frequency of f = 5 kHz was used for

these simulations. The beampatterns in the left column are shown from the top, revealing the

behavior of the beam in the horizontal plane, while in the right column a side-view is shown,

displaying the beam in the vertical plane. It can be seen that the beam patterns consist of a

main lobe in the intended direction, and several sidelobes in other directions.

In order to analyze the beampatterns, four established measures for beamforming arrays
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Figure 4.2: Mixed-order beampatterns for a look direction (θ0 = 0,δ0 = 0), M2D = 7 and f = 5 kHz.
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Figure 4.3: White noise gain for a horizontally-incident (dashed-lines) and an elevated (solid-lines) plane wave, for
different MOA combinations.

were calculated, namely white noise gain (WNG), directivity index (DI), beamwidth, and

maximum sidelobe level (MSL), and are described in the following section.

Another group of metrics relates to the characteristics of the sound field reproduced by an

array of loudspeakers. The reproduced sound field is also influenced by the loudspeaker layout.

Therefore, for these metrics, an ideal, sufficiently large loudspeaker array was considered in

order to focus on the effects of the microphone array processing.

4.4 Metrics and results

In this section, the proposed metrics for the evaluation of MOA are described and results are

presented for four hard-sphere arrays, with layouts generated using the procedure described

in Sec. 4.3.1, with M2D = 7 and M3D = 1, 3, 5 and 7. The last case corresponds to 7th order HOA,

and was used as a reference. A regularization parameter of λ= 0.01 was applied (cf. Eq. 4.7)

in order to provide a more realistic prediction of MOA performance, and to demonstrate the

impact of regularization. This value of the regularization parameter was found to give good

results with simulated microphone self-noise.

4.4.1 White noise gain

The white noise gain (WNG) is a commonly used measure for estimating the robustness of

beamforming microphone arrays against transducer self-noise, characteristic variations, and

position errors (Meyer and Elko, 2004). WNG represents the signal power at the output of the

beamformer over the sensor self-noise power, assuming spatially uncorrelated white noise.

The inverse of the WNG shows how much this noise is amplified by the array processing. Thus,

a higher WNG means more robust processing. For a unit-amplitude plane wave arriving from

the look direction, the WNG can be calculated as (cf. Eqs. 4.11 and 4.7)

WNG= 10 log10

�

|y0b0|2

(y0E)H (y0E)

�

. (4.12)

Figure 4.3 shows the WNG for a horizontal (δ0 = 0) and an elevated (δ0 =
p i
3 ) look direction

for the four considered MOA layouts. For comparison, black crosses indicate the maximum of
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Figure 4.4: Directivity index for horizontal and elevated beams, for different MOA orders.

the theoretical WNG with HOA for each layout. The theoretical WNG is calculated as (Park

and Rafaely, 2005)

WNGt = 10 log 10

 

Q K 2

∑M
m=0

2m+1
|Wm (k R )|2

!

. (4.13)

WNGt presents a typical band-pass characteristic centered at an optimum frequency defined

as fopt(m ) = c m/2πR (Park and Rafaely, 2005), where c is the speed of sound, and m is the

spherical harmonics order.

For MOA arrays, the WNG for the horizontal look direction shows a bandpass characteristic

(dashed lines), centered at the optimum frequency for 7th order HOA, albeit with lower

maximum values. This shows that for the MOA layout and processing, while the optimum

frequency is shifted higher, robustness for horizontal sources is lower than for full 7th order

HOA. For the elevated look direction, the WNG peaks are close to the theoretical WNG for the

corresponding M3D orders, except for M3D = 1. The behavior of the MOA arrays in terms of

WNG for elevated sources is thus more similar to that expected for the corresponding lower,

M3D order. Comparing WNGs for the horizontal and elevated look directions for a given order

combination reveals that the extension to higher planar orders comes at the cost of decreased

robustness for mid frequencies. At lower frequencies, the WNG is limited by regularization

and is similar for horizontal and elevated look directions.

4.4.2 Directivity index

The directivity index (DI) indicates how directive a beamformer is, which is directly linked to

the spherical harmonics order used. The DI is defined as the ratio of the beamformer output for

an incoming plane wave in the look direction, relative to the average output of the beamformer

for all incidence directions (e.g. Meyer and Elko, 2004):

DI = 10 log10

�

|y0b0|2
∑L

l=1 |y0bl |2

�

, (4.14)

where bl are the ambisonics signals for the l -th incoming plane wave out of L waves distributed

evenly around the sphere. DIs were computed after the simulation of L = 150 plane waves for

a horizontal and an elevated look direction, and are shown in Figure 4.4.
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Horizontal gray dashed lines, labeled “effective order”, represent the maximum achievable

DI (DImax) values for a regular beamformer of order m = 1 to 7, given as (Meyer and Elko, 2004)

DImax(m ) = 20 log10(m +1) . (4.15)

As mentioned above, the regularization parameter attenuates the contribution of higher order

components at low frequencies. Thus, the spatial directivity of the arrays is expected to

be frequency dependent. The frequency fa (m ) at which the order m is “activated” by the

regularization parameter λ (cf. Eq. 4.7) is defined as the frequency for which λ = |Wm (k R )|.
The black crosses in the figure indicate points at ( fa (m ), DImax(m )), for m = 2 . . . 7.

For the elevated beam direction, DIs increase with frequency until the maximum DI for the

given M3D order is reached at about fa (M3D ), as indicated by the black crosses. The DI below

these frequencies is limited by the applied regularization, which reduces the effective order

of the array in order to avoid excessive noise amplification. The DI starts to drop above the

optimum frequency fopt(M3D ), where directivity is reduced due to the increasing contribution

of spatial aliasing errors (Rafaely, 2005). For horizontal beams, DI values above fa are higher

than for elevated beams, but do not reach DImax(M2D = 7). Instead, maximum horizontal DIs

lie below the mean of DImax(M3D ) and DImax(M2D ). The frequency above which the DI starts

decreasing again is also higher for horizontal than for elevated beams, but does not reach

fopt(M2D ). The directivity of the MOA array is thus similar to the directivity of an M3D order

HOA array for elevated directions, and in between the directivity of an M2D and an M3D order

HOA array for horizontal directions.

4.4.3 Beamwidth

The beamwidth is a measure of the spatial resolution of the beamformer. It is commonly

defined as the angular width of the main lobe of the beampattern at the−3 dB points relative to

the maximum. As this measure focuses only on the main lobe, and does not consider potential

sidelobes, it only partially describes the total directivity of the beam pattern. The measure can,

however, be conveniently evaluated both along the azimuth and the elevation, making it a

relevant metric for MOA.

Beamwidths were computed for a horizontal look direction (0,0) for the four arrays, and

are shown in Figure 4.5.

For comparison, “effective orders”, representing the ideal beamwidth for HOA of orders 2

to 8, are plotted as dashed horizontal lines. Black crosses again mark the “activation frequency”

fa (m ) for each order. In general, beams get narrower with increasing frequency, as the

beamwidth is limited by regularization at low frequencies. The beamwidth along the azimuth

decreases up to fa (M2D ), above which the minimum beamwidth is reached, corresponding to

an effective order of about 7 for M3D = 5 and 7, and 8 for M3D = 1 and 3. The beamwidth along

the elevation decreases up to the activation frequency of the periphonic order fa (M3D ), with

the minimum beamwidth roughly corresponding to the periphonic order, except for M3D = 1.

Thus, the beamwidth for horizontal sources is closely linked to the chosen periphonic (M3D )
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Figure 4.5: Beamwidth along the azimuth and elevation for a horizontal look direction, for different MOA orders.
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Figure 4.6: Maximum side lobe levels for a horizontal look direction, for different MOA orders.

order along the elevation, and to the planar (M2D ) along the azimuth. This behavior can also

be seen directly in Figure 4.2.

4.4.4 Maximum side lobe level

The beamwidth alone does not fully describe array directivity, as any sidelobes will introduce

sensitivity in directions other than that of the main lobe. High sidelobe levels will impair

overall spatial directivity, and must be considered alongside the main lobe width. Maximum

side lobe levels (MSLs) are defined as the level of the second highest peak in the beampattern

relative to the level of the main lobe, and describe the minimum attenuation of sounds from

directions outside the main lobe. MSLs were calculated for the four arrays and are displayed

in Figure 4.6.

Comparing the MSLs for the different orders above 1 kHz reveals that the loss of directivity

for MOA for horizontal sources at higher frequencies occurs due to increasing sidelobe levels,

and not due to an increase in the width of the main lobe (cf. Figure 4.5). This in turn reflects

the increasing contribution of spatial aliasing for higher frequencies. The highest sidelobe

levels are seen for the M3D = 1 array, which indicates that this layout and order combination

may not be optimal.
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Figure 4.7: Effective order transformed from rE , for a horizontal and an elevated sound source, and for different
MOA orders.

4.4.5 Sound field reproduction

Sound fields captured by microphone arrays can in turn be reproduced by playback over arrays

of loudspeakers. Deriving the appropriate loudspeaker driving signals from HOA or MOA

signals is termed “decoding”. Comparison of the reconstructed sound fields can provide a

measure of array encoding performance when using a sufficiently large loudspeaker array,

such that any errors are primarily due to the microphone array. This is easily achieved by

applying a virtual loudspeaker array, where each element is considered to emit ideal plane

waves. The comparison used here further relies on the norm of the “energy vector” rE , a

concept proposed by Gerzon (1992). This measure quantifies, on the playback side, the spatial

distribution of energy. rE is 1 if all energy is from one specific direction, and 0 if it is distributed

evenly, and thus indicates the directivity of the reproduced sound field. Ideally, for 3D HOA,

rE = M /(M + 1) according to Daniel (2000). The transform Meff = rE /(1− rE ) can then be

used to relate rE to the effective order Meff. The transformation was used here to ease the

comparison between different MOA order combinations.

A virtual, 204-element loudspeaker array, based on a spherical t-design (Hardin and Sloane,

1996) was used to decode the MOA signals encoded by the four microphone arrays considered.

The rE values were calculated after the simulation of a horizontal (δs = 0) and an elevated

(δs = π/3) sound source. The corresponding effective orders are shown in Figure 4.7. The

black crosses indicate points at which order m = 2 . . .7 is activated ( fa (m ), m ). It can be seen

in general that a higher effective order is reached for horizontal sources than for elevated

sources above the frequency fa (M3D ), demonstrating the effect of mixed-order processing.

Prominent peaks occur in the transformed rE values at the activation frequencies fa , where

higher effective orders than the highest applied order of 7 are seen.

To verify the impact of the regularization scheme, another simulation was performed

without applying regularization. Since only an ideal plane wave was considered without any

additional noise sources in the simulations, excessive signal gains did not occur. The rE results

obtained in this ideal case are shown in Figure 4.8. It can be seen that this time, effective orders

were limited to the applied range of orders, not exceeding 7. This suggests that the observed

peaks in Figure 4.7 are an artifact of the regularization scheme used, with which rE does not

change smoothly with frequency. Further, for the horizontal source and M3D = 5, the effective
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Figure 4.8: Effective order transformed from rE , without regularization, shown for a horizontal and an elevated
sound source, and for different MOA orders.

order decreases towards low frequencies. Although not shown explicitly here, it was confirmed

that with the specific layout, some 6th order spherical harmonic components were not well

captured, which, without regularization, introduced substantial errors at low frequencies.

4.5 Discussion

Various metrics were evaluated for the set of MOA layouts considered here. Separate evaluation

along horizontal and vertical dimensions provided a tool to assess the effects of MOA processing

in terms of robustness and directivity. For the latter characteristic, the directivity index provided

an aggregated view of the results from the beamwidth and side lobe level measures. On the

other hand, the beamwidth allowed a separation of horizontal and vertical spatial resolution

for a single beam. For the reproduction side, the norm of the energy vector rE provided another

measure of directivity.

In general, the measures showed that various order combinations in MOA can be used

to control planar versus periphonic performance. However, benefits from the higher planar

order (M2D ) could only be seen above the activation frequency for the periphonic order (M3D ).

Further, due to the increasing slope of Wm (k R )with order (cf. Eq. 4.7; see e.g. Moreau et al.,

2006), the frequency range in which SHFs of higher orders contribute significantly decreases

with increasing order. The beamwidth measures also showed that for horizontal beams, the

increased directivity is provided by a decrease in beamwidth along the azimuth, but not along

the elevation.

The regularization scheme applied introduced peaks in the rE response around the

activation frequencies of each spherical harmonic order. Such an impact was not observed

with the directivity index. Whether it is more desirable to obtain a smooth rE response with

frequency needs further investigation. The amount and type of regularization applied controls

the frequency-dependent trade-off between spatial directivity and background noise. These

parameters are expected to have a pronounced impact on the perception of the reproduced

sound field, and thus subjective tests will likely be required to obtain the optimal parameters

for audio applications.

The layout generation algorithm presented here serves only as an example, with further
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optimization needed to generate practically applicable MOA layouts. In particular, layouts

for low periphonic orders had somewhat higher condition numbers, which does not pose

a numerical problem, but indicates that the layout may not be optimal. Layouts for high

periphonic orders (i.e. 6 and 7) on the other hand appear to be using more transducers than

necessary. A more advanced layout generation procedure could consider the orthonormality

error of the sampled SHFs (e.g. Li and Duraiswami, 2007), or the spatial error between the

reproduced and desired SHFs (Moreau et al., 2006; Favrot et al., 2011).

The investigated MOA scheme may not be well-suited for highly unequal order combina-

tions, as evidenced by the very large difference in performance characteristics for horizontal

and elevated sources for the 7/1 order combination. Similar observations were made by Travis

(2009) in connection with mixed-order loudspeaker reproduction. Different mixed-order

schemes, such as the one presented in the aforementioned paper could be investigated in

future work.

4.6 Summary and conclusions

The aim of MOA is to combine a higher-order planar representation of the sound field with

a lower-order periphonic representation. This study investigated the properties of MOA

spherical microphone arrays with various performance metrics. A procedure to generate

layouts for a given order combination was described. To highlight the properties of MOA, four

example layouts were generated, and encoding performance was assessed by (i) evaluating

beamformer metrics for a horizontal and an elevated beam separately, and by (ii) evaluating

the reproduced sound field for a horizontal and an elevated sound source. Results showed

that for non-horizontal directions, the MOA arrays behaved similarly to a HOA array of the

corresponding, periphonic order. The inclusion of the higher-order, horizontally oriented

SHFs led to increased directivity for horizontal sources, as a result of decreased horizontal

beamwidth. However, overall directivity was lower than that of HOA of the corresponding,

planar order. Further, improvements were restricted to frequencies above the frequency

where the applied regularization scheme activated the higher orders. Nonetheless, adjusting

MOA order combinations provided a way to control horizontal vs. vertical performance

characteristics of microphone arrays.
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5
Sound field reconstruction performance of a
mixed-order ambisonics microphone arrayc

Abstract

Accurate spatial audio recordings are important for a range of applications, from

virtual sound environments for hearing research to the evaluation of commu-

nication devices, such as hearing instruments and mobile phones. Spherical

microphone arrays present one method, whereby accurate spatial recordings can

be made. Recently, a mixed-order ambisonics (MOA) approach was proposed to

improve the horizontal spatial resolution of spherical arrays. This was achieved by

increasing the number of microphones near the horizontal plane while keeping

the total number of transducers fixed. The approach is motivated by the fact that

human spatial hearing is most acute in the horizontal plane. This study investigates

the performance of a MOA rigid-sphere microphone array in terms of sound field

reconstruction error, and the impact of variations in microphone characteristics.

Specifications of a commercially available microphone were used to simulate self-

noise, sensitivity, and phase response variations between the microphones. To

quantify the reconstruction error and the “sweet area”, the reconstructed sound

field based on a simulated as well as an actual array measurement was compared

with the reference sound field for both horizontal and elevated sources. It was

found that at mid to high frequencies, the MOA approach results in a larger sweet

area for horizontal sources than for elevated sources.

5.1 Introduction

There has been increasing interest in the past years in applying spherical microphone arrays

for sound field capture, with the aim of analyzing (e.g. Meyer and Elko, 2002; Rafaely, 2005; Park

and Rafaely, 2005; Rafaely et al., 2007; Li and Duraiswami, 2007; Williams and Takashima, 2010;

Jacobsen et al., 2011) or reproducing the sound field using a loudspeaker array (Abhayapala

and Ward, 2002; Meyer and Agnello, 2003; Moreau et al., 2006). From the perspective of hearing

research, accurate recording and reproduction of spatial audio is important for the design of

virtual environments, where complex and realistic acoustic scenes may be presented to the

listener in a controlled manner. Such virtual environments can also aid the development and

c This chapter is a revised version of Marschall and Chang (2013).
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evaluation of communication devices, such as hearing instruments or mobile phones. To the

extent that the sound field is reproduced accurately, technical devices should also perform in

the virtual space as they would in a real environment. To achieve a realistic and high quality

reproduction, high spatial resolution, wide bandwidth and low noise are needed. It is therefore

important to analyze the impact of various noise and error sources in microphone arrays for

sound field reproduction.

A major limitation in the accurate recording of sound fields at higher frequencies is spatial

aliasing (Rafaely et al., 2007), which stems from the discrete sampling realized when arrays

of microphones are used. Practical considerations limit the number and arrangement of the

microphones, and these in turn limit the maximum directivity and operating frequency of the

array. In an effort to improve the performance of rigid-sphere arrays in the horizontal plane,

previous work investigated arrays with a higher density of microphones on the equator (Favrot

et al., 2011; Favrot and Marschall, 2012; Marschall et al., 2012). A mixed-order ambisonics

(MOA) approach was employed, which, similarly to the approaches proposed by Daniel et al.

(2003) and Travis (2009), combines a subset of higher-order spherical harmonic functions with

a complete lower-order set. This is done in order to increase spatial resolution in the desired

direction, usually the horizontal plane. The approach is motivated by the fact that the most

important sound sources are usually in or near the horizontal plane, where human spatial

hearing is generally most accurate (Blauert, 1997b).

While the properties of MOA microphone arrays have been investigated in previous work,

sound fields recorded and reconstructed using MOA have not yet been investigated in detail.

The properties of the reconstructed sound field in a head-sized region around the center are

of particular interest, as the system’s upper frequency limit is given by the frequency at which

errors exceed a specific threshold at the listener’s ears.

In this study, simulations as well as measurements of a MOA rigid-sphere microphone array

were evaluated in terms of sound field reconstruction error in the horizontal plane. A reference

sound field consisting of a single sound source in anechoic conditions was considered, either

in the horizontal plane or at an elevated position. In order to evaluate the error introduced by

the spherical microphone array, the sound field was reconstructed from the measurements

made with the spherical array, and compared with the reference sound field. Figure 5.1

illustrates this concept. The sound field reconstruction error was quantified by evaluating the

mean-square error, the magnitude error, as well as the normalized cross-correlation between

the reference and reconstructed sound fields. With this approach, no assumptions were

made regarding the loudspeaker setup; the reconstructed field was derived directly from the

measured (or simulated) spherical harmonic coefficients, reflecting error-contributions from

the microphone array only.

Besides array geometry, the characteristics of the microphones also affect the performance

of the microphone array. Self-noise, as well as mismatch between the individual transducers

can both degrade array performance (Moreau et al., 2006). Based on the specifications of a

commercially available array microphone, realistic self-noise, as well as sensitivity and phase

response variations between the microphones were considered.
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Reference measurement 

planar array 

Reference 
soundfield map 

Reconstruction 
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spherical array 
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Figure 5.1: Illustration of the approach used to quantify the sound field reconstruction error of the spherical
microphone array. The reconstruction error is evaluated by comparing the reference sound field (left) with the
sound field reconstructed from a spherical array measurement of the same field (right). The applied error measures
and further details are described in the text.

5.2 Methods

5.2.1 Mixed-order ambisonics

Here, a brief description of the MOA scheme that was used in the present study is provided.

More detailed information can be found in Chapter 3. The pressure at a point with radius

r , azimuth θ , and elevation δ, using mixed-order spherical harmonics expansion, can be

approximated by

P (r,θ ,δ)'
M3D
∑

m=0

Wm (k r )
m
∑

n=0

∑

σ=±1

Bσmn Y σ
mn (θ ,δ)

+
M2D
∑

m=M3D+1

Wm (k r )
∑

σ=±1

Bσmm Y σ
mm (θ ,δ),

(5.1)

where k is the wavenumber, Bσmn are the expansion coefficients or ambisonics components,

Y σ
mn are the real-valued spherical harmonics functions , and Wm (k r ) is the radial function,

which for a rigid sphere is given as (Meyer and Elko, 2002)

Wm (k r ) = i m

�

jm (k r )−
j ′m (k R )
h ′m (k R )

hm (k r )

�

, (5.2)

where R is the radius of the sphere, jm and hm are spherical Bessel and Hankel functions, and

the primes indicate derivatives with respect to the argument.

In the mixed-order scheme used here, as shown in Eq. 5.2, all spherical harmonics functions
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Figure 5.2: The 52-channel, mixed-order ambisonics microphone array investigated in this study.

Y σ
mn are included up to the periphonic order M3D . For higher orders M2D >M3D , only the

horizontal functions (with indices n =m) are included in the summation.

5.2.2 Array design

For the measurements as well as the simulations, the hard-sphere MOA microphone array

developed previously at the Technical University of Denmark was considered (Marschall et al.,

2012), shown in Figure 5.2. The array consists of 7 rings, from top to bottom, of 2, 6, 10, 16, 10,

6, and 2 microphones for a total of 52 transducers, and uses B&K Type 4959 microphones. A

radius of 5 cm was chosen, which is still a practically realizable size considering the number of

microphones, and was also shown to be a suitable size for spatial audio recordings by Weller

et al. (2011). The layout was optimized for an M2D /M3D order combination of 7/5. These

orders were also used for all array processing.

5.2.3 Simulation framework

A simulation framework was developed that implements a reconstruction of the incident

sound field based on a simulated measurement with a MOA microphone array in the frequency

domain. A reference sound field Pinc consisting of an incoming plane wave was generated,

and the sound pressure on the surface of the rigid sphere P (R ,θ ,δ) was calculated at the

measurement points (Williams, 1999). The incoming plane wave ePinc was reconstructed from

the surface pressure on the sphere by first deriving the expansion coefficients eBσmn , which

can be expressed from Eq. 5.1 (see Chapter 3). Regularization was applied to avoid excessive

amplification of noise (see Chapter 3) , with the same regularization parameter of λ = 0.01.

Then, by removing the second term in Eq. 5.2 that represents the scattering effect due to the
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existence of the rigid sphere, the reconstructed pressure can be expressed as

ePinc(r,θ ,δ)'
M3D
∑

m=0

i m jm (k r )
m
∑

n=0

∑

σ=±1

eBσmn Y σ
mn (θ ,δ)

+
M2D
∑

m=M3D+1

i m jm (k r )
∑

σ=±1

eBσmm Y σ
mm (θ ,δ) .

(5.3)

This reconstructed sound field was compared with the reference field, and the error between

these fields was used as performance indicator. The exact error measures used are described

in Sec. 5.2.5.

Measurement errors were simulated and added to the surface pressure on the sphere.

Errors due to self-noise and variations in transducer characteristics were simulated based

on the specifications of the Brüel & Kjær type 4959 array microphone (Brüel & Kjær,

2012). Microphone self-noise was simulated by adding a value to the simulated pressure

measurement, whose magnitude for each frequency band was set to correspond to a typical

self-noise magnitude spectrum for the transducer type, with random phase. As the noise

is defined in the frequency domain as a spectral density, the sound pressure levels given in

the following are normalized to a bandwidth of 1 Hz, as the overall pressure depends on the

bandwidth considered. At the two frequencies used in the simulations, 400 Hz and 4000 Hz,

the self-noise levels were −8 dB SPL and −14 dB SPL, respectively. The simulated plane wave

had a sound pressure level of 42 dB SPL at each frequency, to match the measurements, unless

otherwise stated. This resulted in a signal-to-noise ratio (SNR) of 50 dB and 56 dB at 400 Hz

and 4000 Hz, respectively.

To simulate sensitivity and phase response variations, each transducer was assigned a fre-

quency dependent amplitude and phase characteristic (described as a relative amplitude and

phase deviation for each frequency) randomly selected from a set of example characteristics

conforming to the specifications.

5.2.4 Measurement setup

The measurements were carried out in the small anechoic chamber at the Technical University

of Denmark, which has a lower limiting frequency of about 100 Hz. The measurement setup is

shown in Figure 5.3. The sound scene consisted of a single loudspeaker (Dynaudio BM6P),

2.5 m from the center of the measurement area. The loudspeaker was mounted level with the

measurement plane. For the measurements with the spherical array, the array was mounted

such that the center of the sphere coincided with the center of the measurement area. To

measure the reference sound field, a line array with 7 equally spaced microphones (B&K type

4958) was mounted on a turntable, as shown in Panel A of Figure 5.3. Using several successive

measurements with different positions of the line array, the sound field was sampled in the

horizontal plane every 1.5 cm from the center along the radius, up to 10.5 cm, and every

10◦ in azimuth. The loudspeaker was driven with a white noise signal and was adjusted to

measure 84 dB SPL (lin. weighting) at the microphone array. The recordings were made with
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Figure 5.3: Measurement setup. Panel A shows the rotating line array used for the reference measurement. Panel B
shows the loudspeaker, and Panel C provides an overview of the measurement setup.

the B&K Pulse platform, sampled at 32 kHz, and then processed in the frequency domain, with

a frequency resolution of 1 Hz.

5.2.5 Error measures

Based on the simulated or measured spherical harmonic coefficients, the sound field was

reconstructed using Eq. 5.3 in the horizontal plane (δ= 0) in 36 positions (every 10◦ in θ ), at

several radii r . In the same 36 positions at each radius, the reference sound field was either

directly measured, or, for the simulations, calculated analytically, assuming an acoustic plane

wave from the direction of the loudspeaker. Hence, the reference and the reconstructed sound

fields at each radius r can be expressed as 36-element vectors, P and eP. For example, P is

defined as

P(r ) =
�

Pinc(r,θ1,δ= 0) Pinc(r,θ2,δ= 0) · · · Pinc(r,θ36,δ= 0)
�T

. (5.4)

The reconstruction error was calculated between P(r ) and eP(r ) on a ring for each r . The

considered error measures are described in the following.

First, the mean-square error was calculated to show the overall error, given as

emse(r ) =

√

√

√

√

√

√

√

36
∑

i=1
|Pi (r )− ePi (r )|2

36
∑

i=1
|Pi (r )|2

. (5.5)

This measure is sensitive to errors in both magnitude and phase. For spatial audio applications,

absolute phase error (such as a constant phase shift) may be less problematic than a

disturbance in the relative phase relationships in the sound field, because the latter could affect

auditory localization (e.g. Blauert, 1997b). In an effort to also consider the effects of magnitude

error separately, a magnitude error and a correlation coefficient were also calculated between



i
i

“main” — 2015/1/29 — 15:09 — page 61 — #79 i
i

i
i

i
i

5.3 Results and discussion 61

the reference and reconstructed field. The magnitude error is defined as

emag(r ) =

√

√

√

√

√

√

√

36
∑

i=1

�

|Pi (r )| − | ePi (r )|
�2

36
∑

i=1
|Pi (r )|2

(5.6)

and is insensitive to phase differences.

The spatial correlation coefficient C C is the normalized cross-correlation between the

(complex) reference and reconstructed fields, defined as

C C (r ) =
|P(r )∗ · eP(r )|2

(P(r )∗ ·P(r ))(eP(r )∗ · eP(r ))
. (5.7)

This measure is similar to the modal assurance criterion (Allemang, 2003) that has been

used extensively in structural acoustics for the evaluation of mode shapes. The correlation

coefficient provides a value between 0 and 1, indicating the degree of similarity between the

magnitude and phase response shapes of the two sound fields. Values close to 1 indicate similar

responses. The measure is insensitive to constant phase shifts and to amplitude scaling, thus

providing another view of the reconstruction error that may be more appropriate for spatial

audio applications.

5.3 Results and discussion

5.3.1 Sound field reconstruction

Simulations

The sound field is considered on a disc around the origin in the horizontal plane, in several

discrete points as described previously. Figure 5.4 shows the magnitude and phase of the

reference and reconstructed sound fields, for a 42 dB SPL plane wave at 4 kHz. Looking at the

reference magnitude (top left panel), it can be seen that the magnitude is constant over the

displayed area, as expected for a plane wave. The reference phase (bottom left panel) shows

the phase decreasing in the +x direction, which, with the sign convention used here, indicates

a propagating wave along the x axis, from left to right.

Both the magnitude and phase of the reconstructed field (middle and right panels) show

some differences compared to the reference field. Considering the magnitudes (top), it can

be seen that the target level is only reached up to about r = 10 cm distance, and for higher

radii, there is a decrease in level along the y axis, and an increase along the x axis. Similarly,

the phase responses (bottom) correspond well with the reference for radii smaller than about

10 cm, but diverge for higher r . Comparing the reconstructions with simulated noise (right

panels) and without simulated noise (middle panels), very little difference can be seen between

them.
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Figure 5.4: Magnitude and phase of the reference sound field (left), reconstructed sound field without noise
simulation (middle), and reconstructed sound field with noise simulation (right). The reference field is a 4 kHz
plane wave, with amplitude 42 dB SPL, propagating in the +x direction. The displayed area is a horizontal disc,
with radius r = 20 cm.

These results demonstrate a fundamental property of arrays using spherical harmonics,

namely that the error of the reconstruction is lowest at the origin and increases with the radius

r . More precisely, the contribution of higher orders for small k r , as given by the radial function

(Eq. 5.2), is low. Thus, when the reconstruction is limited to order M , the error due to the

truncation of the spherical harmonic series will be lower closer to the origin and for lower

frequencies. An estimate for the order M that is needed for the representation of a sound field

with wavenumber k within a sphere with radius r is usually given as M ≥ k r (Rafaely, 2005;

Moreau et al., 2006). Expressing r results in

r ≤
c M

2π f
(5.8)

which, for a horizontal order of M2D = 7 and f = 4 kHz, results in a radius of approximately

10 cm. This roughly corresponds to the radius in which the reconstructed sound field matches

the reference in Figure 5.4. The similarity of the results with and without noise simulation

suggests that, at this frequency, limitations imposed by the array geometry, i.e. the aliasing

error, dominate. Errors introduced by the transducers are secondary.

Measurements

Figure 5.5 shows direct measurements of the reference sound field in the anechoic chamber

(left) and the reconstructed field based on the spherical array measurement (right) for 4 kHz

and a horizontal sound source. Note that the displayed area is smaller than in Figure 5.4, as

the measurement extended only to r = 10.5 cm from the center. The measured results are

very similar to the simulations presented previously, and show that the plane wave was well

realized in the experimental setup, and that the reconstructed field appears to correspond well
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Figure 5.5: Magnitude and phase of the measured reference sound field (left), and the sound field reconstructed
from the spherical array measurements (right), at 4 kHz. The displayed area is a horizontal disc, with radius r = 10
cm.

with the reference. Some magnitude errors are apparent at the very edges of the 10 cm disc, as

was also seen in the simulations at that radius.

So far, only a qualitative comparison between the reference and reconstructed sound fields

was presented. In order to quantify the reconstruction error, the error measures described in

Sec.5.2.5 are presented in the following.

5.3.2 Effect of elevation angle

One of the desired outcomes of applying a mixed-order processing is to improve the

performance of the array for horizontal sources. In order to investigate the effect of source

elevation, the sound field reconstruction error was considered for a horizontal and an elevated

source at two frequencies. Figure 5.6 shows the three error measures for a relatively low

frequency of 400 Hz (left panels) and a higher frequency of 4000 Hz. Black curves indicate

simulation results, while red curves indicate measured data for a horizontal source. Regarding

the low-frequency results (left panels) it can be seen that both the total error and the magnitude

error remain below about 20%, and that the correlation coefficient is also close to 1 for the

whole range of radii investigated. This suggests that the sound field is well reconstructed at

this frequency in the investigated area. Further, no marked differences are observed between

the horizontal and the elevated source directions in terms of reconstruction error.

Conversely, at the higher frequency, both the total and the magnitude error are at or above

about 50% for a radius of 10 cm for both incidence angles. The correlation coefficient is also

sharply reduced above r = 9 cm, indicating that the sound field reconstruction fails. For the

horizontal source, the results are in line with the estimation of the maximum reconstruction

radius of about 10 cm. Comparing the horizontal and the elevated source angle, it can be

observed that the errors are higher for the elevated source. Thus, for a horizontal source, the

radius for a fixed error and frequency is increased, or alternatively (not explicitly shown here),
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Figure 5.6: Sound field reconstruction error as a function of distance r from the origin, shown for two source
elevation angles (0◦ and 60◦), and two frequencies (400 Hz and 4000 Hz). Simulation results shown in black,
measurements for a horizontal source shown in red.

the frequency range for a fixed radius and fixed error is extended. This demonstrates the

expected result of the MOA processing in terms of sound field reconstruction error.

The measured sound field reconstruction errors (red curves) for a horizontal source are

generally well-matched to the simulations, although the measured reconstruction error is

slightly higher than predicted for the 4 kHz condition. This implies that the transducer noise

and error model accurately reflects the real-life behavior of the microphones, although there

may be a small effect of additional noise or error sources that were not considered, such as

electrical noise or transducer positioning errors.

It is interesting to note that the level of the total error (top right panel) is relatively high

(30-35%) for small r , up to about 6 cm, but that both the magnitude error and the correlation

coefficient show a low error for the same region. This suggests that there is an absolute phase

shift introduced somewhere in the recording chain, which affects the total error, but not the

magnitude error or the correlation coefficient, because the latter two measures are insensitive

to absolute phase. The source of the error is thus postulated to be the microphone phase

response, and this is further investigated in the next section.

5.3.3 Contribution of error sources

The effect of microphone self-noise and the variations in microphone characteristics (differ-

ences in magnitude and phase responses) were also considered separately. Simulations with

no added noise or error sources were also run. The latter condition indicates errors due to
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Figure 5.7: Sound field reconstruction error as a function of distance r from the origin, shown for two frequencies
(400 Hz and 4000 Hz), for a horizontal sound source. Three simulations are shown in each graph: no noise
simulation applied (circles), only microphone self-noise simulated (triangles), and only amplitude and phase
characteristic variations simulated (crosses). Measured sound field reconstruction errors are again shown in red.
The simulated plane wave amplitude was reduced by 20 dB compared to the measurement.

the truncation of the spherical harmonic series and spatial aliasing. Similarly to the previous

section, three error measures are displayed in Figure 5.7 for 400 Hz (left) and 4000 Hz (right).

For reference, the measured sound field reconstruction errors from Figure 5.6 are replotted

(red curves). The simulated plane wave amplitude was reduced here by 20 dB compared to

the measurement (and the simulations of the previous section) in order to show the effect of

self-noise more clearly. The SNR was thus reduced to 30 dB at 400 Hz, and 36 dB for 4000 Hz.

Regarding the low frequency results (left panels) for the simulations with no noise (circles)

and with only characteristic variations (crosses), the errors are low across all measures. At

this frequency, self-noise (triangles) is the dominant error source, its effect increasing with

radius. Naturally, the contribution of self-noise error is dependent on the source amplitude. In

comparison to the left panels of Figure 5.6, where the total error is shown for a higher source

amplitude, the error is reduced.

At the higher frequency (right panels), note the elevated total error with only the

characteristic variations simulated (crosses), coupled with a low magnitude error and high

correlation coefficient for r < 7 cm. The simulations with self-noise only are closer to those

without noise, and neither error source results in a marked change from the no-noise condition

for r > 8 cm. This suggests that the increased total error also observed in Figure 5.6 for small

radii is indeed caused by the phase responses of the microphones. Aside from that, at high

frequencies, aliasing error appears to dominate. Further, self-noise simulations with a lower
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SNR seem to be a better match to the measured data than with the matching source amplitude

shown previously in Figure 5.6. This points to simulated self-noise being underestimated at

4 kHz.

5.4 Conclusions and outlook

Summarizing the results, it can be said that MOA processing exhibits the desired behavior under

realistic conditions, providing improved performance for horizontal sound sources. More

specifically, the sound field reconstruction error is reduced for horizontal sources as compared

to elevated sources, at least for higher frequencies. The results correspond well with the findings

of our previous studies, where beamforming measures were used to evaluate the benefits of

MOA for microphone arrays (see Chapters 3 and 4). There, it was found that the benefit of

MOA in terms of spatial resolution appears mainly at mid to high frequencies, corresponding

to the frequencies at which the higher orders are “activated” by the regularization scheme

used.

It should be noted that the performance of the array, especially at low frequencies and with

regard to self and background noise, depends on the regularization parameter λ (Moreau et al.,

2006).The effect of the regularization parameter was not investigated here explicitly, but its

present value was found to be a good compromise between noise amplification and its impact

on performance in terms of spatial resolution and sound field reconstruction error.

Measured sound field reconstruction errors matched the simulations well, confirming that

a reasonably accurate reconstruction of the sound field is possible in practice, with an upper

frequency limit of about 4000 Hz for a head-sized region. In terms of the effects of various

noise sources, similarly to earlier studies (e.g. Rafaely, 2005), it was found that the dominant

source of error at high frequencies is spatial aliasing. This means that, assuming realistic

transducer characteristics, high-frequency performance is still mostly dependent on the array

geometry. Using microphones with a higher variation in their magnitude and phase responses

could of course result in a greater contribution of these errors. In contrast, at low frequencies

and low levels, the contribution of transducer self-noise becomes significant.

The utility of considering several sound field error measures was also highlighted. While the

mean-square error measure provides a view of the overall error, its sensitivity to absolute phase

may overestimate the contribution of phase errors in practice for spatial audio applications.

The magnitude error on the other hand does not consider phase information at all. However,

relative phase relationships in the sound field serve as an important localization cue, especially

at low frequencies. The spatial correlation coefficient is sensitive to changes in the relative

amplitude and phase relationships, which are also the cues that would likely affect localization

for a human listener. Thus, while the three error measures considered together provide a

broader view of the types of errors present in the reconstructed sound field, if a single measure

had to be chosen, the correlation coefficient may be the most appropriate one for predicting

degradation in localization performance.

The general approach presented in this paper can be extended to include the quantification
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of errors introduced by the playback system, if similar measurements (or simulations) of the

sound field in a loudspeaker array are made. This way the errors introduced by the whole

recording-reproduction chain, as well as the separate contribution of the microphone array

and the playback system could be evaluated. Practical issues restricted the measurement of

the reference sound field to the horizontal plane only, but in principle a volume could also be

considered.

Finally, taking into account that the intended application of the array is sound field

reproduction for human listeners, in the future, methods must be developed to define

acceptable performance criteria for such arrays. This is needed in order to assign perceptual

relevance to the purely physical error measures considered so far.
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6
Overall discussion

6.1 Main contributions

The main topic of the present thesis has been the development and objective evaluation

of a spherical microphone array for spatial audio recording, with the primary aim of

capturing realistic acoustic scenes for applications related to hearing research. As practical

considerations limit the number of available transducers, it was investigated whether the

microphones could be arranged in a way to better match typical acoustic scenes, as well as the

properties human hearing. As the most important sound sources are typically in or near the

horizontal plane, it was a design goal to obtain a fully three-dimensional representation of the

sound field, but with more detail in the horizontal plane.

The main contributions of this thesis can be summarized as

(1) Introduction and evaluation of a mixed-order ambisonics (MOA) approach for spatial

audio recordings (Chapters 3 and 4);

(2) Design and development of a microphone array based on MOA principles (Chapters 3

and 4);

(3) Objective evaluation of array performance through various performance metrics,

including beamforming-based measures and technical measures of the reproduced

sound field (Chapters 3 and 4), as well as the sound field reconstruction error (Chapter 5).

6.2 Mixed-order ambisonics microphone arrays

6.2.1 Mixed-order microphone layouts

The starting point in Chapter 3 was to investigate whether a recording system with anisotropic

properties could be realized (i) through an appropriate placement of transducers on the sphere,

and (ii) by applying a matching, mixed-order spherical harmonics processing. Previously

described spherical microphone arrays generally aimed at providing a direction independent

spatial resolution, whether in two (Tiana-Roig et al., 2011; Weller et al., 2011) or three

dimensions (e.g. Meyer and Elko, 2004; Moreau et al., 2006), and featured a uniform or nearly

uniform distribution of microphones. In this work, a ring-based layout was considered, with

horizontal rings of microphones at several elevation angles, and the smallest transducer

spacing on the equator. The layout was optimized such that in addition to a complete set of

69
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Figure 6.1: The reciprocal of the radial function Wm (k R ) for oders 0 to 7, for a rigid sphere of 5 cm radius. flim1

indicates the upper frequency limit for 7th order sph. harm. representation in a head-sized region, while flim2

indicates the approximate aliasing frequency of the MOA array.

spherical harmonic functions up to 5th order, it allowed the capture of additional, horizontally-

oriented SHFs up to 7th order. Thus, a mixed-order spherical harmonics expansion with

a higher horizontal order was applied, termed mixed-order ambisonics (MOA). MOA was

first proposed by Daniel (2000) to accommodate loudspeaker layouts with a larger number

of loudspeakers placed horizontally, but its application to microphone arrays had not been

investigated previously.

In Chapter 3, two specific array layouts were considered, both with 52 transducers: a

ring-based layout as described above (MOA array), and a layout featuring a nearly uniform

distribution of microphones, suitable for 5th-order ambisonics (HOA array). It was shown

through simulations of both arrays that with MOA, a direction-dependent spatial resolution is

achieved. Specifically, with MOA, a higher spatial directivity was observed for sound sources

in the horizontal plane, both in comparison to the HOA array, and in comparison to elevated

sound sources with the MOA array. However, for the considered array radius of 5 cm, the

improved spatial directivity was only attained above about 3 kHz, up to the aliasing frequency

of about 8 kHz. At frequencies below 3 kHz, the regularization applied limited directivity, and

the HOA and MOA arrays showed similar performance characteristics.

6.2.2 Limitations in MOA processing

The effects of MOA processing were investigated more closely in Chapter 4, where several order

combinations were considered. It was shown that performance for horizontal vs. elevated

sources can be adjusted by changing the order combination, but that a benefit of the higher

horizontal orders was only seen above the frequency at which these orders were “activated”

by the regularization. This roughly corresponds to the frequency at which the magnitude of

the radial function Wm (k r ) for that order equals the regularization parameter λ. Unlike with

higher-order playback systems, microphone arrays can only take advantage of higher orders

in the frequency range where these orders can be captured without excessive amplification

of the microphone signals. Without regularization, the operating bandwidth of higher-order

arrays is quite limited.

To illustrate this further, the magnitude of 1/Wm (k R ), which indicates the encoding gain



i
i

“main” — 2015/1/29 — 15:09 — page 71 — #89 i
i

i
i

i
i

6.2 Mixed-order ambisonics microphone arrays 71

for order m , is plotted in Figure 6.1 for a 5 cm sphere. The regularization parameter of λ= 0.01,

which was used throughout this thesis, corresponds to a maximum amplification of 40 dB

(indicated by the gray dashed line). The activation frequency for each order is thus given by

its intersection with the maximum amplification level. Below this frequency, the given order

is attenuated. The approximate aliasing frequency of the array is indicated as flim2. It can be

seen that the nominal operating frequency range for a 7th order array (without regularization)

would be around an octave, whereas with regularization, the frequency range can be extended

to about two decades, albeit at the cost of utilizing only first-order components at the lowest

frequencies. It is also apparent that the higher the order, the smaller its usable frequency range,

due to the increasing slope of the radial function towards low frequencies. This presents a

fundamental limitation in the design of microphone arrays of very high orders. These same

limitations apply to the additional horizontal orders in MOA, and limit the frequency range

where they can contribute to the array output. Allowing for more or less signal amplification

(i.e. adjusting λ) also increases or decreases the frequency above which higher horizontal

spatial resolution is achieved. In other words, adequate SNR is required to utilize the higher

horizontal orders.

Another consideration regarding mixed order combinations stems from the fact that the

chosen array radius is smaller than the target listening area, which is taken to be about the

size of a human head. The limiting frequency up to which the sound field in this larger area is

well represented by SHFs up to order M can be estimated from the “rule of thumb” M ≈ k r .

For 7th order this frequency is indicated in Figure 6.1 as flim1. Any orders that are activated

above this frequency will contribute little to a physically accurate sound field in this listening

area. In the present case, it can be seen that the 7th order components reach the maximum

amplification around this frequency, thus they still contribute to the sound field around the ears.

The frequency range between flim1 and flim2 represents the region where spatial information

is captured by the array, but a physically-based (holographic) reconstruction is no longer

possible in the target area. Here, an alternative, non-holographic reproduction strategy can be

employed (e.g. “energetic” or “max rE ” decoding, see Moreau et al., 2006; Zotter and Frank,

2012), that may still provide valid localization cues.

The size of the area of physically correct reproduction, or the “sweet area” was investigated

explicitly in Chapter 5 by considering the sound field reconstruction error as a function of

distance from the origin. It was also confirmed here that the MOA approach results in a lower

sound field reproduction error for horizontal sound sources, or, a slightly larger sweet area for

a fixed error level.

The ring-based microphone layout provided a fairly straightforward way of generating

microphone layouts suitable for MOA by varying the number and density of transducer rings.

However, as shown in Chapter 4 and by Travis (2009), mixed order combinations with a low

periphonic and high horizontal order have some undesirable properties, stemming from a

very large difference between vertical and horizontal directivity for horizontal sources. Further,

for array layouts with a low number of microphones outside of the horizontal plane, spatial

aliasing for elevated sound sources will occur from much lower frequencies than for horizontal
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sources. In realistic sound fields, where the sound incidence direction cannot be controlled,

aliasing from elevated sources will likely cause spectral coloration and may impair localization

of horizontal sources, negating the benefit of higher horizontal directivity. The MOA approach

is thus best applied with a balanced choice of both the order combination, as well as with

regards to the distribution of microphones on the sphere. Based on the objective measures

considered as part of this work, for the current MOA scheme, a periphonic order of at least 3 is

recommended.

6.3 Validation of the simulation framework

A large part of this study was based on computer simulations, as this allowed for flexibility in

studying and comparing various array configurations. The measurements in Chapters 3 and 5

verified that the performance of the realized MOA array was well matched by the simulations,

and demonstrated that array performance can be simulated accurately if the characteristics

of the transducers are taken into account. The simulation framework developed in this work

may thus prove useful for designing future microphone arrays. Finally, the measurements

confirmed that with MOA the desired higher horizontal directivity can also be attained under

real-world conditions.

6.4 Performance metrics

A number of performance metrics were investigated to objectively quantify array performance,

based on measures of the beam pattern, technical measures of the reproduced sound field, as

well as an explicit quantification of the sound field reconstruction error in a plane. Measures

of the beam pattern provided a tool to directly evaluate spatial directivity, which was valuable

during the development process of the array. The beamwidth proved especially useful in

assessing the impact of MOA processing, as it allowed for a separation of the spatial resolution

along the horizontal and vertical dimensions.

These beamforming measures are related to, but do not provide a direct view of the

reproduced sound field. To assess the intended application of the array more directly,

measures of the recorded sound field reproduced over a simulated loudspeaker array were also

considered. The magnitude of the “energy vector” rE was evaluated, which was proposed by

Gerzon (1992) as a technical measure that may be related to ILD-based localization at higher

frequencies. This measure was nonetheless applied from a purely technical perspective in

order to gauge the effective order (i.e. the effective spatial resolution) of the reproduced sound

field. Results from this measure further revealed the impact of the regularization applied. The

simulations of the reproduced field also allowed an estimation of the expected dynamic range

at playback.

Finally, in Chapter 5, direct measures of the error of the reconstructed sound field were

applied. A distinction is made here between the terms reproduction, which implies playback

over a loudspeaker system, and reconstruction, which refers to the sound field as represented
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by the captured spherical harmonic coefficients. In other words, the reproduction error

includes errors introduced by the playback system, whereas the reconstruction error only

includes errors introduced by the microphone array. In Chapter 5, only the reconstruction error

was considered, but the technique can easily be extended to quantify the errors introduced

by a loudspeaker array, if measurements are made in the playback environment. Such an

approach could be applied to validate the complete recording and reproduction chain. From

the error measures considered in this chapter, the spatial correlation coefficient seemed most

well-suited for spatial audio applications, as it is sensitive to relative amplitude and phase

relationships in the sound field, which are also cues that would likely affect localization for a

human listener.

6.5 Perceptual effects

One of the main limitations of this study is that only a technical evaluation of MOA recording

has been presented, and a perceptual evaluation of the system has not yet been undertaken. As

the results of this thesis also demonstrate, a physically accurate reproduction of the sound field

in the entire audible frequency range cannot practically be achieved, and the perceptual

significance of various errors will have to be evaluated in future work. As stated before,

how critical specific errors are will also depend on the specific application. Audiological

applications, for example, might have a different set of requirements than virtual reality

systems.

In particular, there are four main areas related to the work presented where perceptual

tests will be needed to find optimal parameters or drive future development.

6.5.1 Effects of high-frequency aliasing

As the recorded sound field is not bandlimited, the microphone array will normally be exposed

to audio frequencies above its spatial aliasing frequency, which will cause these frequencies

to appear from undesired directions, and may also cause spectral coloration effects or other

annoying artifacts (Avni et al., 2013). For 3D systems such as the one considered here,

localization of elevated sound sources may be particularly affected by aliasing, as spectral

localization cues extend well above typical aliasing frequencies of such systems. Signal

processing strategies to mitigate the disturbing effects of aliasing and to provide the most

acceptable or pleasing sound need to be investigated. One approach could be to bandlimit

the spherical harmonics-based processing to below the aliasing frequency, and at higher

frequencies utilize the shadowing effect of the rigid sphere, which, in essence, makes the

individual microphones directive at high frequencies.

6.5.2 Effects of the playback environment

To focus the discussion on the microphone array, only ideal playback environments with

a large number of loudspeakers were considered in this study. Reproduction on a real-life
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loudspeaker array will naturally include additional error sources related to the characteristics

of the loudspeakers and the playback room. As it was mentioned before, the frequency limit for

a physically accurate reproduction in a head-sized region is lower than the aliasing frequency

of the microphone array itself. Various decoding strategies have been proposed that allow the

presentation of the captured spatial information in a perceptually meaningful way (e.g. Daniel,

2000; Zotter and Frank, 2012; Zotter et al., 2012), and could be applied at higher frequencies.

For applications where physical accuracy is not paramount, it may be appropriate to use such

a perceptually optimized reproduction strategy in the entire frequency range.

6.5.3 Effects of regularization

The trade-off between background noise and spatial resolution is a crucial parameter in

microphone array signal processing, and is related to the applied regularization scheme as

well as to the value of the regularization parameter. Technical measures alone cannot resolve

whether increased spatial acuity or a reduction in audible background noise is more beneficial

in a given context. Especially at higher frequencies, the considered objective measures may

not be affected by microphone noise due to adequate SNR, but the noise may still be audible.

Subjective tests can help choose between alternative regularization methods and determine

the optimal value of the regularization parameter.

6.5.4 Perceptual benefits of MOA

The technical measures considered in this work showed a benefit of MOA over HOA recording in

terms of increased spatial resolution for horizontal sources. However, whether this additional

spatial information is perceptually relevant, or whether any unexpected artifacts are introduced

needs to be evaluated with subjective tests. In terms of localization, Bertet et al. (2013)

showed improvements in localization on a horizontal-only playback system for increasing

microphone orders from 1 through 4. It was furthermore reported that localization accuracy

for frontal sources for the 4th order system approached the range given for natural sound

sources, suggesting that a 4th order system already provides close to sufficient information

to the listener for natural localization. However, other spatial attributes and subjective

quality may still benefit from a higher-order representation. Avni et al. (2013) showed

that the judgment of a range of attributes improved with increasing order for orders well

above 5. Technical applications, such as the evaluation of advanced hearing instruments or

communication headsets, could also benefit from the extended frequency range of physically

correct reproduction.
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6.6 Perspectives

6.6.1 Towards an acoustic scene library

The ultimate goal of the system developed in this thesis is to enable the recording and

reproduction of real-life acoustic scenes, and to develop a spatial acoustic scene library for

hearing research. With this in mind, a set of recordings was already collected with the aim of

validating methods to construct “cocktail-party” scenes. Two acoustic spaces with different

degrees of reverberation were sampled: a library and a medium-sized break room. In each

space, realistic background noise, as well as spatial room impulse responses for several source

positions were recorded at a single listener position. In addition, acoustic scenes with and

without close talkers were recorded in a large cafeteria. These recorded scenes will also be

useful in applying a perceptual evaluation of the microphone array itself, and to address the

issues outlined in the previous section.

6.6.2 Potential applications

This project presented a first step towards applying virtual environment technologies in hearing

research for the presentation of realistic, dynamic scenes. The tools developed here could

be used in the future to create new psychophysical tests that utilize more natural, complex

auditory stimuli. In particular, speech material from existing speech tests (e.g. Nilsson et al.,

1994; Nielsen and Dau, 2011) could be combined with spatial audio recordings in order to

create speech intelligibility tests with real-life, dynamic backgrounds. Listening tests based

on realistic acoustic scenes with spatially distributed, dynamic interferers may provide a

better understanding of the limitations of the auditory system. Such tests could also provide

better predictions regarding the real-life performance of hearing-impaired listeners, as well

as regarding the potential benefits of hearing-aid use. Further, the spatial audio recordings

could be used to investigate not only localization, but other spatial-hearing related attributes

as well, such as distance perception, externalization and apparent source width. Finally, the

recordings could be combined with visual stimuli in order to provide a combined audio-visual

environment for perceptual testing and the evaluation of communication devices.
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A
The effect of compression on tuning estimates in

a simple nonlinear auditory filter modeld

Abstract

Behavioral experiments using auditory masking have been used to characterize

frequency selectivity, one of the basic properties of the auditory system. However,

due to the nonlinear response of the basilar membrane, the interpretation of these

experiments may not be straightforward. Specifically, there is evidence that human

frequency-selectivity estimates depend on whether an iso-input or an iso-response

measurement paradigm is used (Eustaquio-Martin and Lopez-Poveda, 2011). This

study presents simulated tuning estimates using a simple compressive auditory

filter model, the bandpass nonlinearity (BPNL), which consists of a compressor

between two bandpass filters. The BPNL forms the basis of the dual-resonance

nonlinear (DRNL) filter that has been used in a number of modeling studies. The

location of the nonlinear element and its effect on estimated tuning in the two

measurement paradigms was investigated. The results show that compression

leads to (i) a narrower tuning estimate in the iso-response paradigm when a

compressor precedes a filter, and (ii) a wider tuning estimate in the iso-input

paradigm when a compressor follows a filter. The results imply that if the DRNL

presents a valid cochlear model, then compression alone may explain a large part

of the behaviorally observed differences in tuning between simultaneous and

forward-masking conditions.

A.1 Introduction

Frequency selectivity is one of the fundamental properties of the auditory system and describes

the ability to separate frequency components of complex stimuli. This property of hearing in

humans can be characterized behaviorally using masking experiments. However, it is known

that the response of the basilar membrane of the inner ear exhibits a compressive response to

stimuli at medium sound pressure levels, and that frequency selectivity at low levels is aided

by an active mechanism in the cochlea (Pickles, 1986). Consequently, the application of linear

analysis techniques to estimate frequency selectivity is not straightforward, as the involved

nonlinearities need to be taken into account. This is especially relevant when comparing results

d This chapter was originally published as Marschall et al. (2013). Figures were updated for this version.
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from frequency selectivity measures obtained through different measurement paradigms.

In particular, behavioral estimates of frequency tuning have been shown to depend on the

temporal configuration of the stimulus, i.e., whether simultaneous or non-simultaneous

masking is used (Moore et al., 1984; Oxenham and Shera, 2003); on the sound pressure level of

the stimulus (Patterson and Moore, 1986); and on whether the input level (“iso-input” tuning)

or the output level (“iso-response” tuning) of the filter is held constant in the measurement

paradigm (Eustaquio-Martin and Lopez-Poveda, 2011).

Estimates of tuning derived from non-simultaneous masking conditions, when the signal

and the masker do not overlap in time, tend to show sharper tuning than those derived from

simultaneous masking conditions (Moore et al., 1984; Oxenham and Shera, 2003). Non-

simultaneous masking conditions include forward masking, where the masker precedes the

signal, and the pulsation threshold task, where the signal and the masker are alternated in

time. It has been suggested that the difference between simultaneous and non-simultaneous

estimates of frequency selectivity may be mostly due to effects of suppression, but the exact

mechanism and the extent of suppressive contributions is under debate (see Moore and

O’Loughlin, 1986, for a review). Suppression here refers to the nonlinear phenomenon whereby

the auditory system’s response to a sound can, under certain conditions, be decreased by the

presence of another sound. In animal studies, suppression has been observed as two-tone

rate suppression in auditory-nerve fibers (Sachs and Kiang, 1968) and also in the mechanical

response of the basilar membrane (Ruggero et al., 1992). Houtgast (1972) found psychophysical

evidence of two-tone suppression in humans where a decrease in the pulsation threshold of a

tone was observed as a result of an added suppressor.

In this paper, we present an alternative explanation for the observed tuning differences,

based on compression. For a linear system, tuning estimates measured using either an iso-

input or iso-response method will be identical. However, for a nonlinear filter, the tuning

estimates derived from each method may differ. Here, we explore how these tuning estimates

differ depending on filter structure and the implication this has on behavioral estimates of

frequency tuning in the auditory system.

A.2 Iso-input and iso-output tuning estimates of nonlinear filter

structures

In an iso-input paradigm, a constant signal input power is maintained for the frequency range

of interest, and the tuning characteristics of the system are described by the output power

as a function of the input frequency. Conversely, in an iso-response paradigm, the signal

input power is adjusted instead, so that the output power (response) of the system remains

constant at each frequency. The tuning in the system is then described by the input signal

power required to achieve constant output, as a function of frequency. For a linear system,

these two methods lead to the same result. This is illustrated in Panel A of Figure A.1.

Now consider the case where a simple compressive non-linear element is added to before
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Figure A.1: Schematic of tuning estimates from iso-input and iso-response methods when applied to a linear filter
(A), a compressor followed by a linear filter (B), and a linear filter followed by a compressor (C).

the filter (see Figure A.1, Panel B). For an iso-input paradigm, the signal power as a function of

frequency is still constant after compression. Therefore, the output levels reflect the underlying

tuning of the filter and the tuning estimate remains unchanged. However, if an iso-response

paradigm is used, this is not the case. For frequencies that are attenuated by the filter, a larger

change in input level is required due to compression. Thus, the addition of the compressor

before the filter leads to tuning estimates that are sharper than the underlying filter tuning

when an iso-response method is used.

Conversely, consider the case where a compressor is added after the filter (see Figure A.1,

Panel C). If an iso-response method is used, the compressor has no effect as the output level

of the filter is already constant. However, if an iso-input method is used, the compressor

following the filter reduces the difference of the filter output across frequency. This leads to an

estimate of tuning that is wider or less sharp than the underlying filter.

Now consider the case of a bandpass nonlinearity, where the compressor is level dependent

and sandwiched between two bandpass filters. Tuning estimates from simple simulations

of both iso-input and iso-response methods are plotted in Figure A.2. In the simulation, the

compressor was set to be linear at low levels, compressive at medium levels (5:1 compression

ratio), and linear again at high levels, to mimic the compressive behavior of the basilar
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86 A. Tuning estimates in a simple nonlinear auditory filter model

membrane. For simplicity, triangular filters, as well as dimensionless, logarithmic input and

output values were assumed. The input level for the iso-input condition was varied from 20 to

80 dB in 10 dB increments. The reference level for the iso-response condition was varied from

10 to 40 dB in 5 dB increments.

Due to the properties of the nonlinearity, at low and at high levels the behavior of the

system is linear. Therefore the tuning estimate with both paradigms gives the same filter

shape, and corresponds to the filtering produced by the two filters applied in succession.

However, at medium levels, where the compressive function is active, the differences between

the two paradigms become apparent. When the signal level at the nonlinearity reaches the

compression threshold, the slopes of the estimated filter function are affected. A large level

difference between two frequency points at the input of the compressor is transformed into a

smaller one at the output. For the iso-input paradigm, the amplitude changes arising as a result

of the first filter are compressed, while those resulting from the second filter are unaffected.

Thus, in the region of compression, the estimated filter slope will be shallower than in the

linear case. For the iso-response paradigm, due to the compression, larger differences are

needed at the input of the compressor to counteract the attenuation of off-center frequencies

by the second filter. This leads to a steeper estimated filter slope for the whole system.

A further consequence of the two filter arrangement, specifically that of a filter preceding

the nonlinearity, is that the onset of compression is frequency dependent. More off-frequency

components require a higher level at the input than on-frequency components to be processed

compressively. This effect can also be seen in Figure A.2. Changes in the filter slopes, indicating

the onset and offset of compression, appear at different levels for different frequencies.

To summarize, when the bandpass nonlinearity is investigated with an iso-input paradigm,

the estimated tuning is wider for the compressive region than in the linear case. Conversely,

when an iso-response paradigm is used, the estimated tuning is narrower than in the linear case.

This implies that the measurement paradigm has to be carefully considered when estimating

tuning of nonlinear systems.

A.3 The sharpening of tuning in forward masking

As mentioned previously, tuning estimates derived from non-simultaneous masking paradigms

have been observed to be sharper than those derived from simultaneous masking paradigms.

While this phenomenon has been attributed to suppression, it may also be a result of

compression. So far, only single sinusoids have been considered. However, when investigating

frequency selectivity using a psychophysical task, additional signals are required as it is not

possible to access the output of the auditory filters directly. In a typical forward masking

paradigm, a probe tone is used to gauge the excitation from a masker at the (frequency) place

of the probe. Thus, the level of the probe tone is held constant and the level of the off-frequency

masker is varied such that the probe tone is just audible. This corresponds to an iso-response

paradigm where we assume that the probe tone will become audible when the signal-to-noise

ratio (SNR) at the nonlinear filter output reaches some fixed level.
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Figure A.2: Simple simulation of tuning estimates at different levels from iso-input (top) and iso-response (bottom)
methods when applied to a bandpass nonlinear filter. In the compressive region, a shallower tuning is observed
with the iso-input method. In contrast, with the iso-response method, a sharper tuning is seen in the compressive
region.

Consider the behavior of a bandpass nonlinearity in a forward masking paradigm.

Assuming that the impulse responses of the filters in the bandpass nonlinearity are short

compared to the temporal separation of the masker and probe, then the masker and signal are

processed independently. If the masker level is sufficiently high, the masker is compressed

but the probe tone is not. As the masker moves further off-frequency, a greater change in

masker level is needed at the input to the compressor in order to achieve a fixed SNR at

the compressor output. This will result in a sharpened tuning estimate. In contrast, in a

simultaneous masking paradigm, the masker and the signal are processed together. Thus,

any compression of the masker also reduces the signal level, such that the relative levels

of the signal and the masker do not change. Therefore, the sharpened tuning observed

in forward masking vs. simultaneous masking experiments could be explained directly by

cochlear compression, without considering suppression explicitly. Here, it is further assumed

that the bandpass nonlinearity presents a valid functional model of the nonlinear behavior

of the basilar membrane. This assumption, however, is supported by a number of studies

having successfully used models based on the bandpass nonlinearity (e.g. Lopez-Poveda and
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Meddis, 2001; Plack et al., 2002; Jepsen et al., 2008) to account for a wide range of human

psychophysical data.

A.4 Summary

In this paper we have demonstrated that tuning estimates of nonlinear filters can vary

significantly depending on whether an iso-input or iso-response measurement paradigm

is used. This suggests that the measurement paradigm used to estimate tuning of nonlinear

systems needs to be considered carefully. Further, given a small set of plausible assumptions,

we have demonstrated that cochlear compression can explain the sharpening of tuning

observed in non-simultaneous masking paradigms.
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B
Modeling the effects of compression and

suppression on estimates of auditory frequency
selectivitye

Abstract

Estimates of tuning derived from non-simultaneous masking experiments tend to

show sharper tuning than those derived from simultaneous masking experiments.

Previous studies have suggested that the wider tuning observed in simultaneous

masking is due to the more widely tuned influence of suppression that only occurs

when the masker and the signal are present at the same time. This study, using a

modeling approach, investigates an alternative explanation, involving the effect

of compression alone. To this end, a computational model of auditory signal

processing and perception was used to simulate behavioral measures of frequency

selectivity in both simultaneous and forward masking. The model included the

dual-resonance nonlinear (DRNL) filter as the frequency selective stage, which

simulates key aspects of nonlinear cochlear processing, such as compression and

two-tone suppression. The modeling results show that the effect of compression

may directly lead to a narrower tuning estimate in forward masking if a filter

structure with a nonlinearity sandwiched between two bandpass filters is assumed.

B.1 Introduction

Frequency selectivity is one of the basic properties of the auditory system: it describes its ability

to partly separate the frequency components of complex stimuli. This property of hearing in

humans can be characterized behaviorally using masking experiments. Estimates of tuning

derived from nonsimultaneous masking conditions, when the signal and the masker do not

overlap in time, tend to show sharper tuning than those derived from simultaneous masking

conditions. It has been suggested that a major part of the difference between estimates of

frequency selectivity in the two masking conditions may be due to effects of suppression (see

Moore and O’Loughlin, 1986, for a review). Suppression refers to the phenomenon that the

auditory system’s response to a sound can be decreased by the presence of another sound.

The present study investigates, using a modeling approach, an alternative explanation

e This chapter was originally published as Marschall et al. (2011).
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92 B. Effects of compression and suppression on frequency selectivity estimates

Figure B.1: The basic structure of the DRNL filter (see text).

based on the effect of peripheral compression alone. To this end, a computational auditory

model was used to simulate two behavioral measures of frequency selectivity: psychophysical

tuning curves (PTCs) and notched-noise thresholds.

As the underlying tuning of the auditory system is of interest, it is relevant to consider

which estimates reflect this tuning better, those obtained from simultaneous masking or those

from nonsimultaneous masking experiments. Further, as the temporal position of the signal

causes an apparent change in frequency selectivity, the processing of dynamic signals, such as

speech, may be affected if the auditory filters change with time. It is therefore important to

understand these effects of frequency selectivity and their relation to the active processes in

the cochlea.

B.2 Model and method

The model used in this study was the computational auditory signal processing and perception

model (CASP, Jepsen et al., 2008), with some modifications. Instead of using a modulation

filterbank stage, a modulation lowpass filter with a cutoff frequency of 8 Hz was considered.

The model uses the dual-resonance nonlinear (DRNL) filterbank as the frequency selective

stage (Meddis et al., 2001). The basic structure of the DRNL filter is shown in Figure B.1. The

filter consists of two paths: a linear path representing the high-amplitude linear response of the

basilar membrane, and a nonlinear path accounting for the low-amplitude linear and medium

amplitude compressive response. The nonlinear element in the filter is an instantaneous

“broken-stick” function that is composed of a linear and a compressive part.

The parameters of the DRNL were modified based on suggestions by Plack et al. (2002)

to better account for suppression-related data. Specifically, the two bandpass filters in the

nonlinear path had different bandwidths and center frequencies (CF). The first filter had a

somewhat higher bandwidth and was centered slightly above CF, whereas the second filter

had a somewhat narrower bandwidth and was centered slightly below CF. The exact filter

bandwidths were adjusted to get a reasonable match with measured pilot notched-noise and

PTC data.

In order to investigate the effect of peripheral compression on the estimates of tuning,

two versions of the model were used to simulate each experiment. A “nonlinear” version, as
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described above, and a “linear” version, in which the broken-stick function was replaced by a

linear function with all other parameters unchanged.

All simulations were performed at 1 kHz, with only one frequency channel. The nominal

center frequency of the filter corresponded to the frequency of the test tone. The configuration

of the stimuli for the PTCs followed Moore et al. (1984), with the exception that a low-level

notched noise was not used. For the notched-noise simulation, the setup was as in Oxenham

and Bacon (2003).

B.3 Modeling suppression

The model can simulate some aspects of two-tone suppression, including suppression-areas

that are broadly similar to human psychophysical data (Plack et al., 2002, not shown here,

but see). This is because it includes a bandpass nonlinearity, a structure composed of a

compressive nonlinearity between two bandpass filters, which has previously been shown

to be a simple model of two-tone suppression (Duifhuis, 1976). In the context of the model,

suppression refers to the reduction of the level of the signal at the output of the DRNL stage due

to the addition of another (masker) tone or noise. If the masker level is sufficiently high and off-

frequency to the signal, the masker and the signal are compressed together, but subsequently

most of the masker energy is removed by the second filter. This leaves a lower signal level at

the output than in the case without the masker due to the compression of the signal. It is clear

that this interaction between the masker and the signal can only occur if they are present at

the same time, i.e. in simultaneous masking, but not in forward masking.

B.4 Results

The results of the simulations are shown in Figure B.2. The nonlinear model (upper panels)

predicts a sharper tuning for forward masking, as evidenced by the narrower tuning curve

and the steeper slope of the notched-noise function in forward masking (marked by crosses).

The differences in tuning are similar to those observed in human data (Moore et al., 1984;

Oxenham and Bacon, 2003). The linear model (lower panels) shows similar tuning for both

masking conditions, and this tuning is close to the simultaneous-masking prediction of the

nonlinear model.

B.5 Discussion

Suppression and frequency selectivity

To explain the link between changes in frequency selectivity and suppression, one hypothesis

has been that the influence of suppression is more widely tuned than that of excitation. Then,

in simultaneous masking, a combination of suppression and excitation produces masking,
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Figure B.2: Simulation results. Panels A and B show simulated PTCs, and panels C and D show simulated notched-
noise thresholds. The top panels (A and C) show the predictions of the nonlinear model, the bottom panels (B and
D) show predictions of the linear model. Circles indicate simultaneous, crosses forward masking thresholds.

whereas in forward masking, this additional, more widely-tuned influence of the masker on

the signal is absent. Hence, the measured tuning in forward masking is sharper.

This hypothesis can be tested in the framework of the model by comparing the frequency-

selectivity estimates for the nonlinear and the linear model versions. In the model, suppression

arises as a result of compression; therefore both suppression and compression are absent in

the linear version. If suppression would cause a broadening of tuning in simultaneous masking

in the nonlinear model, then with suppression removed, the tuning should be narrower in the

linear model.

The simulation results from the present study are clearly not consistent with this hypothesis.

In fact, the opposite was observed: the simultaneous tuning estimate remains the same

between the model versions, and it is the forward masking estimate that is broader in the

linear model.

The effect of compression

Consider that in forward masking the masker is processed independently from the signal

because of the temporal gap between them. If the masker level is sufficiently high, the masker

is compressed by itself. As a result, a greater change in masker level is needed before the

compressor to achieve the same change in level as when the masker is processed linearly. If a

filter follows the nonlinearity, as in the current model, the compressive function before the

second filter effectively sharpens the second filter (viewed from the input). In simultaneous

masking, the masker and the signal are processed together, and any compression of the masker

also reduces the signal level, such that the relative levels of the signal and the masker do not
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change. Therefore, this sharpening caused by the compressive function only occurs in forward

masking.

From this reasoning, it follows that in the linear model, where compression is removed,

the tuning in forward masking should be wider than in the nonlinear model. This is consistent

with the simulation results.

B.6 Summary and conclusions

In summary, two possible mechanisms affecting tuning estimates in the different masking

paradigms have been identified: (1) suppression, as a result of compression, causing a widening

of tuning in simultaneous masking; and (2) compression directly leading to a narrower tuning in

forward masking. In the framework of the model, explanation (2) seems to be dominant, based

on a comparison of the linear and nonlinear model versions. Consequently, the simultaneous

masking estimates reflect the underlying tuning of the model more closely. The critical

assumption here is that some sort of filtering follows the compressive function, and that

the bandpass nonlinearity structure used in the DRNL filter is an appropriate model of the

behavior of the basilar membrane.
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To be continued...
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