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Abstract

Understanding speech in noise in adverse listening conditions can be

challenging for many people, in particular hearing-aid users and cochlear-

implant recipients. To improve the speech understanding, better noise

reduction strategies are needed in such devices. The performance of the

strategies depends on how well the characteristics of the speech and the noise

are known. Therefore, it is necessary to have automatic approaches that can

separate the speech from the noise as accurate as possible, which is the overall

goal of computational speech segregation. Often, an ideal time-frequency

mask is estimated in these approaches. In the mask, the level of speech

activity is indicated in each time-frequency unit. The mask is estimated by

extracting auditory-inspired features from the noisy speech and subsequently

learning the characteristics of the speech and noise with machine-learning

techniques. This thesis investigated three approaches within computational

speech segregation based on ideal time-frequency mask estimation. The

approaches were evaluated in the framework of noise reduction to improve

speech understanding of normal-hearing listeners and cochlear-implant

recipients in noisy environments.

In the first approach, machine-learning techniques were employed in

separate auditory frequency bands to classifying each mask unit as either

speech-dominated or noise-dominated. Words are composed of phonemes

that may occupy several neighboring units in the estimated mask. The focus

was on how to use this contextual information in speech across time and

frequency in computational speech segregation. Exploiting the context across

frequency was found to be important. By increasing the amount of considered

spectral information, higher measured speech intelligibility was obtained in

normal-hearing listeners. On the other hand, exploiting the context across

time in computational speech segregation is perhaps not a critical factor to

increase speech intelligibility. Recent approaches within computational speech
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segregation are based on deep neural networks, and speech intelligibility

improvements have successfully been demonstrated in adverse conditions.

In a second approach, a deep neural network was therefore employed and

the roles and the relative contribution of a selection of components, that may

be responsible for the success, were analyzed. Two components, namely the

network architecture and the estimation of an ideal time-frequency mask based

on continuous gain values, were found to play a significant role. In a third

approach, an application of the estimated time-frequency mask was considered

in real-time cochlear-implant processing. A proposed speech coding strategy

selects cochlear-implant channels for electrical stimulation, and only if the

signal-to-noise ratio within the channel is larger or equal to a local criterion.

However, this strategy relies on ideal signal-to-noise ratios and a noise power

estimation stage is, therefore, required to estimate the signal-to-noise ratios

in real-time cochlear-implant processing. Results implied that a noise power

estimation with improved noise-tracking capabilities does not necessarily

translate to increased speech intelligibility. However, the adaptive channel

selection is important for reducing the noise-induced stimulation in the

cochlear-implant recipients.

Overall, the results of this thesis have implications for the design of com-

putational speech segregation approaches with noise-reduction applications.

Furthermore, the results may guide the development of a single cost function,

which correlates with speech intelligibility, to assess and optimize the system

performance.



Resumé

For mange mennesker, især høreapparat- og høreimplantatbrugere, kan

det være en udfordring at forstå tale i støjfyldte omgivelser. For at forbedre

taleforståeligheden, er det nødvendigt med bedre støjreduktions-strategier i

disse apparater. Effektiviteten af strategierne er afhængig af, hvor godt talen

og støjens karakteristika kendes. Derfor er det nødvendigt med automatiske

metoder, der kan adskille talen fra støjen så nøjagtigt som muligt, hvilket er

målet med computational speech segregation. I disse metoder estimeres ofte

en ideel tids-frekvens-maske. I masken er niveauet af taleaktivitet angivet

i hver tids-frekvens enhed. Masken estimeres ved at uddrage auditorisk

inspireret features og efterfølgende lære talens og støjens karakteristika med

brug af machine-learning teknikker. I denne afhandling undersøgtes tre

metoder inden for computational speech segregation, baseret på estimering af

ideelle tidsfrekvens-masker. Metoderne blev evalueret inden for rammerne af

støjreduktion med henblik på at øge taleforståeligheden for normalthørende og

høreimplantat-brugere i støjfyldte miljøer.

I den første metode blev machine-learning teknikker anvendt i separate

auditoriske frekvensbånd for at klassificere hver enhed i masken som værende

enten tale- eller støjdominante. Ord er komponeret af fonemer, der kan

fylde flere naboliggende enheder i den estimerede maske. Fokus var på,

hvordan den kontekstuelle information kan bruges over tid og frekvens i

computational speech segregation. Informationen i talen over frekvens er vigtig

at udforske. Ved at inkludere mere information i talen over frekvens blev en

højere taleforståelighed målt hos normalthørende. På den anden side er den

temporale information i talen måske ikke afgørende at udforske i computational

speech segregation for at øge taleforståeligheden. De nyeste metoder indenfor

computational speech segregation er baseret på dybe neurale netværk, og med

disse metoder er taleforståeligheden succesfuldt blevet forbedret i udfordrende

lytte miljøer. I den anden metode blev et dybt neuralt netværk derfor anvendt,
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og rollerne samt det relative bidrag fra en række komponenter, der måske kan

forklare succesen, blev analyseret. To komponenter, netværksarkitekturen

og estimeringen af en ideel tids-frekvens maske baseret på kontinuerte

forstærkningsværdier, spillede en afgørende rolle. I den tredje metode blev

en anvendelse af den estimerede ideelle tids-frekvens maske betragtet i

realtidsbehandling i høreimplantater. En foreslået talekodningsstrategi

udvælger frekvensbånd i høreimplantatet med henblik på elektrisk stimulering,

såfremt signal-støj-forholdet i et frekvensbånd er større end eller lig et kriterie.

Dog er denne strategi baseret på ideelle signal-støj-forhold og en algoritme,

der kan estimere støjens effekt, er derfor nødvendig for at være i stand til

at estimere signal-støj-forholdene i realtidsbehandling i høreimplantater.

Resultaterne indebærer, at en algoritme med en forbedret egenskab til at

følge støjen ikke nødvendigvis medfører en øget taleforståelighed. Dog er den

adaptive udvælgelse af frekvensbåndene i metoden vigtig med henblik på at

reducere støj-induceret stimulering i høreimplantatbrugere.

Samlet set har resultaterne i denne afhandling implikationer for design

af metoder inden for computational speech segregation, der har til formål at

reducere den omgivende støj. Desuden kan resultaterne guide udviklingen af et

enkelt objektivt mål, der korrelerer med taleforståeligheden, til at vurdere og

optimere virkningen af metoderne.
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1
Overall introduction

“When people talk, listen completely. Most people never listen.”

—Ernest Hemingway

Communication is one of the most essential human skills. Being able

to communicate requires listening to and understanding speech from other

people. However, understanding speech in noise can be a challenge for

many. In particular, hearing-impaired people demonstrate a poor speech

understanding in the presence of competing talkers, since they are not able

to listen in the valleys of fluctuating noise (Festen and Plomp, 1990). Even

normal-hearing people can be challenged in conditions where the speech is

corrupted by interfering noise at low signal-to-noise ratios (SNRs).

To address this challenge, modern communication devices such as hearing

aids or cochlear-implants (CIs) make use of strategies to improve the speech

understanding in noise. Devices with only one microphone rely on single-

channel noise reduction. Devices with more than one microphone typically

use multi-channel adaptive beamforming, based on an array of directional

microphones, followed by post-filtering for a noise reduction (Zelinski, 1988;

Simmer et al., 2001; Gannot and Cohen, 2008; Jensen and Pedersen, 2015). The

performance of these single-channel strategies is therefore important to assess.

Single-channel noise reduction strategies typically fail to improve speech

intelligibility in adverse conditions, where the speech has been corrupted by

competing talkers at a low SNR, for hearing-aid users (Dillon, 2001; Loizou

et al., 2005; Hu and Loizou, 2007; Bentler et al., 2008; Loizou and Kim, 2011) or

for CI recipients (Dawson et al., 2011; Mauger et al., 2012a). A goal is therefore

to investigate and develop novel single-channel strategies which can improve

speech intelligibility in adverse conditions. Besides being used in existing

communication devices, these strategies can be employed in “hearables” that

normal-hearing people can wear in noisy environments. Finally, the strategies

1



2 1. Overall introduction

can be considered as a front-end in speech and speaker recognition systems to

increase the robustness of such systems in noisy environments (Cooke et al.,

2001; May et al., 2012a,b). These recognition systems are relevant in intelligent

personal assistants.

The performance of the noise-reduction strategies depends on how well

the characteristics of the speech and the noise signals are known, i.e. accurate

estimates of the speech and the noise signals are needed. Therefore, it is

necessary to have automatic approaches that can separate the speech from the

noise as accurate as possible. However, separating speech from noise based on

only a single channel input is a difficult task. For decades, researchers have

attempted to solve this task using different approaches. One approach is to

estimate the power of the noise signal based on statistical modeling of the

underlying noise distribution (Martin, 2001; Hendriks et al., 2010; Gerkmann

and Hendriks, 2012). The estimated noise power is then used to compute

gain values which are applied to the noisy speech (Ephraim and Malah, 1984;

Ephraim and Malah, 1985). These noise power estimators do not require

pre-training for any specific acoustical condition, i.e. they are generic, and

most of them are real-time applicable because of low latency values. Hence,

they are suitable for practical applications in hearing aids or CIs. However,

since the estimators are based on statistical assumptions about the underlying

noise distribution, the accuracy of the noise power estimation can be a limiting

factor in many conditions.

To overcome this limitation, Wang (2005) first presented the concept of an

ideal time-frequency mask in which the level of speech activity is indicated in

each time-frequency unit. The time-frequency mask is subsequently applied

to a time-frequency representation of the noisy speech signal and converted

back to the temporal waveform, via a synthesis step. Either an ideal binary

mask (IBM) or an ideal ratio mask (IRM) can be constructed. In the IBM,

the mask values are binary where time-frequency units with SNR exceeding

an local criterion (LC) are considered speech-dominated and labeled one,

whereas time-frequency units with SNR below the LC are considered to be

noise-dominated and are labeled zero (Wang, 2005). The IRM mask values

consist of continuous gain values between zero and one (Srinivasan et al., 2006;

Narayanan and Wang, 2013; Hummersone et al., 2014; Wang et al., 2014). In
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general, the ideal time-frequency mask is based on a priori information about

the speech and the noise signals, and therefore needs to be estimated. This

allows artificial intelligence to be used in computational speech segregation

where the ideal time-frequency mask can be considered the learning objective

for different machine-learning techniques. Typically, a speech segregation

system combines acoustic feature extraction with machine learning techniques.

The feature extraction is often based on principles of auditory processing in

different frequency channels, assuming that auditory-inspired features are able

to capture fundamental properties of the signals. Supervised machine-learning

techniques are typically considered, i.e. the techniques are employed to make

the speech segregation system capable of separating speech from noise without

being explicitly instructed to do so. The distributions of the speech and the

noise are learned through an initial training session. For the speech segregation

systems to be applicable in practice, it is important to consider how accurately

various acoustic conditions, which are not seen during the training session,

can be predicted. This generalization ability is a focus point in computational

speech segregation and a challenge for many systems.

To evaluate the single-channel noise-reduction strategies, objective

measures have often been considered. Some of these objective measures

compute the estimation accuracy by comparing to a priori knowledge (Kim

et al., 2009; Hendriks et al., 2010; Gerkmann and Hendriks, 2012). Others

predict the speech intelligibility by using models (Taal et al., 2011; Jensen and

Taal, 2016). Measuring speech intelligibility in listeners is, however, important

to properly assess approaches within computational speech segregation in the

context of single-channel noise reduction.

This thesis investigates three approaches within computational speech

segregation based on ideal time-frequency mask estimation. The approaches

are all evaluated in the framework of single-channel noise reduction in

normal-hearing listeners and CI recipients. The thesis is structured in three

main chapters.

In Chapter 2, a speech segregation system is considered in which machine-

learning techniques are employed for each auditory frequency channel (called

a subband) to estimate the IBM. In speech, sentences are composed of words
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that consist of syllables. These syllables may occupy several neighboring

time-frequency units in the mask. Speech-dominated units are therefore

clustered into these glimpses of speech in the mask, and the size of the glimpses

correlates with speech intelligibility (Cooke, 2006; Barker and Cooke, 2007).

The study focus is on how to exploit this contextual information in speech

across time and frequency in computational speech segregation. Specifically,

the impact of exploiting spectro-temporal context, through different strategies,

is investigated on measured speech intelligibility in normal-hearing listeners.

Furthermore, the generalization ability of the subband-based system is assessed

by considering unseen noise segments in the evaluation. Measured speech

intelligibility is finally compared to objective measures for the selection of a

cost function that correlates with speech intelligibility. Supplementary work

can be found in Appendix A. In Appendix A, the effect of changing the duration

of the noise in the training session is investigated on the same range of objective

measures.

In Chapter 3, the roles and the relative contributions of a selection of

components within recent approaches in computational speech segregation are

explored. Instead of subband-based approaches, similar to the one considered

in Chapter 2, deep neural networks (DNNs) have been employed in the recent

approaches and speech intelligibility improvements have been demonstrated

in various adverse conditions (Healy et al., 2015; Chen et al., 2016a; Healy

et al., 2017; Kolbæk et al., 2017). The considered components, which may

be responsible for this success, are the system architecture, a time frame

concatenation technique and the learning objective in computational speech

segregation (i.e., the IBM or the IRM). The components are systematically

investigated by measuring speech intelligibility in normal-hearing listeners.

First, the architecture of a DNN-based system is compared to the architecture

of the subband-based system presented in Chapter 2. Secondly, to exploit

temporal context in the DNN-based system, the time frame concatenation

technique is employed. Finally, the effect of IRM estimation versus IBM

estimation is studied in the context of an otherwise identical DNN-based

system.

In Chapter 4, an application of the estimated ideal time-frequency mask is

considered in speech-coding strategies in real-time CI processing. Specifically,
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a CI frequency channel is selected for electrical stimulation based on a SNR

criterion. A frequency channel with a high instantaneous SNR conveys more

reliable speech information than a frequency channel with a low instantaneous

SNR, and only channels with SNRs larger or equal to an LC are therefore

selected for stimulation. This is similar to how the IBM is constructed. In

real-time CI processing, a noise power estimation stage is, however, required to

estimate the instantaneous SNRs. Chapter 4 therefore investigated the impact

of a state-of-the-art noise power estimator from Gerkmann and Hendriks

(2012) in such speech-coding strategies. In addition, the role of the LC is

investigated in the strategy, and compared to a speech-coding strategy using a

fixed SNR-based channel selection. For the evaluation, speech intelligibility is

measured and sound quality is rated in CI recipients in noisy conditions.

Finally, in Chapter 5 the main findings are summarized and implications

of the main findings are then discussed. In addition, perspectives for future

studies are provided.
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The impact of spectro-temporal context

in computational speech segregationa

Abstract

Computational speech segregation aims to automatically segregate speech from

interfering noise, often by employing ideal binary mask estimation. Several

studies have tried to exploit contextual information in speech to improve mask

estimation accuracy, by using two frequently-used strategies that (1) incorporate

delta features and (2) employ support vector machine (SVM) based integration.

In this study, two experiments were conducted. In Experiment I, the impact

of exploiting spectro-temporal context using these strategies was investigated

in stationary and six-talker noise. In Experiment II, the delta features were

explored in detail, and tested in a setup that considered novel noise segments

of the six-talker noise. Computing delta features led to higher intelligibility than

employing SVM based integration and intelligibility increased with the amount

of spectral information exploited via the delta features. A limited generalization

ability was, however, observed with the computational speech segregation

system. Measured intelligibility was subsequently compared to extended short-

term objective intelligibility (ESTOI), hit - false alarm (H-FA) rate and the amount

of mask clustering. None of these objective measures alone could account for

measured intelligibility. The findings may have implications for the design

of speech segregation systems, and for the selection of a cost function that

correlates with intelligibility.

aThis chapter is based on: Bentsen, T., A. A. Kressner, T. Dau, and T. May (2018). The impact

of exploiting spectro-temporal context in computational speech segregation. J. Acoust. Soc. Am.

143.1, pp. 248-259. doi: 10.1121/1.5020273.

7
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2.1 Introduction

The overall goal of computational speech segregation systems is to automatically

segregate a target speech signal from interfering noise. These systems

are relevant for many practical applications, e.g. as pre-processors in

communication devices such as hearing aids or cochlear implants (Brungart

et al., 2006; Li and Loizou, 2008; Wang et al., 2008) or front-ends in speech and

speaker recognition systems for human-computer interfaces (Cooke et al.,

2001; May et al., 2012a,b). One frequently-used single-channel approach,

termed the ideal binary mask (IBM) technique (Wang, 2005), separates a

time-frequency (T-F) representation of noisy speech into target-dominated

and interference-dominated T-F units. Given a priori knowledge about the

target and the interfering signal, the IBM is constructed by comparing the

signal-to-noise ratio (SNR) in individual T-F units to a local criterion (LC). The

resulting IBM is a binary matrix where T-F units with SNR exceeding the LC

are considered target-dominated and labeled one, and zero otherwise. Many

studies have used IBMs to segregate a target speech signal from a noisy mixture

and demonstrated large intelligibility improvements (Brungart et al., 2006;

Wang et al., 2008; Kjems et al., 2009). However, a priori knowledge about the

target and the interfering noise is rarely available in realistic conditions, and

therefore, the goal of segregation systems is to estimate the IBM based on the

noisy speech signal. This challenge of obtaining an estimated IBM is typically

approached by employing supervised learning strategies (Wang, 2005), which

generally consist of a feature extraction front-end and a classification back-end.

The front-end extracts a set of acoustic features which attempt to capture

speech- and interference-specific properties. The distributions of speech and

interference-dominated T-F units are then learned by a classification back-end,

through an initial training stage (Kim et al., 2009; Han and Wang, 2012; Healy

et al., 2013; May and Dau, 2014a).

When analyzing binary mask patterns, speech-dominated T-F units tend

to cluster in spectro-temporal regions, forming so-called glimpses, and the

size of these glimpses, denoted the glimpse proportion in the model by Cooke

(2006), has been shown to correlate with speech intelligibility scores from

normal-hearing listeners (Cooke, 2006; Barker and Cooke, 2007). Consequently,

several studies have tried to exploit spectro-temporal contextual information
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in speech to improve the performance of computational speech segregation

systems by predominantly using two strategies. One strategy is to exploit the

context in the front-end by calculating so-called delta features (Kim et al., 2009;

Hu and Loizou, 2010; May and Dau, 2014b), which capture feature variations

across time and frequency. Alternatively, the context can be exploited in the

back-end where the posterior probability of speech presence obtained from a

first classifier can be learned by a second classifier across a spectro-temporal

window of T-F units, where the amount of spectro-temporal context can be

controlled by the size of the window function (Han and Wang, 2012; Healy et al.,

2013; May and Dau, 2014a). Some studies have combined both strategies in the

front-end and in the back-end (Healy et al., 2013; May and Dau, 2013).

The performance of computational speech segregation systems and

the effectiveness of different system configurations have primarily been

evaluated based on the H - FA rate, which calculates the difference between the

percentage of correctly classified speech-dominated T-F units (hit rate, H) and

the percentage of incorrectly classified noise-dominated T-F units (false alarm

rate, FA) (Kim et al., 2009; Han and Wang, 2012; Healy et al., 2013; May and

Dau, 2013, 2014a; May and Dau, 2014b). However, it has recently been shown

that speech intelligibility scores strongly depend on both the distribution

of mask errors and the H - FA rate (Kressner and Rozell, 2015; Kressner and

Rozell, 2016; Kressner et al., 2016). Specifically, Kressner and Rozell (2015)

developed a graphical model to systematically measure the influence of

clustering of T-F units on the intelligibility of binary-masked speech and

showed that the intelligibility was reduced when masks contained an increased

amount of clustering among T-F units, but the same mask error rates. Thus,

the applicability of the H - FA rate as the sole objective measure to optimize or

evaluate computational segregation systems has come into question. However,

the impact of the different spectro-temporal context-exploring strategies on

the amount of clustering of T-F units, or on speech intelligibility, has not yet

been analyzed.

Kim et al. (2009) were the first to report speech intelligibility improvements

for a computational speech segregation system based on Gaussian mixture

models (GMMs). They considered a high complexity GMM classifier with

256 components in the back-end for modeling the distribution of the feature
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vectors in a restricted setup in which the same short noise recording was

used during training and testing. By using such a setup, it was possible to

achieve high H - FA rates and improve speech intelligibility scores by up to 60%

compared to unprocessed noisy speech for normal-hearing (NH) subjects (Kim

et al., 2009). A high complexity classifier is able to learn all spectro-temporal

characteristics of the noise, if the same short noise recording is used during

training and testing, resulting in high H - FA rates (May and Dau, 2014b) and,

most likely, also the high intelligibility scores observed in Kim et al. (2009). The

restricted setup therefore has a high potential to improve speech intelligibility

and can be used to investigate the behavior of the segregation system by

comparing different system configurations. The ability of segregation systems

to generalize to unseen acoustic conditions, such as novel segments of the

same noise and novel noise types, is, however, an important and active research

field (Healy et al., 2015; Chen et al., 2016a) and needs to be addressed at the

same time.

In the present study, two experiments were conducted by measuring word

recognition scores (WRSs) in NH listeners. In Experiment I, the impact of

exploiting spectro-temporal context in the front-end and the back-end of a

segregation system, based on GMMs, was systematically investigated to identify

the best performing strategy for the system. Specifically, the extraction of

the delta features (Kim et al., 2009) was considered in the front-end, and the

two-layer classification stage from May and Dau (2014a) was employed in

the back-end. Different system configurations were compared here, which

either incorporated spectro-temporal context only in the front-end, only in

the back-end or in both. These configurations were compared to a baseline

configuration that did not include any of the strategies in the front-end and the

back-end. This experiment was conducted in a restricted setup, similar to Kim

et al. (2009), with high potential to improve speech intelligibility. Furthermore,

the effect of the GMM classifier complexity in a segregation system was also

investigated by comparing the results obtained with 16 GMM components

and 64 GMM components. In Experiment II, the best performing strategy

from Experiment I was explored in detail, and the generalization ability was

subsequently evaluated in a less restricted setup that considered a mismatch

in noise segments during training and testing. Finally, the intelligibility scores
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from both experiments were related to predictions from objective measures1

from the extended short-term objective intelligibility (ESTOI) (Jensen and Taal,

2016), the H - FA rate (Kim et al., 2009) and the amount of clustering among

T-F units in binary masks (Kressner and Rozell, 2015). The primary focus of

the later analysis was to guide the selection of a cost-function, that correlates

with speech intelligibility, for future applications in computational speech

segregation systems.

2.2 The segregation system

The segregation system consisted of a feature extraction front-end and a classi-

fication back-end (May et al., 2015). Figure 2.1 illustrates the processing stages

of the system. Each of these stages is described in more detail below.

Filterbank AMS features GMM SVM

1 0

Delta features

A ƒ
A ƒ
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(t, )
(t, )

t, )
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F

1 0
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A ƒ

A( ƒ

(t, )
(t, )
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Δ
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Noisy
Speech

Enhanced
Speech

Mask estimation

Figure 2.1: Block diagram of the speech segregation system. The system consists of a feature
extraction front-end and a classification back-end. In the front-end, the noisy speech is first
decomposed by a gammatone filterbank. Then, amplitude modulation spectrogram (AMS)
features are extracted and delta features are computed. The back-end consists of two layers with
a Gaussian mixture model (GMM) classifier in the first layer and a support vector machine (SVM)
classifier in the second layer. Finally, the estimated ideal binary mask is applied to the subband
signals of the noisy speech, as illustrated by the dashed line, in order to reconstruct the target
signal.

2.2.1 Front-end

The noisy speech was sampled at a rate of 16kHz and decomposed into K =

31 frequency channels by employing an all-pole version of the gammatone

filterbank (Lyon, 1997), whose center frequencies were equally spaced on the

equivalent rectangular bandwidth (ERB) scale between 80 and 7642 Hz. Previous

1Predictions in Experiment I were based on simulations with the objective measures and
these predictions have been presented at the 17th Annual Conference of the International
Speech Communication Association, San Francisco, USA and published as part of the conference
proceedings in Bentsen et al. (2016).
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studies (Kim et al., 2009; May and Dau, 2014a; May et al., 2015) have successfully

exploited modulations in the speech and the interferer by extracting amplitude

modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and

Kollmeier, 2003). To derive the AMS features in each subband, the envelope

was extracted by half-wave rectification and low-pass filtering with a cutoff

frequency of 1kHz. Then, each envelope was normalized by its median com-

puted over the entire envelope signal. The normalized envelopes were then

processed by a modulation filterbank that consisted of one first-order low-pass

and five band-pass filters with logarithmically spaced center frequencies and

a constant Q-factor of 1. The cutoff frequency of the modulation low-pass

filter was calculated as the inverse of the window duration to ensure that at

least one full period of the modulation frequency was included in the window,

and subsequently adjusted to the nearest power of 2 integer (May et al., 2015).

Using a time frame duration of 32ms then resulted in a cutoff frequency of

32Hz. The root mean square (RMS) value of each modulation filter was then

calculated across each time frame with a 75% overlap. The extraction of the

AMS features resulted in a six-dimensional feature vector for each T-F unit

A
�

t , f
�

= {M1

�

t , f
�

, . . . , M6

�

t , f
�

}T . The delta features across time (∆T ) and

frequency (∆F ) can be appended to the feature vector A
�

t , f
�

according to

previous studies (Kim et al., 2009; Han and Wang, 2012; May and Dau, 2013),

resulting in a feature vector X
�

t , f
�

for each individual T-F unit at time frame t

and subband f that consists of:

X
�

t , f
�

=
�

A
�

t , f
�

,∆T A
�

t , f
�

,∆F A
�

t , f
��

∆T A
�

t , f
�

=







A
�

2, f
�

−A
�

1, f
�

, if t = 1

A
�

t , f
�

−A
�

t −1, f
�

, otherwise

∆F A
�

t , f
�

=







A (t , 2)−A (t , 1) , if f = 1

A
�

t , f
�

−A
�

t , f −1
�

, otherwise

(2.1)

Instead of the calculation in Eq. (2.1), delta features that only operate across

frequency can be considered and appended symmetrically to the AMS features
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for a resulting feature vector X
�

t , f
�

:

X
�

t , f
�

=
�

A
�

t , f
�

,∆ f −k A
�

t , f
�

,∆ f +k A
�

t , f
��

∆ f −k A
�

t , f
�

=A
�

t , f
�

−A
�

t , f −k
�

, ∀k ∈ {n ∈ [1; K ] | f −n ≥ 1}

∆ f +k A
�

t , f
�

=A
�

t , f
�

−A
�

t , f +k
�

, ∀k ∈ {n ∈ [1; K ] | f +n ≤ K }

(2.2)

In Eq. (2.2), k indicates the considered number of subbands in the calculation,

and K the number of gammatone filters. Appending the delta features to

the feature vector in Eqs. (2.1) and (2.2) increased the amount of exploited

spectro-temporal context, but also the size of the feature vector. E.g., appending

∆T A
�

t , f
�

and∆F A
�

t , f
�

to A
�

t , f
�

in Eq. (2.1) would increase the feature vector

from 6 to 18 dimensions.

2.2.2 Back-end

Similar to previous studies, the classification back-end consisted of a two-layer

segregation stage (Healy et al., 2013; May and Dau, 2014a; May et al., 2015).

In the first layer, a GMM classifier was trained to represent the speech- and

noise-dominated AMS feature distributions (λ1, f and λ0, f ) for each subband f .

To separate the feature vector into speech- and noise-dominated T-F units, the

LC was applied to the a priori SNR, and the a priori probabilities P
�

λ1, f

�

and

P
�

λ0, f

�

were computed by counting the number of feature vectors for each of

the classes λ1, f and λ0, f during training. The GMM classifier output was given

as the posterior probability of speech and noise presence P
�

λ1, f |X
�

t , f
��

and

P
�

λ0, f |X
�

t , f
��

, respectively:

P
�

λ1, f |X
�

t , f
��

=
P
�

λ1, f

�

P
�

X
�

t , f
�

|λ1, f

�

P
�

X
�

t , f
�� (2.3)

P
�

λ0, f |X
�

t , f
��

=
P
�

λ0, f

�

P
�

X
�

t , f
�

|λ0, f

�

P
�

X
�

t , f
�� (2.4)

For each subband, the computed posterior probabilities of speech

P
�

λ1, f |X
�

t , f
��

were processed by a linear support vector machine (SVM)

classifier (Chang and Lin, 2011) across a spectro-temporal window W (May

and Dau, 2014a):

X̄
�

t , f
�

=
�

P
�

λ1,u |X (u , v )
�

: (u , v ) ∈W
�

t , f
�	

. (2.5)
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The size of the window W determined the amount of spectro-temporal context

exploited around the considered T-F unit. A causal and plus-shaped window

function W was used here, where the window size with respect to time and

frequency was controlled by∆t and∆ f , respectively. Further details regarding

the choice of the second-layer classifier and the size and shape of the window

function W can be found in May and Dau (2014a).

2.3 Methods

2.3.1 Configurations

To systemically analyze the impact of spectro-temporal context strategies in

the front-end and the back-end, four system configurations were tested in

Experiment I, see Table 2.1. The “No context” configuration denotes the baseline

configuration with no delta features in the front-end and no spectro-temporal

integration in the back-end, corresponding to setting the window sizeW to unity

(∆t = 1,∆ f = 1). The “Front-end” configuration includes the delta features,

while the “Back-end” configuration includes the second-layer classification

stage in the back-end (∆t = 3,∆ f = 9). The “Front- & back-end” configura-

tion employs both the front-end and the back-end spectro-temporal context

strategies.

Table 2.1: Configurations in Experiment I

Configurations Front-end Back-end
Feature vector Feature W size

X
�

t , f
�

= dimension ∆t ∆ f
No context

�

A
�

t , f
��

6 1 1
Front-end

�

A
�

t , f
�

,∆T A
�

t , f
�

,∆F A
�

t , f
��

18 1 1
Back-end

�

A
�

t , f
��

6 3 9
Front- & back-end

�

A
�

t , f
�

,∆T A
�

t , f
�

,∆F A
�

t , f
��

18 3 9

In Experiment II, the delta features were explored in detail in order to

investigate the potential of this strategy in the segregation system. Four config-

urations were selected, see Table 2.2. The system configuration “Front-end” is

the baseline configuration for the analysis across frequency and appends only

∆F A
�

t , f
�

to A
�

t , f
�

. The configurations “3 subbands”, “7 subbands” and “11

subbands” append k = 1, k = 3 and k = 5 lower and upper subbands to A
�

t , f
�

.
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Table 2.2: Configurations in Experiment II

Configurations Front-end
Feature vector Feature

X
�

t , f
�

= dimension
Front-end

�

A
�

t , f
�

,∆F A
�

t , f
��

12
3 subbands

�

A
�

t , f
�

,∆F −1A
�

t , f
�

,∆F +1A
�

t , f
��

18
7 subbands

�

A
�

t , f
�

,∆F −1A
�

t , f
�

,∆F +1A
�

t , f
�

, ...,∆F +3A
�

t , f
��

42
11 subbands

�

A
�

t , f
�

,∆F −1A
�

t , f
�

,∆F +1A
�

t , f
�

, ...,∆F +5A
�

t , f
��

66

2.3.2 Stimuli

The speech material came from the Danish Conversational Language Under-

standing Evaluation (CLUE) database (Nielsen and Dau, 2009). It consists of 70

sentences in 7 lists for training and 180 sentences in 18 balanced lists for testing,

and is spoken by a male Danish talker. Noisy speech mixtures were created

by mixing individual sentences with a stationary (ICRA1) and a fluctuating six-

talker (ICRA7) noise (Dreschler et al., 2001). A Long Term Average Spectrum

(LTAS) template was computed based on the CLUE corpus and the LTAS of each

noise masker was adjusted to the template LTAS. A randomly-selected noise

segment was used for each sentence. In order to avoid onset effects in the speech

intelligibility test (Nielsen and Dau, 2009), the noise segment started 1000ms

before the speech onset and ended 600 ms after the speech offset. However, the

objective measures were computed only for the regions between speech onset

and offset.

2.3.3 System training and evaluation

In Experiment I, the segregation system was trained separately for the two noise

types limited to 10s in duration. Originally, the ICRA1 consists of a 60s noise

recording and ICRA7 of a 600 s recording (Dreschler et al., 2001). The first layer

of the classification back-end consisted of a subband GMM classifier with either

16 or 64 components and full covariance matrices. The classifiers were first

initialized by 15 iterations of the K-means clustering algorithm, followed by 5

(for 16 GMMs) or 50 (for 64 GMMs) iterations of the expectation-maximization

algorithm. The classifiers were trained with the 70 training sentences that were

each mixed three times with a randomly-selected noise segment from 10 s noise

recordings at −5,0, and 5dB SNR. The subsequent linear SVM classifier was

trained for each subband with only 10 sentences mixed at −5, 0, and 5 dB SNR.
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Afterwards, a re-thresholding procedure was applied (Han and Wang, 2012;

May and Dau, 2014a) using a validation set of 10 sentences, where new SVM

decision thresholds were obtained which maximized the H - FA rates. Both the

first and second-layer classifiers employed a LC of −5 dB in a similar manner as

previous findings (Han and Wang, 2012; May and Dau, 2014b). The segregation

system was evaluated with the 180 CLUE sentences. Each sentence was mixed

with the noises at −5 dB SNR using the same limited noise recordings from the

training session.

Experiment II only tested the highly non-stationary ICRA7 noise type in

a less restricted setup. This noise type is more likely to challenge a speech

segregation system than the stationary ICRA1. The full noise recording of 600 s

was divided into one half recording for training and one half recording for testing.

The training and evaluation was similar to Experiment I. The first layer of the

classification back-end had a complexity of 16 Gaussian components with full

covariance matrix. The complexity choice is discussed in Sec. 2.5.2.

2.3.4 Test procedure and subjects

In Experiment I, the following 24 conditions were tested: (Noisy speech, No

integration, Front-end, Back-end, Front- & back-end, IBM) X (ICRA1, ICRA7) X

(16 GMM components, 64 GMM components). The total number of conditions

(24) exceeded the number of available CLUE test lists (18). Therefore, to be able

to randomly assign one condition to one test list, the experiment was conducted

with two subject groups, each with n = 15 NH listeners. The first subject group

was tested with the 12 conditions corresponding to the classifier complexity

of 16 GMMs, and the second group was tested with the 12 conditions with

only 64 GMMs. The following 5 conditions were tested in Experiment II: Noisy

speech, Front-end, 3 subbands, 7 subbands & 11 subbands. The experiment

was conducted with one subject group with n = 20 NH listeners that differed

from the subject groups used in Experiment I. In this experiment, 13 other

conditions were also tested that were not relevant to this study.

The listener age was between 20 and 32 years with a mean of 24.5 years

in Experiment I and a mean of 26.7 years in Experiment II. Requirements for

participation were: (1) age between 18−40 years, (2) audiometric thresholds of

less than or equal to 20dB hearing level (HL) in both ears (0.125 to 8 kHz), (3)
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Danish as native language, and (4) no previous experience with the Hearing In

Noise Test (HINT) (Nielsen and Dau, 2011) or CLUE (Nielsen and Dau, 2009).

The total experimental time was about 2 hours in Experiment I and about 1.5

hour in Experiment II, including the screening process. The experiments were

approved by the Danish Science-Ethics Committee (reference H-16036391),

and the subjects were paid for their participation.

The experiments consisted of a training and testing session. During the

training session, 5 randomly selected sentences from the training set were

presented for each of the 12 conditions to familiarize the subject to the task.

Subsequently, each subject heard one list per condition, and conditions and

lists were randomized across subjects. The sentences were presented diotically

to the listener via headphones (Sennheiser HD650) in an acoustically and

electrically shielded booth. Prior to the actual experiments, the headphones

were calibrated by first adjusting to a reference sound pressure level (SPL) value

and then performing a headphone frequency response equalization. During the

experiment, the sentences were adjusted to the desired presentation level, and

the equalization filters were applied. The SPL was set to a comfortable level of

65 dB. The presentation level was only increased after the training session if the

subject reported back that the level was too low. The level never exceeded 70 dB

SPL for any subject. For each sentence, the subjects were instructed to repeat

the words they heard, and an operator scored the correctly understood words

via a MATLAB interface. The subjects were told that guessing was allowed. They

could listen to each sentence only once, and breaks were allowed according to

the subject’s preference.

2.3.5 Statistical analysis

Intelligibility scores were reported as a percentage of correctly scored words,

i.e. the WRSs, at −5dB SNR. The WRSs were computed per sentence and

averaged across sentences per list. The averaged WRSs were used to construct

a linear mixed effect model for each experiment. In Experiment I, the three

fixed factors of the mixed model were the system configuration (4 levels), the

noise type (2 levels) and the classifier complexity (2 levels). The subjects were

treated as a random factor, as is standard in a repeated measure design. The

intelligibility scores in Experiment I followed a normal distribution. All fixed

effects, all interactions between fixed effects and the random effect were initially
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included in the model. The model was then reduced by performing a backward

elimination of all random and fixed interactions that were non-significant. This

included all of the interaction terms between the random effect (subjects) and

the fixed factors (configuration, noise type and classifier complexity) and the

interaction term between all three fixed factors. In Experiment II, the only

fixed factor was system configuration (4 levels) and subjects were treated as a

random factor. The intelligibility scores in Experiment II also followed a normal

distribution.

All levels were tested at a 5% significance level. To visualize the data, the

least-squares means and 95% confidence intervals were extracted from the

model. To assess any difference between conditions, the differences of the least-

squares means were computed and the p values were adjusted following the

Tukey multiple comparison testing. To evaluate potential speech intelligibility

improvements, Paired Student’s t -tests between the noisy speech and each of

the system configurations were constructed and tested at a 5% significance

level.

2.3.6 Objective measures

Three different objective measures were compared to the intelligibility scores

in each experiment: ESTOI (Jensen and Taal, 2016), H - FA rate (Kim et al., 2009)

and the clustering parameter γ (Kressner and Rozell, 2015). The ESTOI (Jensen

and Taal, 2016) is a modified version of the short-term objective intelligibility

(STOI) index (Taal et al., 2011) to better account for modulated noise maskers.

The STOI index is based on a short-term correlation analysis between the clean

and the degraded speech (Taal et al., 2011), mapped to a value between 0 and 1.

The ESTOI improvements (∆ESTOI) were reported here as the relative difference

between the predicted ESTOI values for the processed and the unprocessed

noisy speech baselines. To compute the H - FA rate, the correctly classified

speech-dominated T-F units and incorrectly classified noise-dominated T-F

units were derived by comparing the estimated IBM with the IBM. The H - FA

rates and the ESTOI improvements were averaged across all 180 test sentences.

The clustering parameter γ was learned across all 180 test sentences by the

graphical model described in Kressner and Rozell (2015). Given a set of binary

masks, the graphical model estimates the amount of clustering γ between T-F

units within the masks as a single number. γ quantifies how much more likely
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neighboring T-F units are to have the same label (speech-dominated or noise-

dominated) as opposed to different labels. Therefore, binary masks with T-F

units that are twice as likely to have the same label than a different label as their

neighboring units would be described by γ= 2.0. Binary masks with T-F units

that are equally likely to be in the same state as their neighbors would have a γ=

1.0, indicating that the labels of the T-F units would be uniformly and randomly

distributed. Therefore, a mask with γ= 2.0 will contain more clustering among

the T-F units than a mask with γ= 1.0 (Kressner and Rozell, 2015). To illustrate

the γ parameter, Fig. 2.2 shows binary masks for one particular CLUE sentence

mixed with ICRA7 noise at −5dB SNR with the respective γ values, shown in

parenthesis. Figure 2.2a shows the IBM and Fig. 2.2b-e present the estimated

IBMs for the four tested system configurations listed in Table 2.1. The two mask

error types, misses and false alarms, are shown on top of the binary masks for a

visualization of the error distributions. Comparing the masks for the four tested

system configurations, the masks from Fig. 2.2d and Fig. 2.2e contain a larger

amount of clustering than the masks in Fig. 2.2b and Fig. 2.2c.

2.4 Results

2.4.1 Experiment I: Impact of exploiting spectro-temporal context

Figure 2.3 shows intelligibility scores obtained with the four system

configurations (“No Context”, “Front-end”,“Back-end” and “Front- & back-end”)

in the two noise types (ICRA1 and ICRA7) considered in Experiment I. Results

are shown for the two classifier complexities, namely 16 GMMs in Fig. 2.3a

and 64 GMMs in Fig. 2.3b. The condition with the unprocessed noisy speech

(diamonds) represented the baseline, and the IBM condition (stars) was

considered as the ideal reference. For the baseline and the ideal reference,

sample means across subjects and 95% Student’s t-based confidence intervals

of the mean were computed. For the system configurations, the least square

means and 95% confidence intervals from the fitted linear mixed effect model

were considered.

The baseline in Fig. 2.3 differed across noise types, with WRS of about

50−55% for the stationary ICRA1 and 65% for the fluctuating ICRA7, presumably

because the participants were able to listen in the dips in the six-talker noise.
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Figure 2.2: Binary masks for a CLUE sentence mixed with ICRA7 noise at −5dB SNR. Misses
(target-dominated T-F units erroneously labeled as masker-dominated) and false alarms (masker-
dominated T-F units erroneously labeled as target-dominated) are shown on top of the masks.
Similar panels are shown in Fig. A.3 in Bentsen et al. (2016) with another example sentence.

For the IBM conditions, WRS of close to 100% were achieved for both noise

types. This was expected as the IBM exploited the a priori information about

the speech and the noise signals.
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a) 16 GMMs b) 64 GMMs

Figure 2.3: Experiment I’s WRSs at −5dB SNR of the four different system configurations (“No
Context”, “Front-end”,“Back-end” and “Front- & back-end”) for the two noise types (ICRA1 and
ICRA7) and for the two classifier complexities plotted in panel a) (16 GMMs) and panel b) (64
GMMs). The condition with the unprocessed noisy speech represented the baseline and the
IBM condition was considered as the ideal reference. For the baseline and the ideal reference,
sample means across subjects and 95% Student’s t-based confidence intervals of the mean
were computed. For all system configurations in all combinations of noise type and classifier
complexity, the least square means and 95% confidence intervals from the fitted linear mixed
effect model were plotted.

There was an effect of system configuration depending on the classifier

complexity and on the noise type. Most importantly, the “Front-end”

configuration led to significantly higher intelligibility scores than the “Back-end”

configuration for both noise types and both classifier complexities (p < 0.0001).

Specifically, the WRS increased by 18.0% in ICRA1 and 23.1% in ICRA7 with

16 GMMs (Fig. 2.3a), and 28.8% in ICRA1 and 34.0% in ICRA7 with 64 GMMs

(Fig. 2.3b). This particular finding suggests that extracting and appending the

delta features to the AMS features in the front-end is a more effective way of

exploiting spectro-temporal contextual information than using the SVM-based

integration strategy in the back-end. In all four combinations, except with

16 GMMs in the case of the ICRA1 noise, the “Front-end” configuration led

to significantly larger scores than the “No context” configuration, which

emphasizes that it is more effective to exploit contextual information in the

front-end of the system than not considering any strategy at all. Finally, the

“Front- & back-end” configuration also led to significantly higher scores than

the “Back-end” configuration in all four combinations of noise type and

classifier complexity. However, the mean scores for the “Front- & back-end”

were generally lower than for the “Front-end”. This suggests that employing
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both strategies is more effective to exploit spectro-temporal context than just

employing the SVM-based integration strategy in the back-end alone, but

the combination of the two strategies does not lead to better results than the

front-end strategy alone.

There was also an effect of the classifier complexity that depended on

the system configuration and the noise type. By comparing the results in

Fig. 2.3a and Fig. 2.3b, significantly higher scores were obtained for the

“Front-end” configuration with 64 GMMs than with 16 GMMs for both noise

types. Specifically, the WRS increased by 12.6% in ICRA1 (p < 0.05) and 19.5%

in ICRA7 (p < 0.0001). However, the scores for the “Back-end” configuration did

not change significantly across classifier complexity for either noise type. Most

importantly, the ranking of the system configurations remained unchanged

across classifier complexity.

The measured intelligibility scores from Fig. 2.3 were converted into WRS

improvements relative to the unprocessed noisy speech, ∆WRS. Figure 2.4a

and Fig. 2.4b show ∆WRS as a function of the system configuration, noise

type and classifier complexity. Significant improvements, based on the Paired

Student’s t-tests, are indicated by an asterisk (*). Significant improvements

of about 50% for ICRA1 and 35% for ICRA7 over noisy speech were obtained

with the IBM. For 64 GMMs in Fig. 2.4b, the configurations “No Context”

(t [14] =−2.16, p = 0.02), “Front-end” (t [14] =−4.29, p =< 0.001) and “Front- &

back-end” (t [14] =−2.82, p = 0.007) for ICRA1 led to significant improvements

and for the ICRA7, only the “Front-end” (t [14] = −7.44, p =< 0.001) led to a

significant improvement. To evaluate the potential of the objective measures,

the measured intelligibility scores were related to predictions from each of the

objective measures described in Sec 2.3.6. Figure 2.4 also shows the objective

measures ∆ESTOI (Figs. 2.4c and 2.4d), H - FA rates (Figs. 2.4e and 2.4f)

and γ (Figs. 2.4g and 2.4h) in Experiment I. ∆ESTOI indicates the increase

in ESTOI relative to the unprocessed noisy speech. The largest predicted

improvement was observed for the configuration “Front- & back-end”, and the

lowest predicted improvement was found for the “No context” configuration

in all combinations of noise type and classifier complexity level. This is in

conflict with the measured∆WRS in Figs. 2.4a and 2.4b where the “Front-end”

configurations led to the largest improvements. By comparing Figs. 2.4c
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a)∆WRS (16 GMMs)

c)∆ESTOI (16 GMMs)

e) H-FA (16 GMMs)

g) γ (16 GMMs)

b)∆WRS (64 GMMs)

d)∆ESTOI (64 GMMs)

f) H-FA (64 GMMs)

h) γ (64 GMMs)

Figure 2.4: Experiment I’s∆WRS relative to noisy speech (first row of panels),∆ESTOI relative
to noisy speech (second row of panels), H-FA rates (third row of panels) and γ values (fourth
row of panels) for the four different system configurations with the two noise types (ICRA1 and
ICRA7) and with the two classifier complexities in a) and in b). The IBM has been included as the
ideal reference. WRS improvements are derived from the Paired Student’s t-tests and significant
improvements (on a 5% significance level) are marked with an asterisk (*). All objective measures
are evaluated at −5 dB SNR.

and 2.4d, it can be seen that larger ESTOI improvements were generally

observed with 64 GMMs compared to 16 GMMs. This is consistent with the

measured WRS improvements in Figs. 2.4a and 2.4b.

Figures 2.4e and 2.4f show the H - FA rates. The segregation system generally

produced higher H - FA rates in the presence of the stationary noise than in the

presence of the non-stationary six-talker noise. The six-talker noise contains

spectro-temporal modulations, similar to modulations in the target speech

signal, and it will be more difficult for the classifier to separate the speech
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modulations from the six-talker noise modulations. In all combinations of

noise type and classifier complexity, the lowest H - FA rates were observed for

the “No context” configuration and the highest H - FA rates were found for the

“Front- & back-end” configuration. Also, larger H - FA rates were obtained for

the “Back-end” than for the “Front-end” configuration, which is not consistent

with Figs. 2.4a and 2.4b. Furthermore, higher H - FA rates were obtained with

64 GMMs in Fig. 2.4f than with 16 GMMs in Fig. 2.4e. A comparison with

the measured WRS improvements in Figs. 2.4a and 2.4b indicated a conflict

with this prediction, since the “Front-end” configuration led to the highest

intelligibility scores, but not the highest H - FA rates. Finally, it is observed

that a small increase of H - FA (from Fig. 2.4e to 2.4f) corresponds to a large

increase of WRS (from Fig. 2.4a to 2.4b) from 16 GMMs classifier to the 64

GMMs classifier. This was found for both noise types.

Figures 2.4g and 2.4h show the γ values learned by the graphical model. The

IBM itself contains a certain level of clustering, due to the compact representa-

tion of speech-dominated T-F units forming glimpses of the target signal. The

γ values from system configurations that exploited spectro-temporal context

through the SVM based integration strategy in the back-end (“Back-end” and

“Front- & back-end”) were consistently larger than the γ values learned over

masks from the “Front-end” and the “No context” configurations. Furthermore,

the “Front-end” did not lead to larger γ values than the “No context”. This

suggests that computing delta features in the front-end does not increase the

amount of clustering, in contrast to employing a spectro-temporal SVM based

integration strategy in the back-end. The effect of exploiting spectro-temporal

context in binary masks was visualized in Fig. 2.2 in Sec. 2.3. Figure 2.2d-e

showed masks with a larger amount of T-F clustering than the masks in Fig. 2.2b-

c, and a visual inspection of the example utterance indicated that the erroneous

T-F units became more clustered in Fig. 2.2d-e. Finally, a comparison of Fig. 2.4g

and Fig. 2.4h suggests that the amount of clustering in the mask is not affected

by the classifier complexity in the segregation system, as γ remains unchanged.
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Figure 2.5: Experiment II’s WRSs at −5dB SNR with the four different system configurations
(“Front-end”, “3 subbands”, “7 subbands” and “11 subbands”) in ICRA7. The condition with
the unprocessed noisy speech represented the baseline. For the baseline, sample means across
subjects and 95% Student’s t-based confidence intervals of the mean were computed. For all
system configurations, the least square means and 95% confidence intervals from the fitted linear
mixed effect model were plotted.

2.4.2 Experiment II: Exploring delta features and the system gener-

alization ability

Figure 2.5 shows intelligibility scores obtained in Experiment II with the

four system configurations (“Front-end”, “3 subbands”,“7 subbands” and “11

subbands”) tested in the less restricted setup in ICRA7 noise. For all four

configurations, the∆T A
�

t , f
�

from Eq. (2.1) was not appended to the feature

vector in Eq. (2.2). This decision was based on an analysis of the objective

measures prior to Experiment II, which showed no change in the objective

measures when∆T A
�

t , f
�

was left out. In Fig. 2.5, the level of the noisy speech

was consistent with the level in Experiment I for ICRA7 (see Fig. 2.3). In this

experiment, there was an effect of system configuration. The intelligibility

scores were significantly higher in the “3 subbands” configuration than the

“Front-end” configuration by 10.7% (p < 0.01) and from the “3 subbands” to

the “7 subbands” configuration by 8.2% (p < 0.05). The “7 subbands” and

the “11 subbands” configurations did not differ significantly. This finding

indicated that appending more subbands, as proposed in Eq. (2.2), can lead

to significantly higher intelligibility until a plateau at k = 3 with ‘7 subbands”.

Figure 2.6 presents the intelligibility improvements and objective measure

predictions for Experiment II. In Fig. 2.6a, the Paired Student’s t-tests showed
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that all system configurations led to significantly smaller intelligibility scores

than the noisy speech, despite an increase in intelligibility over appended

subbands. Therefore, none of the system configurations were able to improve

speech intelligibility in the less restricted setup. Since this setup included novel

noise segments in testing not seen during training, this suggested that the

segregation system had a limited ability to generalize to unseen noise segments

of the six-talker noise.

In Fig. 2.6b, all predicted ∆ESTOI values were positive, and the largest

predicted improvements were observed for the configurations “7 subbands” and

“11 subbands”. This was not consistent with results from the listener study in

Fig. 2.6a where no WRS improvements were observed, which highlights the

discrepancy between predicted and measured intelligibility improvements

in this study. The H - FA rate in Fig. 2.6c increased with the number of ap-

pended subbands, whereas the rates were comparable for “7 subbands” and

“11 subbands”. As observed in Experiment I, a small change in H - FA had a large

impact on the measured intelligibility scores. This was illustrated by comparing

Fig. 2.4e for the ICRA7 noise and Fig. 2.6c. A H - FA rate of 35.3% in Fig. 2.4e

corresponded to a 4.5% decrease in WRS for the “Front-end” configuration

whereas a H - FA of 33.6% in Fig. 2.6c corresponded to a 31.1% decrease in WRS

over noisy speech. With respect to clustering (Fig. 2.6d), γ did not change with

the system configuration, suggesting that the amount of clustering in the mask

is not affected by appending more subbands to the AMS features. This is in

contrast to the Experiment I where the SVM integration stage in the back-end

increased both H - FA and γ.

2.5 Discussion

2.5.1 The impact of exploiting spectro-temporal context

The measured intelligibility scores in Experiment I (Sec. 2.4.1) showed that

the front-end strategy, where the system was given access to both the AMS

features and the delta features, led to significantly higher intelligibility scores

than employing the back-end strategy, which incorporated the SVM-based

spectro-temporal integration. The scores were consistently higher for the

front-end strategy than the back-end strategy, regardless of the noise type and
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a)∆WRS

b)∆ESTOI

c) H-FA

d) γ

Figure 2.6: Experiment II’s∆WRS relative to noisy speech (first row of panels),∆ESTOI relative to
noisy speech (second row of panels), H-FA rates (third row of panels) and γ values (fourth row of
panels) with the four different system configurations in ICRA7. WRS improvements are derived
from the Paired Student’s t-tests and significant improvements (on a 5% significance level) are
marked with an asterisk (*). All objective measures are evaluated at −5 dB SNR.

classifier complexity. Moreover, compared to the unprocessed noisy speech, the

back-end strategy actually had a detrimental effect on the intelligibility scores.

The comparison of the objective measures in Fig. 2.4 (Sec. 2.4.1) indicated that

the back-end strategy increased the H - FA rates over the front-end strategy but,

at the same time, increased the amount of clustering of individual T-F units.

The visual inspection of the illustrated mask examples in Fig. 2.2 (Sec. 2.3.6)

furthermore suggested that the increased amount of clustering implied an

increased clustering of the misses and false alarms. Previously, it was shown
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that clustering of the two error types results in reduced intelligibility scores

despite having the same classification accuracy (Kressner and Rozell, 2015),

which may explain the detrimental effect of the back-end strategy on the

present intelligibility scores. Furthermore, computing delta features in the

front-end had a positive effect on speech intelligibility. The intelligibility

scores were significantly higher than the scores with the configuration that did

not employ any of the strategies, and improvements over noisy speech were

significant for the higher complexity classifier of 64 GMMs. Because of the

detrimental effect of the back-end strategy on intelligibility, combining both

strategies simultaneously in the front-end and in the back-end did not lead

to the largest measured intelligibility scores in Sec. 2.4.1. This contradicted

the findings in Fig. 2.4e and Fig. 2.4f (Sec. 2.4.1) where a higher H - FA rate

was found when combining the strategies than employing only one of the

strategies, consistent with the literature (Healy et al., 2013; May and Dau,

2013). The results from Experiment I therefore suggest that, in the considered

segregation system, a better spectro-temporal strategy is to compute delta

features of the AMS features in the front-end rather than employing the selected

SVM-based integration strategy in the back-end. This study, however, did not

consider the effects of changing the shape and the size of the window in the

back-end on measured intelligibility. Also, the effect of employing a different

second-layer classifier is currently unknown. Healy et al. (2013) considered a

similar two-layer classification stage, but they employed deep neural networks

(DNNs) in a DNN-DNN layer with an integration window of size 5 time frames

and 17 subbands of the 64 channels. They reported significant improvements

in intelligibility scores with this system, but did not quantify the impact of the

back-end strategy alone.

In Experiment II, the front-end strategy was explored in detail by appending

delta features computed from symmetrical subbands. Results in Sec. 2.4.2

showed that the intelligibility scores increased with the number of appended

subbands up to k = 3 bands where the improvement reached a plateau. This

indicated that intelligibility increased with the amount of spectral information

in the speech that was exploited up to k = 3 subbands. The same trend was

observed for the H - FA rate in Fig. 2.6. Appending the delta features across

frequency increased the size of the feature vector, and the larger amount of

training data led to improvements in H - FA rate for the higher complexity
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classifier of 64 GMMs compared to the 16 GMMs classifier. Moreover, the

amount of clustering among the T-F units in Experiment II was equal to the

amount of clustering for the front-end strategy in Experiment I and remained

constant with the number of appended subbands. This is in line with the

notion from Experiment I that increased accuracy without increased clustering

among the T-F units can lead to higher intelligibility scores.

Other strategies exists that exploit the contextual information in speech. In

contrast to the delta features, which work on a subband level, temporal context

can also be exploited by stacking feature frames as input to broadband DNNs

for classification (Wang et al., 2014; Chen et al., 2016a). However, the impact of

this particular strategy on intelligibility scores, or any of the objective measures,

has not been quantified, which makes a comparison to the strategies in the

present study challenging.

2.5.2 The generalization ability of the segregation system

In Experiment I, a restricted setup from Kim et al. (2009), with matched noises

during training and testing, was used in order to facilitate a comparison

of the system configurations, and for a comparison across GMM classifier

complexity. May and Dau (2014b) compared H - FA rates for matched and

mismatched noise segments of the same noise type in training and testing as a

function of the number of GMMs in the classification stage. A high complexity

classifier of 256 GMMs employed in Kim et al. (2009) was able to learn all

spectro-temporal characteristics of the noise, when the same short noise

segment was used in training and testing. This was due to an over-fitting of the

segregation system which resulted in high H - FA rates (May and Dau, 2014b)

and potentially explains the high intelligibility scores obtained in the study. In

Experiment I, these observations from May and Dau (2014b) were verified. The

measured intelligibility scores of the front-end strategy were higher with 64

GMMs in Fig. 2.3b compared to the lower complexity classifier of 16 GMMs in

Fig. 2.3a. Employing the same amount of components as in Kim et al. (2009)

would likely result in intelligibility scores at ceiling and close to the IBM.

The ability of segregation systems to generalize to acoustic conditions

not seen during training is a very important aspect. In Experiment II novel

noise segments in testing not seen during training were considered. Despite
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that intelligibility increased with appended subbands in Fig. 2.6a, none of

the configurations were able to improve speech intelligibility over noisy

speech, suggesting that the system ability to generalize to unseen segments

of the six-talker noise was limited. This noise type contains spectro-temporal

modulations very similar to modulations in the target speech signal. Therefore,

the task of improving intelligibility in a realistic setup is non-trivial. According

to May and Dau (2014b), the H - FA rates were generally lower when the

considered segregation system was tested with unseen noise segments of the

same noise recording, and the rates decrease with increasing GMM classifier

complexity. Therefore, in a more realistic setup like in Experiment II, choosing

a lower complexity classifier will reduce the risk of over-fitting the system (May

and Dau, 2014b), however at the expense of lower H - FA rates and lower

intelligibility outcomes.

Other studies have successfully demonstrated a system ability to generalize

well to acoustical mismatches by employing DNNs because of their predictive

power and the ability to benefit from large-scale training for feature learn-

ing (Healy et al., 2015; Chen et al., 2016a,b). In Healy et al. (2015), a 4-hidden

layer DNN was applied and tested on novel segments of the same noise type

which led to a 25% improvement in WRS in 20-talker babble at −5dB SNR in

NH listeners, but no improvement in cafeteria noise. In Chen et al. (2016a),

a multi-conditional training set was introduced, and a classifier was trained

using a 5-hidden layer DNN and tested for a range of novel noise types. For

the same 20-talker noise at −5dB SNR, they were able to improve the WRS

by approximately 10% in NH listeners. The amount of training employed in

these two studies, however, differs from the current study. In Healy et al. (2015)

560×50= 28, 000 utterances were used for each noise type and SNR, and in Chen

et al., 2016a 640,000 utterances were used in the multi-conditional training

set. In the current study, only 210 utterances were used for training of the

GMM classification stage. The capability of the DNNs to handle large-scale

training data is most likely key to an increased ability to generalize to the unseen

acoustical conditions.

2.5.3 Implications for cost function design

Kressner et al. (2016) highlighted potential limitations of STOI in predicting

the intelligibility of binary-masked speech. In the present study, ESTOI was
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employed instead of STOI, but several observations indicated that ESTOI has

similar limitations as STOI. First of all, in Experiment I the ranking of the system

configurations for the ESTOI improvements conflicted with the ranking of the

configurations for the measured intelligibility improvements, as was observed

in Fig. 2.4. Secondly, in Experiments I and II, ESTOI predicted improvements of

the system configurations when no intelligibility improvements were actually

present. In Experiment I, the listener study only revealed improvements

for configurations with the 64 GMMs classifier, and in Experiment II no

improvements were observed at all. Therefore, ESTOI alone is not able to

account for the observations in this study. Furthermore, the H - FA metric

was also not able to correctly predict the ranking of the system configurations

in Experiment I. Specifically, the H - FA rate was consistently higher for the

back-end strategy than the front-end strategy, despite that the intelligibility

study revealed an opposite effect. Therefore, it is possible to construct a

segregation system that is able to improve H - FA and ESTOI, but, at the same

time, fails to improve speech intelligibility scores in noisy conditions. This

reveals the limitations of the two measures and emphasizes the need of a single

objective measure that comprehensively predicts segregation performance and

correlates well with intelligibility for speech segregation systems.

The findings from Experiment I and II have important implications for

the design of cost functions in computational speech segregation systems.

Monitoring the amount of mask clusteringγ in the estimated IBMs seems critical

as the clustering among erroneously-labeled T-F units should be minimized.

The IBM itself inherently contains clustering, and the obtained γ value can be

regarded as the accepted amount of clustering among the correctly-labeled T-F

units. Therefore, an appropriate cost function should maximize the H - FA rate

and approximate γ as close as possible to γ of the IBM.

2.6 Conclusion

In this study, two experiments were conducted with NH listeners. In Exper-

iment I, the impact of spectro-temporal context in a computational speech

segregation system was investigated by considering two strategies in the system

front-end and back-end, respectively. The experiment showed that computing

delta features in the front-end led to higher speech intelligibility than employing
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an SVM-based integration strategy in the back-end. The results were consistent

across different noise types and for different classifier complexities. In Exper-

iment II, the delta features were explored in detail and tested in a setup that

considered novel noise segments of the same six-talker noise. Intelligibility

scores increased with the amount of spectral information exploited, but the

segregation system failed to generalize to novel noise segments of this particular

noise type. The intelligibility scores were subsequently compared to predictions

from several objective measures. The comparison showed that no single mea-

sure could account for all intelligibility scores, and therefore emphasizes the

need of a single objective measure that comprehensively predicts segregation

performance and correlates well with intelligibility. The findings from the

present study may have implications for the design of computational speech

segregation systems, in which spectro-temporal context should be incorporated

without increasing the amount of clustering among erroneous labeled T-F units.

Furthermore, the findings can help select a cost function that correlates with

intelligibility. According to the results in the present study, the cost function

should maximize the H - FA rate and approximate the γ value as close as possible

to the γ of the IBM.
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3
The benefit of combining a deep neural

network architecture with ideal ratio
mask estimation in computational

speech segregation to improve speech
intelligibility a

Abstract

Computational speech segregation attempts to automatically separate speech

from noise. This is challenging in conditions with interfering talkers and low

signal-to-noise ratios. Recent approaches have adopted deep neural networks

(DNNs) and successfully demonstrated speech intelligibility improvements. A

selection of components may be responsible for the success with these state-

of-the-art approaches: the system architecture, a time frame concatenation

technique and the learning objective. The aim of this study was to explore the

roles and the relative contributions of these components by measuring speech

intelligibility in normal-hearing listeners. A substantial improvement of 25.4 per-

centage points in speech intelligibility scores was found going from a subband-

based architecture, in which a Gaussian Mixture Model-based classifier predicts

the distributions of speech and noise for each frequency channel, to a state-

of-the-art DNN-based architecture. Another improvement of 13.9 percentage

points was obtained by changing the learning objective from the ideal binary

mask, in which individual time-frequency units are labeled as either speech-

or noise-dominated, to the ideal ratio mask, where the units are assigned a

continuous value between zero and one. Therefore, both components play

aThis chapter is based on: Bentsen, T., T. May, A. A. Kressner, and T. Dau (2018). The

benefit of combining a deep neural network architecture with ideal ratio mask estimation in

computational speech segregation to improve speech intelligibility. PloS ONE 13 (5): e0196924.

https://doi.org/10.1371/journal.pone.0196924.
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significant roles and by combining them, speech intelligibility improvements

were obtained in a six-talker condition at a low signal-to-noise ratio.

3.1 Introduction

Computational speech segregation attempts to automatically separate speech

from interfering noise. This is particularly challenging in single-channel

recordings where a speech signal is corrupted by competing talkers and the

signal-to-noise ratio (SNR) is low. It has been suggested to exploit a priori

knowledge about the speech signal and the interfering noise by constructing

an ideal binary mask (IBM) (Wang, 2005). Specifically, the IBM is derived

by comparing the SNRs in individual time-frequency (T-F) units to a local

criterion (LC). The resulting IBM consists of binary values where T-F units

with SNRs exceeding the LC are considered to be speech-dominated and

labeled one, whereas T-F units with SNR below the LC are considered to be

noise-dominated and are labeled zero. However, since the IBM is unavailable

in realistic scenarios, the challenge in computational speech segregation

is to estimate the IBM from the noisy speech. Typically, computational

speech segregation systems consist of an acoustic feature extraction stage

combined with a classification stage where the T-F units are separated into

speech-dominated and noise-dominated units in the estimated mask.

In many studies, objective measures have been used to optimize the

performance of computational speech segregation systems during the

development stage. One commonly used objective measure has been the

H - FA rate, which calculates the difference between the percentage of correctly

classified speech-dominated T-F units (hit rate, H) and the percentage of

incorrectly classified noise-dominated T-F units (false alarm rate, FA) (Kim et al.,

2009; Han and Wang, 2012; May and Dau, 2013; Wang and Wang, 2013; May and

Dau, 2014a; May and Dau, 2014b; May et al., 2015). Another commonly used

objective measure has been the short-term objective intelligibility (STOI) (Taal

et al., 2011; Wang et al., 2014; Jensen and Taal, 2016; Zhang and Wang, 2016).

However, both objective measures have limitations in predicting speech

intelligibility. This has been observed with configurations in which the IBM

has been degraded with different mask errors (Kressner et al., 2016), and with

computational speech segregation systems for noise reduction (Gelderblom
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et al., 2017; Bentsen et al., 2018b). Measuring speech intelligibility in listeners

is therefore important to properly evaluate changes introduced in a speech

segregation system.

Recent approaches in computational speech segregation have considered

systems in which the T-F units are predicted by deep neural networks

(DNNs). With these state-of-the-art approaches, measured speech intelligibility

improvements have been demonstrated in various adverse conditions (Healy

et al., 2015; Chen et al., 2016a; Healy et al., 2017; Kolbæk et al., 2017). A selection

of components may be responsible for the success: the system architecture, a

time frame concatenation technique and the learning objective.

First, the system architecture is different than in previously used approaches.

In the state-of-the-art approaches, the features are extracted per frequency

channel and subsequently stacked across frequency. The T-F units in the

estimated mask are then predicted simultaneously across all frequency

channels by the DNN. This has consequences for how the context, i.e. the

spectro-temporal regions in the estimated mask where speech-dominated T-F

units tend to cluster, is exploited by the system. By predicting the T-F units

simultaneously across all frequency channels, the state-of-the-art approaches

therefore exploit the spectral context in a broadband manner. In previously

used approaches, a classifier has been employed per frequency channel (i.e., a

subband classifier) in the speech segregation system. These subband classifiers

have been implemented with either Gaussian mixture models (GMMs) (Kim

et al., 2009), support vector machines (SVMs) (Han and Wang, 2012; Wang and

Wang, 2013) or DNNs (Healy et al., 2013). In such a subband-based system,

the spectral context has been exploited across neighboring subbands by, for

example, including delta features which can capture spectral feature variations

across neighboring frequency channels (Kim et al., 2009; May et al., 2015;

Bentsen et al., 2016).

Secondly, state-of-the-art approaches often exploit temporal context by

concatenating extracted feature vectors across a predefined number of time

frames (Wang et al., 2014; Chen et al., 2016a; Zhang and Wang, 2016). Past and

future time frames have both been considered. Improvements in objective

measures with time frame concatenation have been reported (Wang et al.,
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2014). However, the effect of employing a time frame concatenation technique

on measured speech intelligibility is currently unknown.

Thirdly, state-of-the-art approaches use the ideal ratio mask (IRM) as

the learning objective instead of the IBM (Healy et al., 2015; Chen et al.,

2016a,b; Healy et al., 2017; Kolbæk et al., 2017). In the IRM, the mask value is

a continuous gain between zero and one and computed according to the a

priori SNR of the considered T-F unit (Srinivasan et al., 2006; Narayanan and

Wang, 2013; Hummersone et al., 2014; Wang et al., 2014). Therefore, the IRM

is similar to an ideal Wiener filter (Hummersone et al., 2014). The perceptual

effect of applying IBMs versus IRMs has been investigated in terms of speech

quality (Brons et al., 2012). A higher sound quality rating with lower noise

annoyance and a larger degree of speech naturalness were observed when

using IRMs compared to IBMs. Additionally, continuous versus binary gain

functions were compared in the framework of minimum mean-squared error

(MMSE)-based noise reduction algorithms (Jensen and Hendriks, 2012). It

was shown that the continuous gain function outperformed the binary gain

function in terms of measured speech intelligibility scores. Furthermore,

a larger STOI improvement relative to noisy speech was found with IRM

estimation in DNN-based systems compared to IBM estimation (Wang et al.,

2014; Zhang and Wang, 2016). Despite these observations, none of the

state-of-the-art approaches has actually demonstrated measured speech

intelligibility improvements with IRM estimation over IBM estimation in

an otherwise identical system. Furthermore, it is unclear how much IRM

estimation contributes to the success of state-of-the-art approaches, especially

in comparison to the other components.

The aim of the present study was to explore the roles and the relative con-

tributions of these components within state-of-the-art computational speech

segregation by measuring speech intelligibility in normal-hearing (NH) listeners

at a low SNR. Specifically, a broadband DNN-based system was compared with

a corresponding subband-based system. The subband-based system employed

a GMM classifier per frequency channel using delta features across subbands

to exploit the spectral context. To exploit temporal context in the DNN-based

system, time frame concatenation was either included or excluded. Moreover,

the effect of IRM estimation versus IBM estimation was studied in the DNN-
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based system. To create as fair of a comparison between the different systems

as possible, the DNN-based system and the subband GMM-based system con-

sidered the same features, and were both trained using the same amount of

training data. Therefore, the considered systems were not necessarily designed

to maximize the measured speech intelligibility, but instead are designed to be

able to systematically compare each of the different components.

3.2 Methods

3.2.1 Feature extraction

Noisy speech was sampled at a rate of 16kHz and decomposed into K = 31

frequency channels by employing an all-pole version of the gammatone fil-

terbank (Lyon, 1997), whose center frequencies were equally spaced on the

equivalent rectangular bandwidth (ERB) scale between 80 and 7642 Hz. Previous

studies (Kim et al., 2009; May and Dau, 2014a; May et al., 2015) successfully

exploited modulations in the speech and the interferer by extracting amplitude

modulation spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz

and Kollmeier, 2003). To derive the AMS features in each frequency channel

(subband), the envelope was extracted by half-wave rectification and low-pass

filtering with a cutoff frequency of 1 kHz. Then, each envelope was normalized

by its median computed over the entire envelope signal. These normalized

envelopes were then processed by a modulation filterbank that consisted of

one first-order low-pass and five band-pass filters with logarithmically spaced

center frequencies and a constant Q-factor of 1. The cutoff frequency of the

modulation low-pass filter was set to the inverse of the window duration to

ensure that at least one full period of the modulation frequency was included

in the window (May et al., 2015). Using time frames of 32 ms with 75 % overlap

(i.e., a 8 ms frame shift) resulted in a cutoff frequency of 32 Hz. The root mean

square (RMS) value of each modulation filter was then calculated across each

time frame.

3.2.2 The DNN-based system

Figure 3.1 illustrates the DNN-based system. The AMS feature space was power-

compressed with an exponent of 1/15 (Chen et al., 2016a), stacked across

frequency channels and fed to the input layer of a feed-forward DNN. The
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network architecture consisted of an input layer, two hidden layers that each

had 128 nodes, and an output layer of 31 nodes. Feature frame concatenation

was employed by appending the five past AMS feature time frames to the current

frame, which corresponded to a temporal context of 40ms. The DNN-based

system was used to either estimate the IBM or the IRM. The IRM was given

by (Wang et al., 2014):
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�
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�
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�
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�
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t , f
�

+1
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In Eq. (3.1), the S 2
�

t , f
�

and the N 2
�

t , f
�

indicate the speech and noise energies,

respectively, in a given T-F unit with time frame t and frequency channel f ,

and β denotes the mask exponent. Mask values in the IRM are therefore scaled

according to the SNR, such that T-F units with lower SNR are attenuated more

strongly.

Figure 3.1: Noisy speech was decomposed by a gammatone filterbank and AMS features were
extracted per subband. The AMS features were fed into an DNN with two hidden layers of 128
nodes each. The system estimated a time-frequency mask (either an IBM or an IRM), and the
mask was subsequently applied to the subband signals of the noisy speech, as illustrated by the
dashed line, in order to reconstruct the speech signal.

3.2.3 The subband-based system

The subband-based system has previously been employed (May et al., 2015;

Bentsen et al., 2016, 2018b) and a detailed description is given in Bentsen et al.

(2018b). In short, delta features were computed symmetrically across frequency

bands, resulting in the feature vector X
�

t , f
�
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In Eq. (3.2), f indicates the current subband and k the considered number of

subbands across which the delta features were computed. Seven subbands

(k = 3) were used in this comparison, since having more than seven subbands

does not statistically improve the measured speech intelligibility scores Bentsen

et al., 2018b. The classification back-end consisted of a GMM classifier trained to

represent the speech and noise-dominated AMS feature distributions (λ1, f and

λ0, f ) for each subband f of the K filters (Kim et al., 2009). To separate the feature

vector into speech- and noise-dominated T-F units, an LC was applied to the a

priori SNR. The GMM classifier output was given as the posterior probability of

speech and noise presence P
�

λ1, f |X
�

t , f
��

and P
�

λ0, f |X
�

t , f
��

, respectively:

P
�

λ1, f |X
�

t , f
��

=
P
�

λ1, f

�

P
�

X
�

t , f
�

|λ1, f

�

P
�

X
�

t , f
�� (3.3)

P
�

λ0, f |X
�

t , f
��

=
P
�

λ0, f

�

P
�

X
�

t , f
�

|λ0, f

�

P
�

X
�

t , f
�� (3.4)

The a priori probabilities P
�

λ1, f

�

and P
�

λ0, f

�

were computed by counting the

number of feature vectors for each of the classes λ1, f and λ0, f during training.

3.2.4 System configurations

In this study, six system configurations were compared (see Table 3.1). System

configurations “GMM (IBM, 1 subband)” and “GMM (IBM, 7 subbands)” ex-

ploited spectral context in the subband-based system. In the “GMM (IBM, 1

subband)” configuration, delta features were used as in Kim et al. (2009) with

only the adjacent subband. In the “GMM (IBM, 7 subbands)” configuration,

k = 3 symmetrically placed subbands around the considered subband were

used to exploit spectral context, according to Eq. (3.2). Configurations “DNN

(IBM)”, “DNN (IBM, 40ms)”, “DNN (IRM)” and “DNN (IRM, 40ms)” were all

configurations of the DNN-based system. “DNN (IBM)” and “DNN (IRM)”

were configurations with no frame concatenation and using IBM and IRM

estimation, respectively. “DNN (IBM, 40ms)” and “DNN (IRM, 40ms)” were

configurations with five past concatenated frames corresponding to 40ms

duration, and with IBM and IRM estimation, respectively. In addition to the six

system configurations, unprocessed noisy speech was tested as a baseline.
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Table 3.1: Overview of the system configurations.

Configuration Classifier Architecture Frame concatenation Learning objective

GMM (IBM, 1 subband) GMM Subband - IBM
GMM (IBM, 7 subbands) GMM Subband - IBM
DNN (IBM) DNN Broadband 0 ms IBM
DNN (IBM, 40 ms) DNN Broadband 40 ms IBM
DNN (IRM, 40 ms) DNN Broadband 40 ms IRM
DNN (IRM) DNN Broadband 0 ms IRM

3.2.5 Stimuli

The speech material was taken from the Danish Conversational Language

Understanding Evaluation (CLUE) database (Nielsen and Dau, 2009). It consists

of 70 sentences in 7 lists for training and 180 sentences in 18 balanced lists for

testing, and the sentences are spoken by a male Danish talker. Noisy speech

mixtures were created by mixing individual sentences with the non-stationary

six-talker (ICRA7) noise (Dreschler et al., 2001). A Long Term Average Spectrum

(LTAS) template was computed based on the CLUE corpus, and the LTAS of the

noise masker was adjusted to the template LTAS. A randomly-selected noise

segment was used for each sentence. In order to avoid onset effects in the

speech intelligibility test (Nielsen and Dau, 2009), the noise segment started

1000 ms before the speech onset and ended 600 ms after the speech offset.

3.2.6 System training and evaluation

The full ICRA7 noise recording of 600s was divided such that one half of the

recording was used for training and the other half was used for testing. The 70

training sentences were each mixed three times with a randomly-selected noise

segment from the noise recording at −5,0, and 5dB SNR to create a training

set of 210 utterances. Training at multiple SNR has been used as an approach

in many studies, e.g. in Kim et al. (2009). This training set was used to train

both the DNN-based system and the subband GMM-based system. The DNN

was trained to estimate either the IBM or the IRM using back-propagation

with the scaled conjugate gradient algorithm and a mean-squared error cost

function. All hidden layers were trained simultaneously in the network. For

the IRM estimation, β was set to 0.5 as previously done (Wang et al., 2014;

Zhang and Wang, 2016). For the subband GMM-based system, a moderate

classifier complexity of 16 Gaussian components with full covariance matrix

was selected. The classifiers were first initialized by 15 iterations of the K-
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means clustering algorithm, followed by five iterations of the expectation-

maximization algorithm, and an LC of −5dB was employed. Both systems

were evaluated with 180 CLUE sentences that were each mixed with ICRA7

noise at −5 dB SNR.

3.2.7 Subjects and experimental setup

The experiment was conducted with a group of 20 NH listeners that were

aged between 20 and 32 years with a mean of 24.5 years. Requirements for

participation were: (1) aged between 18−40 years, (2) audiometric thresholds

of less than or equal to 20dB hearing level (HL) in both ears (between 0.125

and 8 kHz), (3) Danish as their native language, and (4) no previous experience

with the Hearing In Noise Test (HINT) (Nielsen and Dau, 2011) or CLUE

material (Nielsen and Dau, 2009).

The total session lasted about two hours, including the screening process.

The experiment was approved by the Danish Science-Ethics Committee (ref-

erence H-16036391). Listeners were recruited with online advertisement, and

they were paid for their participation. Informed consent was obtained prior

to the experiment. The subjects were all recruited and tested within a two-

month period. The experiment was split into two parts: subject training and

subject testing. In the training part, five randomly selected sentences from

the training set were presented for each of the conditions to familiarize the

subjects with the task. Subsequently, each subject heard one list per condition,

whereby conditions and lists were randomized across subjects. The sentences

were presented diotically to the listener via headphones (Sennheiser HD650) in

an acoustically and electrically shielded booth. Prior to the actual experiments,

the headphones were calibrated by first adjusting to a reference sound pressure

level (SPL) and then performing a headphone frequency response equalization.

During the experiment, the sentences were adjusted to the desired presentation

level, and the equalization filters were applied. The SPL was set to a level of 65

dB. For each sentence, the subjects were instructed to repeat the words they

heard, and an operator scored the correctly understood words via a MATLAB

interface. The subjects were told that guessing was allowed. They could listen

to each sentence only once, and breaks were allowed according to the subject’s

preference.
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3.2.8 Statistical analysis

Intelligibility scores were reported as a percentage of correctly scored words,

i.e. the word recognition score (WRS). The WRSs were computed per sentence

and averaged across sentences per list. The intelligibility scores followed a

normal distribution, and a linear mixed effect model was constructed with list

WRSs as the response variable and the system configurations as a fixed factor

(8 levels).Subjects were treated as a random factor, as is standard in a repeated

measures design. Fixed factor levels were tested at a 5% significance level.

To visualize the data, the predicted least-squares means and 95% confidence

limits of the least-squares means were extracted from the model. To assess

any difference between system configurations, the differences of the least-

squares means were computed in pairwise comparisons, where the p values

were adjusted following the Tukey multiple comparison testing. To evaluate

potential speech intelligibility improvements, Paired Student’s t -tests between

the noisy speech and the relevant system configuration was constructed and

tested at a 5% significance level.

3.3 Results

Figure 3.2 shows the measured WRSs of the six system configurations along

with unprocessed noisy speech. The sample mean across subjects and a 95%

Student’s t -based confidence interval of the sample mean were computed and

included in Fig. 3.2 for visualization. For the six system configurations, the

least-squares means and 95% confidence limits of the least-squares means

predictions are shown. In noisy speech, the average WRS was 65%. The

relatively high baseline score was presumably due to the fluctuations in the

six-talker noise, which has been shown to facilitate listening-in-the-dips in NH

subjects Festen and Plomp, 1990. Measured WRSs increased significantly from

the “GMM (IBM, 1 subband)” configuration to the “GMM (IBM, 7 subbands)”

configuration by 18.9 percentage points (p < 0.0001). This result indicates that

an increased number of appended delta feature vectors across frequency in

the subband GMM-based system led to higher measured speech intelligibility,

since a larger amount of spectral context was exploited. Comparing across the

systems, the “DNN (IBM)” configuration led to 25.4 percentage points higher

WRS than the “GMM (IBM, 1 subband)” configuration (p < 0.0001). Despite
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Figure 3.2: Unprocessed noisy speech served as a baseline condition. For the baseline (diamonds),
sample means across subjects and 95% Student’s t -based confidence intervals of the mean were
computed. For the system configurations, the least-squares means and 95% confidence limits of
the least-squares means predictions derived from the linear mixed effect model were plotted.

that the “DNN (IBM)” configuration had a higher WRS of 6.5 percentage

points than the “GMM (IBM, 7 subbands)” configuration, measured speech

intelligibility scores for the two configurations were not significantly different.

The “DNN (IBM)” and “DNN (IBM, 40ms)” configurations did not differ

significantly from each other, and no statistically significant difference was

found either between the “DNN (IRM)” and “DNN (IRM, 40 ms)” configurations.

Therefore, the employed time frame concatenation technique, which was

used to exploit temporal context, did not have a perceptual effect in the

current DNN-based system, regardless of whether IBM or IRM estimation was

considered in the system.

The configuration “DNN (IRM)” led to 13.9 percentage points higher WRS

than the “DNN (IBM)” configuration (p < 0.001). Furthermore, 17.5 percentage

points higher WRS was observed for the “DNN (IRM, 40ms)” configuration
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than for the “DNN (IBM, 40 ms)” configuration (p < 0.0001). Therefore, a clear

perceptual advantage was found for IRM over IBM estimation in the DNN-

based system. The measured intelligibility scores were subsequently converted

into WRS improvements relative to the unprocessed noisy speech. Significant

improvements, based on the Paired Student’s t -tests at a 5% significance level,

were obtained for the “DNN (IRM)” configuration (8.2 percentage points; t [19] =

2.36;p = 0.014) and the “DNN (IRM, 40ms)” configuration (6.8 percentage

points; t [19] = 2.14; p = 0.023). This particular finding demonstrates the benefit

of estimating the IRM as opposed to the IBM, when computational speech

segregation systems are used for noise reduction applications.

3.4 Discussion

3.4.1 The roles and relative contributions of the components

The comparison between the subband GMM-based system configurations

(“GMM (IBM, 1 subband)” and “GMM (IBM, 7 subbands)”) indicated that the

measured speech intelligibility scores increased with the number of subbands

used to compute the delta features. By increasing the number of subbands,

the AMS feature vector was rapidly growing. In Bentsen et al. (2018b), it was

shown that more than seven considered subbands did not further increase the

measured speech intelligibility. The subband GMM classifier was therefore

limited in the capability to handle the large amount of AMS feature data.

In addition, the “GMM (IBM, 1 subband)” configuration that resembled

previously-used approaches (Kim et al., 2009; May et al., 2015; Bentsen et al.,

2016) resulted in a much lower speech intelligibility than the corresponding

broadband DNN-based system configuration (“DNN (IBM)”). By increasing

the number of subbands and thereby exploiting more spectral context in the

subband GMM-based system, it was possible to achieve a measured speech

intelligibility score similar to that obtained with the DNN-based system. By

changing the architecture from subband GMM classifiers to a broadband

DNN, the segregation system was able to predict the T-F units simultaneously

across all of the subbands. Therefore, the DNN-based system exploited the

spectral context in a broadband manner, which may be more effective than

the corresponding subband-based system. This is most likely because of the

capability of DNNs to handle higher-dimensional feature vectors. Estimated
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IBMs with these three configurations (“GMM (IBM, 1 subband)”, “GMM (IBM,

7 subbands)” and “DNN (IBM)”) are shown in Figs. 3.3f-3.3h and can be

compared to the IBM in Fig. 3.3e. H-FA rates were computed for each of the

estimated IBMs to indicate the mask estimation accuracy. Results were 27.8%

(“GMM (IBM, 1 subband)”), 34.5% (“GMM (IBM, 7 subbands)”) and 63.7%

(“DNN (IBM)”), respectively. A larger amount of spectral context is exploited by

increasing the number of considered subbands in the subband GMM-based

system (Figs. 3.3f and 3.3g), which leads to more correctly-classified speech

T-F units (hits) and therefore a larger H-FA rate. However, the estimated IBM

using the DNN-based system (Fig. 3.3h) contains much larger regions with

correctly-classified speech T-F units and and less mask errors (both misses

and false alarms), which has increased the H-FA rate quite substantially. The

results of the present study also indicated that the employed time frame

concatenation technique, which has been proposed to exploit temporal context

in the state-of-the-art approaches (Wang et al., 2014; Chen et al., 2016a; Zhang

and Wang, 2016), did not have a significant impact on the measured speech

intelligibility. This was observed regardless of whether the DNN-based system

estimated the IBM or the IRM. This result was rather surprising, but should

be seen in light of the small amount of training data (only 210 utterances) fed

to the DNN-based system. Most likely, the small amount of training data was

not sufficient to unfold the predictive power of the DNN. Another important

point is that “only” five past feature frames were appended to the current

frame, resulting in an exploited temporal context of 40ms. To put this into

perspective, 23 frames were concatenated in total with a step size of 10ms in

another study (Chen et al., 2016a), which resulted in a much larger exploited

temporal context of 200ms. Furthermore, the 23 frames were symmetrically

placed around the current frame with eleven past and eleven future time frames.

Whether the temporal context in future time frames affect speech intelligibility

is not clear.

A substantial perceptual advantage of IRM over IBM estimation was

observed in the DNN-based system, where both configurations with IRM

estimation (“DNN (IRM)” and “DNN (IRM, 40ms)”) led to higher measured

speech intelligibility scores than the corresponding configurations with IBM

estimation. The present study therefore demonstrated the effectiveness of

the IRM estimation over the IBM estimation with respect to measured speech
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a) Speech

b) Noisy speech

c) IRM

d) DNN (IRM)

e) IBM

f) GMM (IBM, 1 subband)

g) GMM (IBM, 7 subbands)

h) DNN (IBM)

Figure 3.3: Estimated and ideal time-frequency masks for an CLUE sentence mixed with ICRA7
noise at −5 dB SNR. The spectrograms of clean and noisy speech are shown in Figs. 3.3a and 3.3b.
The IRM and the IBM are shown in Figs. 3.3c and 3.3e. A selection of estimated masks from
system configurations are shown in Figs. 3.3d, 3.3f, 3.3g and 3.3h. Misses (speech-dominated
T-F units erroneously labeled as noise-dominated) and false alarms (noise-dominated T-F
units erroneously labeled as speech-dominated) are shown on top of the estimated IBMs. The
estimated IBM in Fig. 3.3h was converted from the corresponding estimated IRM by applying a
threshold, which was derived from Eq. (3.1) at −5 dB SNR and using β = 0.5.

intelligibility in the state-of-the-art approaches. The effectiveness of the

IRM can be explained by how the mask gain values are computed. From

Eq. (3.1), it is observed that these values can vary continuously between 0

and 1. Comparing the ideal masks (Figs. 3.3c and 3.3e) to the spectrogram
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of speech in quiet (Fig. 3.3a), it can be seen that several mask regions with

low speech energy are captured by the IRM, but not by the IBM (e.g., around

0.6s and above 2446Hz). The IRM can therefore convey important speech

information that is not reflected in the IBM, suggesting that the IRM is a better

learning objective than the IBM in computational speech segregation. By

comparing the estimated masks in Figs. 3.3d and 3.3h, it is also apparent that

the estimated IRM mask values are more tolerant to misses by the segregation

system. Several mask regions with misses in Fig. 3.3h correspond to areas with

positive gain values in Fig. 3.3d, such that speech information is conveyed,

which otherwise would have been missed. Therefore, even though a binary

classification of T-F units makes the IBM a simpler objective to estimate,

the findings in the present study support the use of the IRM estimation in

state-of-the-art approaches for noise reduction applications. In addition to the

measured speech intelligibility, subjective speech quality will most likely also

improve with IRM estimation, since it has previously been demonstrated that

the IRM itself improves the quality in comparison to the IBM (Brons et al., 2012).

Finally, the relative contributions of the components within state-of-the-art

approaches were addressed. First, a substantial improvement of 25.4 percentage

points in measured speech intelligibility scores was found by changing the

system architecture from subband GMM-based, with first-order delta features

across frequency, to the broadband DNN architecture. The subband GMM-

based architecture was similar to previously-used system architectures (Kim et

al., 2009; May et al., 2015; Bentsen et al., 2016). Secondly, by changing from IBM

estimation to IRM estimation, another improvement of 13.9 percentage points

in measured speech intelligibility scores was obtained. Therefore, these results

suggest that both of these components play a significant role in the success of

the state-of-the-art approaches. By combining the two significant components,

intelligibility improvements of about 7−8 percentage points relative to noisy

speech were demonstrated. These improvements were obtained despite that

the system was evaluated in the challenging scenario of being presented with

unseen, six-talker noise at a low SNR after a relatively limited system training.

Large-scale training in the DNN-based system

Being able to generalize to acoustic conditions not seen during training (i.e.,

mismatches between acoustic conditions encountered during training and
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testing) is crucial for any speech segregation system to be applied in realistic

scenarios. The segregation systems in this study considered a mismatch of

six-talker noise segments between training and testing. One reason for the

relatively limited speech intelligiblity improvement with the DNN-based

system with IRM estimation, in comparison to that which has been reported in

other studies, is that the competing six-talker noise contains spectro-temporal

modulations that are very similar to the modulations in the speech signal.

This complicates the task of automatically segregating the interfering noise

from the target speech. Other studies have demonstrated a generalization

ability with DNN-based systems but have employed 20-talker noise with less

fluctuations (Healy et al., 2015; Chen et al., 2016a).

Another reason for the limited improvement is the small amount of training

data used in the present study. The training set was kept low with only 210

utterances in order to compare the DNN-based system with the subband GMM-

based system. However, it has previously been shown that DNNs can benefit

from large-scale training in computational speech segregation (Chen et al., 2015,

2016a,b), and intelligibility improvements over noisy speech can be obtained

with these systems in conditions with various acoustic mismatches (Healy

et al., 2015; Chen et al., 2016a; Healy et al., 2017; Kolbæk et al., 2017). In

one of these studies (Healy et al., 2015), the speech segregation system was

trained with 28, 000 utterances presented in different types of noise at different

SNRs. At −5 dB SNR and with 20-talker noise, this led to an improvement of 25

percentage points in speech intelligibility scores in NH listeners. In another

study (Chen et al., 2016a), the system was trained with 640,000 utterances in

a multi-conditional training set to produce an improvement of 10 percentage

points in the speech intelligibility scores in the same experimental design as the

first study (Healy et al., 2015). Retraining the considered DNN-based system

with a larger training set than 210 utterances would most likely improve the gen-

eralization ability to the unseen six-talker noise segments. Large-scale training

is therefore also an important component within state-of-the-art approaches in

computational speech segregation, and investigating the impact of large-scale

training on measured speech intelligibility is one direction for future work.
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3.5 Conclusion

This study explored the relative contributions of a selection of components

within state-of-the-art speech segregation systems to improving speech intelli-

gibility. The first component was the system architecture, which was changed

from subband-based, in which a classifier was employed per frequency channel,

to a DNN network architecture where the T-F units were predicted simulta-

neously across all frequency channels. Specifically, a broadband DNN-based

system was compared with a corresponding subband GMM-based system. A

second component was the time frame concatenation technique. This tech-

nique is often applied in DNN-based speech segregation systems to exploit the

temporal context. However, this technique did not show a significant effect on

the measured speech intelligibility scores in this study, presumable because of

the relatively limited amount of training data was not sufficient to unfold the pre-

dictive power of the DNN. The third considered component was the estimation

of the IRM instead of estimating the IBM. Results showed a substantial per-

ceptual advantage with the IRM estimation in the DNN-based system. Finally,

the relative contributions of the components were addressed. A substantial

improvement of 25.4 percentage points in measured speech intelligibility scores

was found by changing the system architecture from subband GMM-based,

which is similar to previously-used architectures, to a recent DNN architecture.

Another improvement of 13.9 percentage points was obtained by changing from

IBM estimation to IRM estimation in the state-of-the-art approach. Therefore,

both of these components seem to play a significant role in the success of

state-of-the-art speech segregation systems. By combining the two significant

components, intelligibility improvements of about 7 − 8 percentage points

relative to noisy speech were demonstrated in adverse conditions where speech

was corrupted by a six-talker noise at a low SNR.
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4
The impact of noise power spectral

density estimation on speech
intelligibility in cochlear-implant speech

coding strategies a

Abstract

The advanced combination encoder (ACE) is a well-established speech-coding

strategy in cochlear-implant (CI) processing that selects a number of frequency

channels based on amplitudes. However, speech intelligibility outcomes with

this strategy are limited in noisy conditions with low signal-to-noise ratios

(SNRs). To improve the speech intelligibility outcome, either noise-dominant

channels can be attenuated prior to ACE with noise-reduction strategies or,

alternatively, channels can be selected based on estimated SNRs. A noise

power spectral density (PSD) estimation stage is, however, required. This

study investigated the impact of utilizing an improved noise PSD estimation

stage in both noise-reduction strategies and in channel-selection strategies.

Results imply that estimation with improved noise-tracking capabilities does

not necessarily translate to an increased speech intelligibility when the noise

PSD estimation is utilized for noise reduction nor for when it is utilized for

channel selection. In addition, the impact of altering the SNR-based channel-

selection criterion from fixed to adaptive was investigated. The local criterion

(LC) in the adaptive channel-selection is important for reducing the noise-

induced stimulation in the CI recipients.

aThis chapter is based on research in collaboration with Cochlear Limited (Dr Stefan Mauger)

during an external research stay at Cochlear Melbourne, Australia. Parts of the chapter have

been submitted as a letter to the editor: Bentsen, T., S. Mauger, A. A. Kressner, T. May, and T. Dau

(in review). The impact of noise power estimation on speech intelligibility in cochlear-implant

speech coding strategies.J. Acoust. Soc. Am., in review.
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4.1 Introduction

In cochlear-implant (CI) processing, a signal is decomposed into frequency

channels and the advanced combination encoder (ACE) selects a fixed number

of channels with the largest amplitudes for electrical stimulation (Wilson

et al., 1988; McDermott et al., 1992). However, speech intelligibility outcomes

with ACE in noisy conditions with low signal-to-noise ratios (SNRs) are

limited primarily because: (i) the channels with the largest amplitudes can be

noise-dominated instead of speech-dominated and (ii) ACE always selects a

fixed number of channels when the signal amplitude is above a predefined

threshold, irrespective of whether speech is present or absent (Hu and Loizou,

2008). In an attempt to improve the speech intelligibility in these noisy

conditions, a range of different speech-coding strategies have been developed.

A group of strategies apply noise-reduction prior to stimulation with ACE.

Specifically, a noise power spectral density (PSD) estimate is obtained and

noise-dominant channels are attenuated before the channels with the largest

amplitudes are selected for stimulation. In current CI processors (Dawson

et al., 2011; Mauger et al., 2012a,b), noise PSD estimation is based on minimum

statistics (MS), where the estimate is obtained by tracking the minimum of the

noisy speech PSD in a time window that typically spans over 1− 3s (Martin,

2001). Substantial speech intelligibility improvements have been demonstrated

in speech-weighted noise with noise reduction based on MS-based noise

PSD estimators, but the strategy failed to improve speech intelligibility in the

presence of more dynamic noises (Mauger et al., 2012a). This may be, at least

partly, because the MS-based estimator tracks changes in fluctuating noises

with a delay corresponding to the duration of the time window. Since the noise

PSD estimate is determined by the minimum within the time window, this can

lead to an underestimation of the true noise PSD. Shortening the time window

to avoid a large delay and underestimation would increase the likelihood of

tracking speech segments instead, since it will be more likely to encounter

time windows that do not contain speech gaps. To overcome the limitations

of the MS-based estimator, Gerkmann and Hendriks (2012) proposed a PSD

estimator based on the speech presence probability (SPP). This noise PSD

estimator has been shown to track changes in the true noise PSD faster than the

MS-based estimator and has, therefore, been reported to be more accurate than
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the MS estimator in terms of the logarithmic estimation error (Gerkmann and

Hendriks, 2012). However, whether this improved accuracy translates to higher

speech intelligibility in the context of a noise-reduction strategy is not known.

Another group of strategies, which have been proposed to address the

low speech intelligibility outcomes in CI recipients in the presence of noise,

select which channels to stimulate directly based on an SNR criterion (Hu

and Loizou, 2008). A frequency channel with a high instantaneous SNR

conveys more reliable speech information than a frequency channel with a low

instantaneous SNR, and only channels with high SNRs are therefore selected

for stimulation. One approach is to select the n-of-m channels with the highest

SNRs. This fixed channel-selection strategy is similar to ACE, except that the

channel-selection criterion has changed from amplitude to SNR. Alternatively,

a channel is selected only if the SNR is above an local criterion (LC) (Hu and

Loizou, 2008). The number of selected channels therefore change adaptively

with the SNR, such that in each processing cycle between 0 and m channels are

stimulated. With this latter approach, together with a priori information of the

clean speech and the noise signals to derive the SNR, speech intelligibility has

been restored to levels obtained for speech in quiet for both speech-weighted

noise and multi-talker babble (Hu and Loizou, 2008; Dawson et al., 2011;

Hazrati and Loizou, 2013). The approach has strong similarities with the

ideal binary mask (IBM) which is typically used as the learning objective in

computational speech segregation (Wang, 2005). In the IBM, the a priori

SNR in a specific time-frequency (T-F) unit is compared to an LC to separate

the T-F representation of noisy speech into speech-dominated and masker-

dominated T-F units. To apply the channel-selection strategies in practice, an

SNR estimation algorithm is required. One approach is to consider speech

segregation systems that employ machine learning techniques to estimate the

SNRs (Hu and Loizou, 2010; Goehring et al., 2017). In Hu and Loizou (2010), a

speech segregation system with a high-complexity classifier was trained and

tested using the same short noise recording. A high-complexity classifier is

able to learn all spectro-temporal characteristics of the noise, if the same short

noise recording is used during training and testing. As a result, the system does

not generalize well to any mismatches between training and testing (May and

Dau, 2014b) and is therefore not feasible in realistic applications. Instead of

employing machine-learning based speech segregation systems, the SNRs
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can be estimated by using noise PSD estimators. These noise PSD estimators

do not require pre-training for a specific acoustical condition, and most

of them are real-time applicable because of low latency values. Given the

higher accuracy of the SPP-based noise PSD estimator as compared to the MS-

based estimator, the algorithm appears to be a promising candidate for this task.

The present study investigated the impact of utilizing the SPP-based noise

PSD estimator in a range of noise-reduction and channel-selection strategies by

measuring speech intelligibility in CI recipients. In addition, the sound quality

was rated by the CI recipients. First, the SPP-based noise PSD estimator was

implemented in a noise-reduction strategy, and intelligibility scores were com-

pared to intelligibility scores obtained with the MS-based estimator. Secondly,

the estimated SNRs were used in both the fixed and adaptive versions of the

channel-selection strategies, and intelligibility scores were compared with intel-

ligibility scores obtained with ACE, as well as with the existing noise-reduction

strategy in combination with ACE. With this second set of comparisons, the

impact of altering the channel-selection criterion was investigated. At the same

time, the effect of the LC in SNR-based channel-selection was evaluated on the

speech intelligibility outcome. Specifically, the relative impact of altering the

SNR-based channel selection from fixed to adaptive was analyzed.

4.2 Methods

4.2.1 Signal processing

Noisy speech was sampled at 16 kHz and buffered into `= 1...L frames of 8 ms

duration with 1 ms step size in the CI signal path, shown in Fig. 4.1. A short-time

discrete Fourier transform (STFT) with k = 1...K bins (K = 128) decomposed

the noisy speech in the signal path, and the noise PSD estimate was obtained

for each individual STFT bin k . In the following, it is assumed that the speech

Sk (`) and the noise Nk (`) components are complex Gaussian distributed and

additive in the STFT domain, such that the noisy component, Yk (`), can be

represented as:

Yk (`) = Sk (`)+Nk (`) (4.1)
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Figure 4.1: Overview of the implemented speech coding strategies. In the CI signal path, noisy
speech was first decomposed by an STFT and bins were combined into CI channels. In the SNR
estimation stage, a noise PSD was obtained from bins (Gerkmann and Hendriks, 2012) and the
estimated noise PSD in each CI channel was used to estimate the a priori SNRs. The a priori
SNRs were then used to either select channels (“CS-SNR” and “CS-IBM”) or compute a set of
gain values which were applied prior to stimulation with ACE (“NR-SPP&ACE’).

For a given time frame, `, the current noise PSD estimate, d|Nk (`) |2, is com-

puted (Gerkmann and Hendriks, 2012):

d|Nk (`) |2 =
�

1−P (H1|Yk (`))
�

· |Yk (`) |2+P (H1|Yk (`)) ·Òσ2
N ,k (`−1) (4.2)

In Eq. (4.2), the hypothesis of speech presence is denoted by H1. The current

noise PSD estimate d|Nk (`) |2 is therefore a soft weighting between the noisy ob-

servation |Yk (`) |2 and the recursively smoothed noise PSD estimate Òσ2
N ,k (`−1)

from the previous time frame, where the weighting factor P (H1|Yk (`)) is the SPP

given Yk (`). The current noise PSD estimate in Eq. (4.2) is therefore updated

only when speech was absent. To compute the estimate in Eq. (4.2), the SPP is

derived (Gerkmann and Hendriks, 2012):

P (H1|Yk (`)) =

�

1+
1−P (H1)

P (H1)

�

1+ξH1

�

exp

�

−
|Yk (`) |2

Òσ2
N ,k (`−1)

ξH1

ξH1
+1

��−1

(4.3)

From Eq. (4.3), the prior probability of speech, P (H1), and the a priori SNR

expected under speech presence, ξH1
, are required. If P (H1) = 0.5, it can be

shown that ξH1
= 8 dB (Gerkmann and Hendriks, 2012). The noise PSD estimate

in Eq. (4.2) is then recursively smoothed over time using a time constant of
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71.7 ms (Gerkmann and Hendriks, 2012) to obtain the Òσ2
N ,k (`):

Òσ2
N ,k (`) =αP SDÒσ

2
N ,k (`−1)+ (1−αP SD )Û|Nk (`) |2 (4.4)

The estimates are combined into M = 22 non-overlapping auditory CI channels

spaced between 244.7Hz and 7279.2Hz. Finally, the estimates are converted

into the a posteriori SNR estimate, cγk (`), and then the a priori SNR estimate,
cξk (`):

cγk (`) =
|Yk (`) |2

Òσ2
N ,k

(4.5)

cξk (`) =







γ̄ (k ,`)−1, if γ̄ (k ,`)> 1

0, otherwise,
(4.6)

4.2.2 The noise-reduction and channel-selection strategies

The estimated SNRs were utilized in both a noise-reduction strategy and in

two channel-selection strategies (Fig. 4.1). In the noise-reduction strategy,

called “NR-SPP&ACE”, a set of gain values were computed from a Wiener

gain function, which has been optimized for CI recipients (Mauger et al.,

2012b). The Wiener gain function is described in Appendix C.1. The set

of gain values was applied to the noisy envelopes in the CI signal path as

a pre-processing step to ACE, and from the processed envelopes n-of-m

channels with the largest processed amplitudes were selected for electrical

stimulation. In the fixed channel-selection strategy based on the SNR criterion,

called “CS-SNR”, estimated SNRs were directly used to select the n-of-m

channels with the highest SNRs. In the adaptive channel-selection strategy

where the channel-selection is based on an estimated IBM, called “CS-IBM”,

an LC of 0 dB was first applied to the SNRs to determine which channels were

speech-dominated and therefore candidates for stimulation. This LC has

previously been used in Hu and Loizou (2008). In Appendix C.2, the impact

of choosing different local criteria in the channel selection has been analyzed

on electrodogram error rates. In order to keep the stimulation rate the same

as in the CI recipients’ everyday mapping, only up to n channels were then

stimulated in each cycle, where n is the number of maxima selected for ACE in

each recipients’ default map.
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The strategies were compared to ACE as the reference, and to ACE in

combination with MS-based noise reduction (i.e., “NR-MS&ACE”) within which

the estimated SNRs were computed using MS (Martin, 2001).

Figure 4.2 depicts the true and estimated noise PSDs for a randomly-selected

sample sentence from the Bamford-Kowal-Bench (BKB)-like corpus (Bench et

al., 1979) mixed with multi-talker babble at 0 SNR (Fig. 4.2a) and at 5dB SNR

(Fig. 4.2b). The SPP-based estimator was able to track the changes in the true

noise PSD faster than the MS-based estimator, as is evident by the fact that the

MS-based estimator led to a larger underestimation of the true noise PSD than

the SPP-based estimator in most time frames. To quantify the accuracy of the

noise PSD, the logarithmic estimation error, LogErr, was adopted (Hendriks

et al., 2008) across time frames, `, and frequency channels, m :

LogErr=
10

LM

L
∑

l=1

M
∑

m=1

log10

σ2
N ,m (`)

Òσ2
N ,m (`)

(4.7)

The logarithmic estimation error was computed for 10 sentences from a

randomly-chosen list mixed with multi-talker babble at 0dB and 5dB SNRs

for each of the two noise PSD estimators. The improvement of the SPP-based

estimator was 1.1 dB relative to the MS-based estimator when averaged across

sentences and SNRs. This result is consistent with data from Gerkmann and

Hendriks (2012), where improvements of about 1dB were found for similar

conditions.

4.2.3 Study design

The subjects participated in two sessions, and in each session four different

strategies were tested. In Session 1, the strategies ACE, “NR-MS&ACE”, “CS-SNR”

and “CS-IBM” were tested in speech-weighted noise to compare the channel-

selection strategies with existing speech coding strategies, as well as to assess

the impact of altering the SNR-based channel selection from fixed to adaptive.

In Session 2, ACE, “NR-MS&ACE”, “NR-SPP&ACE” and the best performing SNR-

based channel-selection strategy of the two in Session 1 were tested in a more

challenging multi-talker babble condition. Furthermore, Session 2 investigated

if an improved noise PSD estimator accuracy in the context of noise-reduction
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a) 0 dB SNR b) 5 dB SNR

Figure 4.2: True and estimated noise PSDs for a noisy speech signal mixed with multi-talker
babble at 0 SNR (Fig. 4.2a) and at 5 dB SNR (Fig. 4.2b). Noise PSDs are shown for the CI channel
number 10 with a center frequency of 1406.9Hz. The true noise PSD was recursively smoothed
over time using a first-order low-pass filter, similar to previous studies (Hendriks et al., 2008;
Gerkmann and Hendriks, 2012). A smoothing time constant of 151.9 ms was used corresponding
to α= 0.993 with the current step size of 1 ms.

could translate into higher measured speech intelligibility.

4.2.4 Hardware and stimuli

The speech coding strategies were implemented with SIMULINK in a real-time

system developed by Cochlear Limited. The system consisted of a host PC, and a

target XPC which executed the SIMULINK models in real-time. The microphone

input was recorded directly from the behind the ear sound processor worn

by the recipient on the same ear as the implant. The real-time system

processed the noisy speech signal, and the selected channels were stimulated

by producing a radio frequency output through a coil that transmitted the

stimulation sequence directly to the recipient’s implant. In all strategies,

automatic sensitivity control and adaptive dynamic range optimization were

enabled (Mauger et al., 2014).

The BKB-like corpus consists of 80 lists with 16 sentences per list. The root

mean square (RMS) levels of all individual sentences were equalized, and the

Long Term Average Spectrum (LTAS) of the noise was adjusted to the LTAS of
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speech (Byrne et al., 1994). The sentences were mixed with speech-weighted

noise or multi-talker babble from 20-talkers, and subsequently presented at 0

degrees azimuth 1.2 m in front of the recipients at 65dB sound pressure level

(SPL) via a loudspeaker in a sound isolated booth.

4.2.5 Subjects

Twelve CI recipients participated in the study. Biographical data is presented

in Table 4.1. The subject age spanned from 37 to 85 years with a median age

of approximately 69 years. The CI usage time ranged from 1 to 13 years with a

median of 8 years. All but one subject were stimulated with n = 8 maxima out

of m = 22 electrodes while the remaining subject was stimulated with n = 12

maxima.

Table 4.1: Biographical data for the 12 CI subjects.

Subject Age (yrs) CI usage (yrs) n maxima m electrodes Rate (pps)

S1 72 4 8 21 900
S2 67 5 8 22 900
S3 78 7 8 22 1200
S4 56 13 8 22 900
S5 77 8 8 22 1200
S6 85 8 8 22 900
S7 58 8 8 22 900
S8 80 8 12 22 900
S9 37 5 8 22 500
S10 72 9 8 22 900
S11 48 9 8 22 500
S12 65 1 8 22 900

4.2.6 Procedure

Subjects were tested with an adaptive speech reception threshold (SRT) task

in noise and a quality ranking task in each session. The Australian Sentence

Test in Noise (AUSTIN) (Dawson et al., 2013) was used to derive a single SRT

from a psychometric curve fit to the percentage of correct morpheme scores

for 24 BKB-like sentences from across two lists1. Each strategy was evaluated

1This calculation rule provides better reliability than the Hearing In Noise Test (HINT)
calculation rule (Dawson et al., 2013).
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with two runs. The strategies were evaluated in a repeated measures design,

and the test order was counterbalanced within the session and randomized

across subjects. Subjects were familiarized with the SRT test by presenting 16

processed sentences with the strategy “CS-IBM”.

Sound quality was rated with a MUltiple Stimuli with Hidden Reference and

Anchor (MUSHRA) test. Samples from an audio book of Australian stories with

the same speaker were presented at 65 dB SPL, and the speech was mixed with

the noises at the SRT of ACE prior to the processing with the strategies in each

session. In addition to the four strategies, a reference condition was added.

The reference condition was created by lowering the noise level by 10dB in

the “ACE” strategy. The subjects were allowed to switch between the strategies

instantaneously and as many times as necessary by using a touch screen. Two

questions were asked in the MUSHRA, namely “How clear do you perceive the

speech?” and “How annoying is the noise?”. The two questions were presented

to the subjects two times, and the obtained ratings were averaged.

In addition to these two tasks, Session 2 also tested monosyllabic word

recognition in quiet using the consonant–vowel nucleus–consonants (CNCs).

See Appendix C.3 for a description of the test and a discussion of the results.

4.2.7 Statistical analysis

A linear mixed effect model was constructed for each set of SRTs, quality ratings

and the CNCs in each session. In all the models, strategies were considered a

fixed factor and subjects a random effect. In addition, runs were considered a

random effect for the set of SRTs. The fixed factor, the random effects and the

interactions were initially included in the model. The model was then reduced

by performing a backward elimination of all random interactions that were

non-significant on a 5% significance level. Fixed factor levels were tested at a

5% significance level. To visualize the data, the predicted least-squares means

and 95% confidence limits of the least-squares means were extracted from the

model. To assess any difference between strategies, the differences of the least-

squares means were computed in pairwise comparisons where the p values

were adjusted following the Tukey multiple comparison testing.
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4.3 Results

Figure 4.3 shows the measured SRTs in speech-weighted noise in Session 1

(Fig. 4.3a) and in multi-talker babble in Session 2 (Fig. 4.3b) with the four

different strategies. Individual SRTs for each of the twelve CI recipients are

shown with different symbols. In addition, horizontal black bars indicate the

least square means, and the gray shaded boxes show the 95% confidence limits

of the least square means predictions from the fitted linear mixed effect models.

a) Speech-weighted noise b) Multi-talker babble

Figure 4.3: Measured SRTs in speech-weighted noise (Fig. 4.3a) and in multi-talker babble
(Fig. 4.3b). Individual SRTs for each of the twelve CI recipients are shown with different symbols.
The horizontal black bars illustrate the least square means, and the gray shaded boxes show the
95% confidence limits of the least square means predictions.

In both Figs. 4.3a and 4.3b, a high SRT variability was observed across the

CI recipients. In the strategy “ACE”, three subjects (“S2”, “S7” and “S8”) showed

a poor performance with up to 12dB in SRT, while the remaining subjects

performed very well with SRTs as low as −6dB in speech-weighted noise and

around 0 dB in the multi-talker babble condition.

Figure 4.4 shows corresponding quality ratings with the recipients in Ses-
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sion 1 (Fig. 4.4a) and Session 2 (Fig. 4.4b). The reference program (“REF”)

was included in the comparison and the recipients should ideally rate this

program with the highest score in the MUSHRA. Subjects “S2” and “S8” also

had difficulties in rating the reference program the highest in Figs. 4.4a and 4.4b.

Most likely, providing these subjects with a 10dB SNR improvement in the

reference program was not sufficient for them to hear a difference in clarity or

noise annoyance.

4.3.1 Evaluation of the noise-reduction strategies

The “NR-MS&ACE” and “NR-SPP&ACE” strategies were first compared. In

Fig. 4.3b, half of the subjects (“S1”, “S4”, “S8”, “S10”, “S11” and “S12”) showed

lower SRTs with the “NR-SPP&ACE” strategy than with the “NR-MS&ACE”

strategy, but no statistically significant difference between the two strategies

was observed. Thus, the results suggest that speech intelligibility does not

improve significantly with the more accurate SPP-based noise PSD estimator

relative to the MS-based estimator. In Fig. 4.4b, the speech clarity in both

strategies was rated significantly higher over the “ACE” strategy. Furthermore,

the noise annoyance was rated significantly lower in both strategies over the

“ACE”. The two strategies (“NR-SPP&ACE” and “NR-MS&ACE”) did, however,

not differ from each other statistically in terms of the sound quality measures.

In addition to these findings, the existing noise-reduction strategy (“NR-

MS&ACE”) improved the SRT compared to ACE alone by about 1.6 dB in speech-

weighted noise (see Fig. 4.3a). This is consistent with previously-reported

findings (Dawson et al., 2011; Mauger et al., 2012a,b), e.g. about 2dB was

obtained in Dawson et al. (2011). Finally, neither of the two noise-reduction

strategies (“NR-MS&ACE” or “NR-SPP& ACE”) improved speech intelligibility

significantly relative to ACE in the multi-talker babble (Fig. 4.3b). In comparison,

a small improvement of about 7% of the measured word recognition score (WRS)

has been reported in this noise type (Mauger et al., 2012a).

4.3.2 Evaluation of the channel-selection strategies

The fixed (“CS-SNR”) and the adaptive channel-selection (“CS-IBM”) strategies

were then compared (Fig. 4.3a). The “CS-IBM” strategy was found to decrease

the mean SRT scores by 1.63 dB as compared to the “CS-SNR” strategy (p < 0.01).
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a) Speech-weighted noise b) Multi-talker babble

Figure 4.4: Measured quality ratings in speech-weighted noise in Session 1 (left panels) and
in multi-talker babble in Session 2 (right panels). Individual ratings for each of the twelve CI
recipients are shown with different symbols. The horizontal black bars illustrate the least square
means, and the gray shaded boxes show the 95% confidence limits of the least square means
predictions.

The adaptively changing channel-selection therefore improved the speech

intelligibility relative to the fixed channel-selection in the CI recipients.
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Comparing the “CS-IBM” strategy with the ACE strategy (Fig. 4.3a), there was

no significant difference in mean SRTs and in sound quality ratings in speech-

weighted noise (Fig. 4.3a), despite that almost half of the subjects (“S1”, “S2”,

“S8”, “S10” and “S12”) had lower SRTs with the “CS-IBM” strategy and these same

subjects also rated the speech clarity higher and the noise annoyance lower

with the “CS-IBM” strategy over the ACE strategy (Fig. 4.4a). Moreover, the SRT

actually increased by 1.53dB (p < 0.0001), i.e. speech intelligibility was worse

with the “CS-IBM” strategy in the presence of multi-talker babble (Fig. 4.3b).

Therefore, neither of the two SNR-based channel-selection strategies improved

speech intelligibility relative to ACE.

4.4 Discussion

4.4.1 Improved noise power estimation in noise-reduction strate-

gies

The SPP-based noise PSD estimator, as proposed by Gerkmann and Hendriks

(2012), was considered in the context of noise-reduction, instead of the MS-

based estimator which is currently used in current CI processors (Dawson et al.,

2011; Mauger et al., 2012a,b). The findings of the current study demonstrate that

the SPP-based noise PSD estimator is more accurate in tracking the true noise

PSD than the MS-based estimator in the multi-talker babble condition in terms

of the logarithmic estimation error, which confirm previous findings (Gerkmann

and Hendriks, 2012). Nevertheless, the results from the CI listener study showed

that the improved accuracy in noise PSD estimation does not translate into an

increase in measured speech intelligibility. Two points may help explain this

observation. First, the SPP-based noise PSD estimate changed more rapidly over

time and the gain values therefore also varied more quickly over time. The CI

recipients are accustomed to a more slowly changing noise-reduction strategy

in their everyday sound processors (“NR-MS&ACE”), since this noise-reduction

strategy is most likely used on a daily basis and, in most cases, has been used for

many years. A lack of familiarity with the SPP-based noise-reduction strategy

may thus have affected the results. Secondly, the logarithmic estimation error,

as described in Eq. (4.7), does not reveal in which time frames and frequency

channels the noise PSD estimator is tracking the true noise PSD with high

accuracy (i.e., whether the accuracy is high when speech is present or absent).
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The results therefore suggest that the logarithmic estimation error is not a good

predictor of the speech intelligibility outcome.

4.4.2 Analysis of the logarithmic estimation error

Previous studies (Qazi et al., 2013; Kressner et al., 2017) have employed

segmentation methods to investigate the effects of noise-induced errors

in speech coding. Specifically, Kressner et al. (2017) divided the ideal

electrodogram into three temporal regions, based on the stimulation activity

across CI frequency channels: speech gaps, the so-called speech transitions

which define the boundaries between the speech segments and speech gaps1

and the speech segments. In Qazi et al. (2013), findings suggested that CI

recipients can tolerate significantly lower levels of noise in speech gaps and

at the same time comparable levels in speech segments. In addition to these

findings, Kressner et al. (2017) showed that the benefit of attenuating the

noise-dominated channels in speech gaps was relatively small when the speech

transitions in the ideal electrodogram at the same time had been degraded with

errors.

In the present study, the logarithmic estimation error was used to assess the

accuracy of the introduced SPP-based estimator against the existing MS-based

estimator. To gain insights into where the introduced noise PSD estimator

is more accurate, as compared to the existing estimator, the segmentation

method of Kressner et al. (2017) is therefore applied. Figure 4.5 visualizes the

segmentation of an ideal electrodogram generated from the sample sentence

shown in Fig. 4.2 into the three temporal regions. In the lower panel of Fig. 4.5,

the detected speech gaps, speech transitions and speech segments are marked.

The estimated noise PSDs are then segmented accordingly, and the logarithmic

estimation error is computed within each temporal region (Fig. 4.6). The loga-

rithmic estimation error is lower within each of the temporal regions for the SPP

estimator, as compared to the MS-based estimator, which indicate that it is more

accurate in each of the regions. However, there is no significant difference in

accuracy among the speech gaps, speech transitions and the speech segments

with neither of the noise PSD estimators. In relation to the findings of Qazi et al.

1 Qazi et al. (2013) only divided the regions into speech gaps and speech segments.
However, Kressner et al. (2017) argued that it is necessary to also consider the speech transitions.
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Stimulation level

Figure 4.5: The ideal electrodogram (top panel) was obtained by processing the speech signal
with ACE. Graytones correspond to a stimulation level between the T and C level. The ideal
electrodogram was subsequently segmented into speech gaps (bottom panel), speech segments
and speech transitions. The speech transition is marked with a gray color line and the offset of
the transition by a dashed line. The applied segmentation method is described in Kressner et al.
(2017).

(2013) and Kressner et al. (2017) and the present study, a very low logarithmic

estimation error is most likely required in the speech gaps and speech transitions.

Noise PSD estimation algorithms should therefore prioritize a low estimation

error in both speech gaps and in speech transitions when employed in noise-

reduction strategies in CIs. The segmentation of the logarithmic estimation

error can be a useful tool for such an assessment.

4.4.3 Using noise power estimation in channel-selection strategies

Neither of the channel selection strategies improved the speech intelligibility

relative to the well-established ACE strategy. There may be three possible

explanations for this.

First and foremost, even though the SPP-based noise PSD estimator has
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a) 0 dB SNR b) 5 dB SNR

Figure 4.6: The logarithmic estimation error is computed by comparing the estimated noise PSD
to the smoothed true noise PSD (Hendriks et al., 2008; Gerkmann and Hendriks, 2012). Errors
are computed with the SPP-based and the MS-based noise PSD estimators for a multi-talker
babble mixed with the previously-used sample sentence at 0 SNR (Fig. 4.6a) and at 5dB SNR
(Fig. 4.6b). The segmentation method, described in Kressner et al. (2017), is then employed.
In Fig 4.5a, the ideal electrodogram has been segmented into three different temporal regions
(speech gaps, speech transitions and speech segments). The error is then computed within each
of the temporal regions.

decreased the logarithmic estimation error, it does not appear to be accurate

enough for SNR-based channel selection, since performance with these

strategies was not close to that obtained with SNR-based channel selection

based on a priori SNRs (Hu and Loizou, 2008). To shed light on what is then

a sufficient accuracy for SNR-based channel selection, the accuracy of the

considered SNR estimation algorithm is compared with two previously-used

algorithms (Hu et al., 2007; Hu and Loizou, 2010) in a post hoc analysis that

follows the approach in Hu and Loizou (2008). Specifically, the ideal and

estimated SNRs were compared separately to an LC to construct an IBM and an

estimated IBM. A hit rate was then calculated as the percentage of correctly

classified speech-dominated T-F units, and a false alarm rate was calculated as

the percentage of incorrectly classified noise-dominated T-F units. The hit-false

alarm (H-FA) rate was then used to measure the SNR estimation accuracy

(Table 4.2). The estimation algorithm from Hu et al. (2007) is based on the

noise PSD estimator of Cohen and Berdugo (2002), combined with modified

SNR estimation of Ephraim and Malah (1984). The SNR estimation algorithm

in the present study had a much higher hit rate and a lower false alarm rate
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Table 4.2: Hit and false alarm rates for three SNR estimation algorithms in multi-talker babble at
5 dB SNR. Only hit and false alarm rates were available for this particular condition in previous
studies (Hu et al., 2007; Hu and Loizou, 2010).

SNR estimation algorithm Hit rate (%) False alarm rate (%) H-FA (%)
Hu et al. (2007) 53.19 17.41 35.78
Present study 71.21 15.22 55.99
Hu and Loizou (2010) 89.29 14.19 75.10

than the Hu et al. (2007) estimation algorithm. Therefore, it estimated the

instantaneous SNR more accurately than the Hu et al. (2007) estimation

algorithm1. However, the SNR estimation algorithm from the present study

had an approximately 20% lower H - FA rate than the Hu and Loizou (2010)

algorithm, which employed a speech segregation system with a high-complexity

classifier to estimate the SNRs. These findings imply that the SNR estimation

algorithm in the present study had a limited accuracy, as compared to the SNR

estimation algorithm from Hu and Loizou (2010). Studies have shown that the

H - FA rate has limitations in predicting speech intelligibility (Kressner et al.,

2016; Bentsen et al., 2018b), and it is therefore important to emphasize that the

H - FA rate can only be used to evaluate the SNR estimation accuracy. Whether

the limited accuracy of the SNR estimation (compared to the Hu and Loizou

(2010) algorithm) can explain the poor speech intelligibility remains speculative.

Secondly, a lack of training with the channel-selection strategies by the

CI recipients may have influenced the performance. Prior to the testing, the

CI recipients were only familiarized with the SNR-based channel-selection

strategies by presenting 16 sentences whereas the existing speech coding

strategies (ACE and “NR-MS&ACE’) are both integrated in the participants’

everyday sound processors.

Finally, an experimental constraint was that only up to n channels were

stimulated in the adaptively-changing channel-selection strategy, where n = 8

for most of the participants. In comparison, up to 16 (out of the 16) channels

were available for stimulation in Hu and Loizou (2008) when the SNR was high.

However, this limited subset of n-of-m channels seems sufficient enough for

1The Hu et al. (2007) estimation algorithm was never applied for SNR-based channel selection
in Hu and Loizou (2008), presumably because of the low SNR estimation accuracy.
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ACE, such that it is unlikely to be the primary explanation for the lack of any

speech intelligibility improvement.

4.4.4 From fixed to adaptively-changing channel selection

The impact of altering the SNR-based channel selection from fixed to adaptive

was also investigated. Results indicated that the adaptively-changing channel

selection resulted in a substantially higher speech intelligibility than the fixed

channel selection in speech-weighted noise. In the adaptive channel-selection

strategy, the LC was applied to force the channel selection to be adaptively

changing between 0 and n channels across stimulation cycles. This is illustrated

in Fig. 4.7. Figure 4.7a shows an ideal electrodogram (“Speech-in-quiet”) and

Figs. 4.7b-e show estimated electrodograms with the four different strategies

from Session 1 for a comparison across strategies. In Figs. 4.7d-e, n channels

were selected in both electrodograms in regions with speech only (compare to

the ideal electrodogram in Fig. 4.7a). However, in the electrodogram generated

using the adaptively-changing channel-selection strategy (Fig. 4.7e) fewer than

n channels were stimulated in the CI recipients when the instantaneous SNR

was low in the speech gaps, and therefore, the CI recipients were exposed

to less noise-induced stimulation. Reducing stimulation in speech gaps has

previously been shown to be important for improving speech intelligibility in

noise, because CI recipients can tolerate significantly lower levels of noise in

the speech gaps than in the speech segments (Qazi et al., 2013).

4.5 Conclusion

Speech intelligibility outcomes with ACE are limited in noisy conditions with low

SNRs, since the channels with the largest amplitudes can be noise-dominated

instead of speech-dominated, and since ACE always selects a fixed number of

channels when the signal amplitude is above a predefined threshold, irrespec-

tive of speech presence or absence. A range of different speech-coding strategies

have been developed to alleviate these shortcomings. Either noise-dominant

channels can be attenuated prior to ACE with noise-reduction strategies or,

alternatively, channels can be selected based on an SNR criterion. Both types of

strategies, however, require an accurate noise PSD estimation stage. This study

investigated the impact of noise PSD estimation in noise-reduction and channel-
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Figure 4.7: The ideal electrodogram (“Speech-in-quiet”) was obtained by processing the speech
signal with ACE. In Figs. 4.7b-e, the speech signal was mixed with speech-weighted noise at 0 dB
SNR and processed with the four strategies in Session 1. Graytones correspond to a stimulation
level between the T and C level.
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selection strategies. Overall, the results of the present study indicate that a

noise PSD estimation with improved noise-tracking capabilities, and therefore a

higher accuracy, does not necessarily translate to increased speech intelligibility

when the noise PSD estimation is utilized for noise reduction nor for when it

is utilized for channel selection. Noise PSD estimation algorithms which have

a higher accuracy in both the speech gaps and in the speech transitions are

required, and the potential of such algorithms for speech coding in CIs can be

assessed with the introduced segmentation analysis. In addition, the impact of

altering the SNR-based channel-selection criterion from fixed to adaptive was

investigated in the present study. The LC is important in the SNR-based channel

selection for reducing the noise-induced stimulation in the CI recipients.
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5
General discussion

5.1 Summary and implications of the main findings

This thesis investigated three approaches within computational speech

segregation based on ideal time-frequency mask estimation, and the

approaches were evaluated in the framework of single-channel noise reduction

in normal-hearing (NH) listeners and cochlear-implant (CI) recipients in

various adverse conditions.

Chapter 2 considered a speech segregation system, which employed a

Gaussian mixture model (GMM) classifier for each subband, to estimate the

ideal binary mask (IBM). The study focus was on how to exploit contextual

information in speech across time and frequency in computational speech

segregation. Specifically, the impact of different strategies that exploit

spectro-temporal context was investigated on measured speech intelligibility

in NH listeners. Computing the so-called ”delta features” in the subband-based

system, and appending them to the feature vector, led to higher measured

speech intelligibility scores than employing a support vector machine-based

integration stage after the GMM-based classification stage. Using the delta

features was therefore found to be the better strategy to exploit context by the

subband-based system. The delta features were subsequently explored in detail

across subbands. The measured speech intelligibility scores increased with the

amount of spectral information exploited, until reaching a plateau when seven

subbands or more were included in the feature vector.

Chapter 3 considered a selection of components within recent and

successful state-of-the-art approaches, based on deep neural networks

(DNNs). The motivation of the study was to explore the roles and the relative

contributions of the components by measuring speech intelligibility in NH

listeners. The first component was the system architecture, which was changed

73
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from a subband-based GMM classifier, used in Chapter 2, to a DNN in which

mask units are predicted simultaneously across all subbands. A substantial

improvement by 25.4 percentage points in measured speech intelligibility

scores was obtained going from the subband-based GMM architecture to the

DNN architecture. The second component was a widely-used time frame

concatenation technique, which is often applied in DNN-based speech

segregation systems to exploit the temporal context. However, the time frame

concatenation technique did not lead to any significant improvement in

measured speech intelligibility, presumable because of the relatively limited

amount of training data was not sufficient to unfold the predictive power of

the DNN. The final component was the ideal time-frequency mask which is

often considered the learning objective in computational speech segregation

systems. By changing the learning objective from the IBM to an ideal ratio

mask (IRM), another improvement of 13.9 percentage points was achieved

in terms of measured speech intelligibility scores. Thus, both components

contribute to the success of the state-of-the-art approaches. By combining

the two significant components, namely the DNN architecture and the IRM

estimation, an intelligibility improvement of about 7− 8 percentage points,

relative to noisy speech, was obtained in an adverse conditions in which a

fluctuating six-talker noise degraded the speech at a low signal-to-noise ratio

(SNR).

Findings presented in Chapters 2 and 3 have implications for the system

design within computational speech segregation. First, that spectral context

is important to be considered. By employing the DNN architecture in recent

approaches, the spectral context is exploited in a broadband manner. This is

not the case with subband-based approaches. Specifically, when using the

delta features in the subband GMM-based system to exploit context, more

than seven subbands did not increase the measured speech intelligibility any

further. The subband GMM classifier was therefore limited in the capability

to exploit the correlation across frequency of the feature space. On the other

hand, the DNN was capable of exploiting spectral context more effectively

than the corresponding subband GMM classifier. Presumably, because DNNs

can handle higher-dimensional training data where an arbitrary number of

input feature vectors can be mapped to an arbitrary number of outputs. These

findings imply that the inherent ability of the DNN architecture to exploit
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spectral context is effective, which makes an DNN desirable from a system

design perspective. While findings in the current thesis emphasize that spectral

context is important to exploit in computational speech segregation systems,

it is unclear how much temporal context is required to increase the speech

intelligibility outcome in listeners. Specifically, Chapter 3 demonstrated that

the applied time frame concatenation had no effect on measured speech

intelligibility. This result was rather surprising, but should be seen in light of

two points. First, a small amount of training data was fed to the DNN-based

system which can explain why the predictive power of the DNN was not

unfolded. Secondly, “only” five past feature frames were appended to the

current frame, resulting in an exploited temporal context of 40ms. In other

studies with feed-forward network architectures (Chen et al., 2016a; Healy et al.,

2017), a larger number of past time frames and also future time frames have

been concatenated, resulting in a much larger amount of temporal context of

up to 200 ms. Recently, Chen and Wang (2017) has employed a recurrent neural

network with long short term memory (LSTM), instead of the feed-forward

network. They demonstrated that this recurrent network performs better than

the feed-forward network in terms of intelligibility predictions. This network

did not use future time frames, and it was argued, based on the predictions, that

the ability of LSTM to capture long-term speech context is important (Chen and

Wang, 2017). The impact of these time frame concatenation techniques has

not been investigated on measured speech intelligibility, which is important

to draw any decisive conclusions. A final implication of the findings involves

the learning objective in computational speech segregation. Findings in

Chapter 3 demonstrated a substantial perceptual advantage with the IRM

as a learning objective, instead of the IBM, since estimated IRM values were

able to convey more speech information (i.e., the mask values were more

tolerant to misses). Although the binary classification makes the IBM a simpler

benchmark to estimate, the IRM should be preferred as the learning objective

when speech segregation systems are designed for noise-reduction applications.

Finally, Chapter 4 considered an application of the estimated ideal time-

frequency mask in speech-coding strategies in real-time CI processing. Specif-

ically, the study investigated the impact of state-of-the-art noise power spec-

tral density (PSD) estimation in a range of different speech-coding strategies

to improve the speech intelligibility outcome, as compared to the advanced
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combination encoder (ACE). Either noise-dominant channels were attenuated

prior to the ACE with noise-reduction strategies or, alternatively, channels were

selected based on SNRs, similar to how the IBM is constructed. The results in

Chapter 4 indicate that a noise PSD estimation with improved noise-tracking

capabilities, and therefore a higher accuracy, does not necessarily translate to

increased speech intelligibility when the noise PSD estimation is utilized for

noise reduction nor for when it is utilized for channel selection. A segmentation

analysis indicated that a much higher accuracy in both the speech gaps and in

the speech transitions are required. In addition, the impact of altering the SNR-

based channel-selection criterion from a fixed to adaptively-changing across

time was investigated. Specially, when the local criterion (LC) was applied to

the estimated SNRs, an increase in measured speech intelligibility outcome was

achieved. This adaptively-changing channel selection is therefore important in

the SNR-based channel selection for reducing the noise-induced stimulation in

the CI recipients. Overall, the findings imply that novel speech-coding strategies

should employ estimation algorithms which have a much higher accuracy in

both the speech gaps and in the speech transitions, and where the number of

stimulated channels is changed adaptively over time to reduce the exposure to

noise-induced stimulation in CI recipients.

5.2 Improving the generalization ability to unseen con-

ditions

In speech segregation systems, it is important to consider the ability to

generalize to acoustic conditions which are not seen during training (i.e.,

”mismatches”). These mismatches can include noise segments, SNRs, noise

types, speakers and the signal shaping (e.g., from mobile phones or due to

room reverberation).

In Chapters 2 and 3, different segments of a fluctuating six-talker noise

were considered between system training and testing. Specifically in Chapter

2, the measured speech intelligibility scores decreased quite substantially

when unseen noise segments were considered during testing (Fig. 2.5 in

Sec. 2.4.2), as compared to conditions in which the same short noise segments

were used during training and testing (Fig. 2.3a in Sec. 2.4.1). By appending

more subbands to the feature vector, the feature space increased in size
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and a larger amount of spectral information was revealed. Appending more

subbands led to an improved ability of the subband GMM-based system to

generalize to unseen noise segments. However, the subband GMM classifier

was limited in the capability to exploit the increased feature space for more

than seven subbands. Overall, the subband GMM-based system therefore

demonstrated a rather limited generalization ability to the considered

mismatch. A moderate-complexity classifier of 16 GMMs was used when

addressing the generalization ability of the system. Appendix A considered

the system performance with 16 GMMs across the duration of the noise

recording, from which the noise segments were randomly selected during

training and testing. A stable system performance was found, when noise

segments from a 50 s noise recording (and beyond) were randomly selected.

On the other hand, a stable system performance was not obtained in May and

Dau (2014b) when using a higher number of GMMs in the speech segregation

system (e.g., 64, 128 or 256). Therefore, the subband GMM-based system

would most likely have worsened the generalization ability if a high-complexity

subband GMM classifier had been selected instead. GMMs are generative and

probabilistic models in which a set of Gaussian components are used to model

the feature space. A shortcoming of these models, as demonstrated here, is the

limited capacity which can affect the generalization ability to unseen conditions.

Large-scale training of speech segregation systems is an important compo-

nent in computational speech segregation to handle mismatched conditions,

but was not employed in the speech segregation systems presented in this thesis.

In Chen et al. (2016a), a speech segregation system demonstrated an ability

to generalize to a range of novel noise types and SNRs during system testing.

In Kolbæk et al. (2017), mismatches in SNR, noise type and speaker identity were

each handled successfully by three DNN-based systems. These three systems

were SNR-dependent, noise-type-dependent and speaker-identity-dependent,

respectively. What these recent approaches have in common is a feed-forward

network architecture more complex than the feed-forward network architecture,

presented in Chapter 3. The network architecture typically contains multiple

hidden layers with hundreds of nodes in each layers. Better non-linear activa-

tion functions, such as rectified linear units, have been included, and dropout

and maxout have been used during the network training (Chen et al., 2016a;

Healy et al., 2017; Kolbæk et al., 2017). Moreover, the DNNs have been trained
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with a large amount of data which consist of multiple conditions of different

noise segments, SNRs, noise types or speakers. The capability of the DNNs to

scale in size, and therefore handle a large training data set, is most likely key to

the improved generalization ability. In Chapter 3, the considered DNN-based

system was able to generalize to unseen noise segments of the fluctuating six-

talker noise; however, the speech intelligibility improvement over noisy was

small. It is worth noting that the study goal in Chapter 3 was to study the roles

of other components than the large-scale training. Retraining the DNN-based

system with a larger data set would most likely have improved the generalization

ability to the specific mismatch of noise segments. Furthermore, by choosing a

more complex network architecture and expanding the training session with

multiple conditions, the speech segregation system may have been able to

handle other mismatches, than considered in this thesis.

5.3 One cost function that correlates with measured

speech intelligibility

Objective measures have previously been used to optimize the performance of

computational speech segregation systems during the development stage. In

this thesis, several discrepancies were observed between predictions of the ob-

jective measures and measured speech intelligibility. In Chapter 2, the measured

speech intelligibility scores were compared to the extended short-term objective

intelligibility (ESTOI) index and the H - FA rate1. A finding was that the ESTOI

and the H - FA could not alone account for all of the measured observations. In

Appendix B, the ESTOI predicted speech intelligibility improvements when no

improvements were actually measured in the study presented in Chapter 3. In

Chapter 4, a decrease in the logarithmic estimation error did not translate to an

increase in measured speech intelligibility within existing speech-coding strate-

gies. Another objective measure, namely the electrodogram error rate (Mauger

et al., 2012a; Hersbach, 2014) was computed based on electrodograms generated

from a number of speech-coding strategies in Appendix C.2. Electrodogram

error rates were not able to correctly predict the ranking of the speech coding

strategies in the listener study, presented in Chapter 4. Thus, the findings across

1The H - FA rate was calculated as the difference between the percentage of correctly classified
speech-dominated time-frequency (T-F) units (hit rate, H) and the percentage of incorrectly
classified noise-dominated T-F units (false alarm rate, FA) (Kim et al., 2009).
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all thesis chapters emphasize the need for a single objective measure to correctly

predict the speech intelligibility in listeners. Such an objective measure is highly

relevant as a cost function to assess and optimize the design of computational

speech segregation systems with noise-reduction applications.

5.4 Perspectives for future studies

Significant progress has been made over the past years in computational

speech segregation in the context of single-channel noise reduction, and

speech intelligibility improvements, relative to the noisy speech, have been

demonstrated in normal-hearing and hearing-impaired listeners. Today’s

speech segregation systems utilize advanced artificial intelligence, and they

are able to generalize to unseen noise segments, SNRs, noise types as well

as speakers. Even in a “two-talker” condition, i.e. a speech signal in the

presence of a single competing-talker, speech intelligibility improvements have

been demonstrated (Healy et al., 2017). Until now, the speech segregation

systems have been trained to handle specific mismatches (i.e., being noise-

independent, SNR-independent etc.). However, a system able to improving

speech intelligibility in listeners, trained independent of SNRs, noise types or

speakers, is still considered the “The Holy Grail”. Kolbæk et al. (2017) trained a

system on a number of SNRs, noise types as well as speakers, and evaluated

the system in a condition which considered an unseen noise type and speaker

simultaneously; however, this system failed to improve speech intelligibility.

One direction for future work is therefore to investigate if such an “independent

system” can be constructed. The network architecture within computational

speech segregation has been improved over the last couple of years, and

will most likely continue to evolve in the next couple of years. Instead of a

feed-forward network, a recurrent neural network with LSTM can be employed,

since these networks are powerful for time series predictions (Chen and

Wang, 2017). In addition, and as highlighted in Sec. 5.2, large-scale training

is important. The data set for training should include as many variations as

possible which can be obtained by using multiple conditions of SNRs, noise

types and speakers. In the feature extraction stage, different features can

be considered which capture as many relevant characteristics of the speech

and noise as possible. In the present thesis, only the amplitude modulation

spectrogram (AMS) features (Kollmeier and Koch, 1994; Tchorz and Kollmeier,
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2003) have been extracted which capture the modulations of the speech and

noise. Several other auditory-inspired features can be appended as well, e.g.

pitch-based features or Gammatone log energy-based features. A systematic

feature study can help assessing the potential of the features in the framework

of large-scale training. Measuring speech intelligibility should be part of the

evaluation.

Another direction for future work can consider practical applications in

hearing aids or CIs. The state-of-the-art noise PSD estimator of Gerkmann

and Hendriks (2012) is generic and real-time applicable with a low latency,

which means it is feasible on a digital signal processing (DSP) chip for hearing

aids or CIs. However, the SNR estimation accuracy was insufficient to improve

the speech intelligibility outcome as observed in Chapter 4. Currently, it is

unclear if a noise PSD estimator can be constructed which tracks the true noise

PSD more accurately in particular in the speech gaps and speech transitions.

DSP technology evolves and neural network processors with low-power

consumption are already available for embedded system applications. In the

future, it may be possible to process speech segregation systems with a low

number of network weights on DSPs in hearing aids or CIs1. Low-latency

values are required in hearing aids and CIs which will constraint the allowed

processing time of certain blocks (e.g., the feature extraction). If a speech

segregation system with low complexity can fulfil some of the fundamental

generalization requirements, it may be feasible in such a practical application.

The system shall be robust to temporal changes in the noise (i.e., be able to

handle mismatches of noise segments and SNRs in a certain range). In addition,

the system shall generalize to a range of unseen noise types, since the user

may encounter a range of different noise types on a daily basis. In Goehring

et al. (2017), a low-complexity and low-latency DNN-based system2 was

trained to estimate a set of gains for noise reduction as pre-processing in

ACE. Significant speech intelligibility improvements were obtained with this

approach in CI recipients, relative to ACE. The system is able to generalize to

unseen noise segments, SNRs and to a novel speaker in two out of three of

1The system training is usually time consuming but can be done offline on graphical
processing units, and therefore latency and computational cost are not crucial aspects for network
training.

2With an almost similar network architecture to the one considered in Chapter 3.
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the considered noise types. Therefore, it satisfies some of the fundamental

generalization requirements. However, the system does not generalize to all

unseen noise types yet. Such a system is highly relevant to estimate SNRs in the

channel-selection strategies for speech coding described in Chapter 4. While

speech segregation systems with low complexity may be embedded in hearing

aids or CIs, an “independent” system will most likely be computationally too

complex and therefore require too many network weights. Such a system may

be embedded on a smartphone connected to the hearing aid or CI1.

Finally, several discrepancies have been demonstrated with the objective

measures considered in this thesis. Therefore, yet another direction for future

work is the development of a speech intelligibility prediction model capable

of predicting the different conditions presented in this thesis2. Such a speech

intelligibility prediction model would be highly relevant in numerous research

labs that focus on the research and the development of computational speech

segregation systems.

1However, audio streaming between the smartphone and the device may be a challenge if
the system requires high-latency processing

2A substantial amount of measured speech intelligibility data from listeners studies has
become available for model testing.
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A
Comparing the influence of

spectro-temporal integration in
computational speech segregationa

Abstract

The goal of computational speech segregation systems is to automatically

segregate a target speaker from interfering maskers. Typically, these systems

include a feature extraction stage in the front-end and a classification stage

in the back-end. A spectro-temporal integration strategy can be applied in

either the front-end, using the so-called delta features, or in the back-end, using

a second classifier that exploits the posterior probability of speech from the

first classifier across a spectro-temporal window. This study systematically

analyzes the influence of such stages on segregation performance, the error

distributions and intelligibility predictions. Results indicated that it could be

problematic to exploit context in the back-end, even though such a spectro-

temporal integration stage improves the segregation performance. Also, the

results emphasized the potential need of a single metric that comprehensively

predicts computational segregation performance and correlates well with in-

telligibility. The outcome of this study could help to identify the most effective

spectro-temporal integration strategy for computational segregation systems.

A.1 Introduction

Computational speech segregation systems attempt to automatically segregate

a target signal from interfering noise. One frequently-used approach is to

a This chapter is based on: Bentsen, T., T. May, A. A. Kressner, and T. Dau (2016). Comparing

the influence of spectro-temporal integration in computational speech segregation. In: Proc.

Interspeech. San Francisco, USA, pp. 170–174. 17th Annual Conference of the International

Speech Communication Association, San Francisco, USA.
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construct an ideal binary mask (IBM) by retaining only those time-frequency

(T-F) units that are target-dominated (Wang, 2005). Many studies have used the

IBM to segregate a target speech signal from a noisy mixture and demonstrated

large intelligibility improvements (Brungart et al., 2006; Wang et al., 2008; Kjems

et al., 2009). However, a priori knowledge about the target and interferer is

rarely available in realistic conditions and therefore, the goal of computational

speech segregation systems is to obtain an estimated binary mask (EBM) given

the noisy speech.

Despite high levels of interfering noise, speech-dominated T-F units tend to

cluster in spectro-temporal regions, forming so-called glimpses, and the size

of these glimpses has been shown to correlate well with speech intelligibility

scores from normal-hearing listeners (Cooke, 2006). Consequently, several

studies have tried to explore spectro-temporal context in computational

segregation systems. One strategy is to exploit context in the front-end

by using so-called delta features (Kim et al., 2009), which capture feature

variations across time and frequency at the expense of a higher dimensional

feature vector. Alternatively, spectro-temporal context can be exploited in the

classification back-end by employing a two-layer segregation stage (Healy et al.,

2013; May and Dau, 2014a). Specifically, the posterior probability of speech

presence obtained from a first classifier is learned by a second classifier across

a spectro-temporal window, where the amount of integration can be controlled

by the size of the window function (May and Dau, 2014a).

To date, the effectiveness of computational segregation systems and

the benefit of spectro-temporal integration strategies have been primarily

evaluated using a technical metric, namely the H - FA, which quantifies

segregation performance by calculating the difference between the percentage

of correctly classified speech-dominated T-F units (hit rate, H) and the

percentage of incorrectly classified noise-dominated T-F units (false alarm

rate, FA) (Kim et al., 2009; Han and Wang, 2012; Healy et al., 2013; May

and Dau, 2013, 2014a; May and Dau, 2014b). However, there is evidence

suggesting that speech intelligibility scores are highly dependent on the

distribution of mask errors rather than the overall H - FA rate (Kressner and

Rozell, 2015), and this questions the applicability of the H - FA as the sole metric

to optimize or evaluate computational segregation systems. The clustering
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of the speech-dominated T-F units in glimpses suggests that a certain type

of structure is inherently embedded in the IBM. However, depending on the

choice of the spectro-temporal integration strategy in either the front-end or

the back-end, it might have different consequences on the error distribution in

the EBM.

The goal of the present study is, therefore, to systematically analyze the

influence of spectro-temporal integration strategies in the front-end and the

back-end of a speech segregation system using not only the H - FA, but also

by considering the distribution of errors and the impact on predicted speech

intelligibility using the short-term objective intelligibility (STOI) metric (Taal et

al., 2011). In previous studies (Kim et al., 2009; Healy et al., 2013), the same short

noise recording has been used for training and testing. In such experimental

setups, a classification-based segregation system can then potentially capture all

characteristics of the signals (May and Dau, 2014b). A second goal is, therefore,

to analyze the potential influence of the noise duration on each of the spectro-

temporal integration strategies.

A.2 The speech segregation system

The segregation system consisted of a feature extraction front-end and a classi-

fication back-end (May et al., 2015), as shown in Fig. A.1. The target signal was

reconstructed by applying the EBM to the subband signals of the noisy speech,

as illustrated by the dashed line. Each processing stage is described in detail in

the following.

Gammatone 
filterbank

AMS 
features

Delta 
features

Subband 
GMM

EBM

Subband 
SVM

Figure A.1: Block diagram of the segregation system that shows the main blocks of the
feature extraction front-end and the classification back-end. The dashed line illustrates the
reconstruction of the target by applying the EBM to the subband signals of the noisy speech.
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A.2.1 Feature extraction front-end

The distinct characteristics of speech and noise components were captured

by amplitude modulation spectrogram (AMS) features (Tchorz and Kollmeier,

2003; Kim et al., 2009; May and Dau, 2014a; May et al., 2015). To derive

these, the noisy speech was sampled at a rate of 16kHz and decomposed

into 31 frequency channels by a Gammatone filterbank, whose center

frequencies were equally spaced on the equivalent rectangular bandwidth

(ERB) scale between 80 and 7642Hz. The envelope in each subband was

extracted by half-wave rectification and low-pass filtering with a cutoff

frequency of 1kHz. Then, each envelope was normalized by its median

that was computed over the entire signal, which was shown to improve the

generalization to unseen acoustic conditions (e.g., signal-to-noise ratios (SNRs)

and room reverberation) (May and Dau, 2014a; May and Gerkmann, 2014).

The normalized envelopes were then processed by a modulation filterbank

that consisted of one first-order low-pass and five band-pass filters with

logarithmically spaced center frequencies and a constant Q-factor of 1. The

root mean square (RMS) value of each modulation filter was then calculated

across time frames corresponding to 32ms with 75% overlap, resulting in a 6-

dimensional feature vector for each T-F unit A
�

t , f
�

= {M1

�

t , f
�

, . . . , M6

�

t , f
�

}T .

Context was explored in the front-end by appending delta features across

time (∆T ) and frequency (∆F ) (Kim et al., 2009; Han and Wang, 2012; May and

Dau, 2013). The final feature vector for each individual T-F unit at time frame t

and frequency channel f consisted of X
�

t , f
�

=
�

A
�

t , f
�

,∆T A
�

t , f
�

,∆F A
�

t , f
��
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where:
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A (t , 2)−A (t , 1) , if f = 1

A
�

t , f
�

−A
�

t , f −1
�

, otherwise.
(A.2)

The size of the feature vector including delta features then increased from 6

dimensions to 18 dimensions.
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A.2.2 Classification back-end

The classification back-end consisted of a two-layer segregation stage (May

and Dau, 2014a; May et al., 2015). In the first layer, a Gaussian mixture model

(GMM) classifier was trained to represent the speech and noise-dominated

AMS feature distributions (λ1, f and λ0, f ) for each subband f . To separate the

feature vector into speech- and noise-dominated T-F units, a local criterion (LC)

was applied to the a priori SNR. The GMM classifier output was given as the

posterior probability of speech and noise P
�

λ1, f |X
�

t , f
��

and P
�

λ0, f |X
�

t , f
��

,

respectively. The second layer consisted of a linear support vector machine

(SVM) classifier (Chang and Lin, 2011), which considered the posterior proba-

bility of speech P
�

λ1, f |X
�

t , f
��

across a spectro-temporal integration window

W for each subband (May and Dau, 2014a):

X̄
�

t , f
�

:=
�

P
�

λ1,u |X (u , v )
�

: (u , v ) ∈W
�

t , f
�	

. (A.3)

According to (May and Dau, 2014a), a causal and plus-shaped window function

W was used here, whereas the window size with respect to time and frequency

was controlled by∆t and∆ f , respectively.

A.3 Evaluation

A.3.1 Stimuli

The speech material was taken from the Danish Conversational Language

Understanding Evaluation (CLUE) database (Nielsen and Dau, 2009), which

consists of 70 sentences for training and 180 sentences for testing. Noisy speech

mixtures with an average duration of 2s were created by mixing individual

sentences with a stationary (ICRA1) and a fluctuating 6-talker (ICRA7) noise

masker (Dreschler et al., 2001). Both maskers had the same Long Term Average

Spectrum (LTAS) as the CLUE corpus. A randomly-selected noise segment was

used for each sentence and the noise segment started 250 ms before the speech

onset and ended 250 ms after the speech offset.

A.3.2 Model training

The segregation system was trained for each of the two noise maskers. To

investigate the influence of the noise duration, different models were trained
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with noise files that were limited to 5, 10, 50s or the total duration of the noise

recording (60 s for ICRA1 and 600 s for ICRA7). The first layer of the classification

back-end consisted of a GMM classifier with 16 Gaussian components and

diagonal covariance matrices. The GMM classifier was trained with the 70

training sentences that were mixed three times with a randomly-selected noise

segment at −5, 0 and 5 dB SNR. The subsequent SVM classifier was trained with

only 10 sentences mixed at −5,0 and 5dB SNR. Afterwards, a re-thresholding

procedure was applied (Han and Wang, 2012; May and Dau, 2014a) using a

validation set of 10 sentences. Both classifiers employed a LC of −5 dB.

A.3.3 Model evaluation

The segregation system was evaluated with 180 CLUE sentences that were not

used during training. Each sentence was mixed with ICRA1 and ICRA7 noises

at −5 and 0dB SNR. To study the influence of the noise duration, the trained

models were evaluated with the same noise recordings used during training.

Similar to the training, the noise recordings were limited in duration to 5, 10, 50 s

or the total duration of the noise recording. In addition, a different noise

recording of the same noise type was used to test the ability of the segregation

system to generalize to unseen noise fluctuations of the same kind.

Three different metrics were used for evaluation, namely the H - FA, the

clustering parameter γ and the STOI metric. The clustering parameter γwas

estimated by the graphical model described in (Kressner and Rozell, 2015).

Given a binary mask, the graphical model predicts the amount of clustering γ

as a single number, where γ= 1.0 reflects a mask with uniformly and randomly

connected T-F units. Larger values (e.g., γ = 2.0) reflect binary masks with

T-F units that are twice as likely to be in the same state as its neighboring

units (Kressner and Rozell, 2015). The STOI measure is based on a short-term

correlation analysis between the clean and the degraded speech (Taal et al., 2011)

mapped to a value between 0 and 1. In the current study, STOI improvements

(∆ STOI) were reported as the relative difference between the predicted STOI

values for the processed and the unprocessed noisy speech signal.
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A.3.4 Experimental setup

To systemically analyze the influence of spectro-temporal integration in the

front-end and the back-end, the following four segregation models were tested,

as listed in Tab. A.1. “No integration” denotes the model with no delta features

in the front-end and no spectro-temporal integration in the back-end (∆t =

1,∆ f = 1). “Front-end” includes the delta features. “Back-end” does not utilize

delta features, but applies spectro-temporal integration in the back-end (∆t =

3,∆ f = 9). “Front- & back-end” exploits both delta features in the front-end

and spectro-temporal integration in the back-end (∆t = 3,∆ f = 9).

A.4 Results

The performance of the four segregation models and the IBM is presented in

Fig. A.2 as a function of the noise duration for the two noise maskers ICRA1 (left

panels) and ICRA7 (right panels). The three different panels on each side show

the H - FA rate (top panels), the clustering parameter γ (middle panels) and the

STOI metric (lower panels) averaged across 180 sentences and two SNRs (−5

and 0 dB).

In general, the segregation models produced higher H - FA rates in the

presence of the stationary ICRA1 noise than for the ICRA7 noise, presumably

because it was more difficult to separate the speech modulations from the

non-stationary 6-talker babble noise. For both noise maskers, the lowest H - FA

rates were observed for the “No integration” model and the highest H - FA

rates for “Front- & back-end”. Also, larger H - FA rates were obtained for the

“Back-end” than the “Front-end” model. Each spectro-temporal integration

strategy has previously been shown to improve H - FA rates separately (Kim

Table A.1: Configurations of the speech segregation system.

Front-end Back-end
Delta Feature W sizeModel

features dimension ∆t ∆ f
No integration no 6 1 1
Front-end yes 18 1 1
Back-end no 6 3 9
Front- & back-end yes 18 3 9
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Figure A.2: H-FA, γ and STOI improvements for the four models and the IBM averaged across
180 sentences and SNRs (−5 and 0 dB) for ICRA1 (left panels) and ICRA7 (right panels). Average
STOI values of the unprocessed noisy speech were 0.66 (ICRA1) and 0.63 (ICRA7).

et al., 2009; May and Dau, 2013, 2014a; May and Dau, 2014b). These previous

results can be confirmed here for the ICRA7 noise by comparing both the

“Back-end” and “Front-end” models with the “No integration” model.

The middle panels reveal that the IBM itself contains a certain amount of

structure, presumably due to the compact representation of speech-dominated

T-F units forming glimpses of the target signal. Also, reported values of γ from

the model “No integration” are consistent with previous results (Kressner and

Rozell, 2015; Kressner and Rozell, 2016). Most importantly, the γ values from

models that exploited spectro-temporal context through the SVM classifier in

the back-end (models “Back-end” and “Front- & back-end”) are consistently

larger than those from models where the SVM classifier did not incorporate

contextual information across adjacent T-F units (models “No integration” and

“Front-end”). On the contrary, the delta features alone do not seem to increase

the amount of clustering in the mask.

In the bottom panels, the STOI improvement of the IBM indicates the

largest possible intelligibility improvement that the segregation models can
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achieve. The model “Front-end” produced larger STOI improvements than

“Back-end” for the ICRA7 noise. Overall, the largest improvements were

predicted for the model “Front- & back-end”. In general, STOI predicted larger

intelligibility improvements for ICRA7 than ICRA1.

Furthermore, Fig. A.2 demonstrates that the segregation system can

capture all relevant signal characteristics when the same noise recording was

used for training and testing, resulting in high H - FA rates and large STOI

improvements for short noise durations. This trend was more pronounced

for the non-stationary ICRA7 noise and decreased with longer noise duration.

However, a moderate classifier complexity was chosen here (16 Gaussian

components with diagonal covariance matrices), which was shown to reduce

the risk of over-fitting the segregation system (May and Dau, 2014b). As a

result, the generalization ability was improved, indicated by a stable system

performance in terms of H - FA rates and STOI improvements for noise

durations of 50s and beyond. In contrast to the H - FA rates and STOI, the γ

values stayed almost constant across the noise duration range.

Figure A.3 illustrates binary masks for one particular CLUE sentence mixed

with ICRA7 noise at−5 dB SNR. Panel a) shows the IBM and panels b)-e) present

the EBMs for the four tested models. The misclassified T-F units (misses and

false alarms) are shown on top of the binary masks for a visualization of the

error distributions. In addition, the evaluation metrics are shown in parenthesis.

The effect of exploiting contextual knowledge in the back-end can be observed

here. The panels d)-e) show masks with a larger amount of T-F clustering than

the masks in panels b)-c). Obviously, the erroneous T-F units also become more

structured.

A.5 Discussion and conclusion

Using the SVM classifier to exploit contextual knowledge in the back-end

increased the H - FA rates but, at the same time, the amount of clustering (γ)

in the masks was increased. In addition, the panels b)-e) in Fig. A.3 revealed

that the increased amount of clustering also led to an increased clustering of

the two types of mask errors (miss and false alarm). Previously, it has been

argued that clustering of the two types of errors reduces the intelligibility
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Figure A.3: Binary masks for a CLUE sentence mixed with ICRA7 noise at −5dB SNR. Misses
(target-dominated T-F units erroneously labeled as masker-dominated) and false alarms (masker-
dominated T-F units erroneously labeled as target-dominated) are shown on top of the masks.

scores in comparison to the randomly distributed errors (Kressner and Rozell,

2015). This is supported by the predictions of the intelligibility scores with

STOI, where larger improvements using the delta features than exploiting

contextual knowledge in the back-end alone are predicted for the ICRA7
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noise. This also means that, for an increased γ, a higher H - FA rate is required

to obtain the same intelligibility score. It therefore seems problematic to

exploit context in the back-end using a SVM classifier, even though such a

spectro-temporal integration stage improves the H - FA rate (Healy et al., 2013;

May and Dau, 2014a). The findings also suggest that using delta features might

be a better spectro-temporal integration strategy in computational segregation

systems, despite the fact that the H - FA rate does not increase as much as

when exploiting contextual knowledge through a SVM classifier. However, it is

necessary to confirm these findings with actual listening experiments.

In this study, both matched and unseen noise segments of the same noise

type were used to evaluate classification-based segregation systems. As the

ranking of the four models did not change with increasing noise durations, the

findings of the influence of the spectro-temporal integration stage apply to both

restricted and more realistic experimental setups with unseen noise segments

of the same noise type. Future research will analyze the generalization ability

of the segregation system to unseen noise types and will consider large-scale

training (Chen et al., 2016a).

A recent study highlighted potential limitations of STOI in predicting the

intelligibility of binary-masked speech (Kressner et al., 2016). Two observations

from this study support these findings. Firstly, a higher H - FA rate does not

necessarily lead to a larger STOI improvement as seen by comparing the “Front-

end” and “Back-end” models. Secondly, if the SVM-based integration strategy in

the back-end indeed has a detrimental effect on the intelligibility scores, it would

imply that STOI over-predicts the model “Front- & back-end”. Thus, STOI alone

would not account for all of the model differences described in this study. It

emphasizes the potential need of a single metric that comprehensively predicts

computational segregation performance and correlates well with intelligibility.
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B
Comparing predicted and measured
speech intelligibility in Bentsen et al.

(2018a)a

The short-term objective intelligibility (STOI) index (Taal et al., 2011) and the

extended short-term objective intelligibility (ESTOI) index (Jensen and Taal,

2016) are based on speech intelligibility prediction models commonly used

to optimize the performance of computational speech segregation systems

during the development stage (Wang et al., 2014; Zhang and Wang, 2016). The

ESTOI is particularly used for modulated noise maskers. In this appendix,

predictions from the ESTOI are compared to measured word recognition scores

(WRSs) in Chapter 3. Table B.1 shows the ESTOI increase relative to noisy

speech (∆ESTOI) and the WRS increase, also relative to noisy speech (∆WRS).

The six system configurations (described in Sec. 3.2.4) were evaluated using

ICRA7 at −5dB signal-to-noise ratio (SNR) and ESTOI values were averaged

across all 180 test sentences.

Table B.1: ∆ESTOI and ∆WRS relative to noisy speech with the six system configurations,
described in Sec. 3.2.4. The system configurations were evaluated using ICRA7 at −5 dB SNR and
ESTOI values were averaged across all 180 test sentences. WRS improvements are derived from
the Paired Student’s t-tests.

System configuration ∆ESTOI ∆WRS (%)
GMM (IBM) 0.04 −31.1
GMM (IBM, 7 subbands) 0.08 −12.2
DNN (IBM) 0.11 −5.7
DNN (IBM, 40 ms) 0.11 −10.7
DNN (IRM) 0.14 8.2
DNN (IRM, 40 ms) 0.15 6.8

The predicted∆ESTOI values were larger for the deep neural network (DNN)-

aThis appendix contains supplementary material for Chapter 3.
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based system than the subband Gaussian mixture model (GMM)-based system.

This is consistent with the∆WRS values of the last column in Table B.1. There-

fore, ESTOI correctly predicted the increase in measured speech intelligibility

scores going from the subband GMM-based system to the DNN-based system.

However, all predicted∆ESTOI values were positive in Table B.1 which indicated

speech intelligibility improvements relative to noisy speech. This was not consis-

tent with the∆WRS values in Table B.1 where only improvements were observed

for the “DNN (IRM)” and the “DNN (IRM, 40 ms)” system configurations. This

particular finding highlights the discrepancy between predicted values of ESTOI

and measured speech intelligibility scores.



C
Supplementary material for Chapter 4 a

C.1 A Wiener gain function optimized for CI recipients

In the “NR-SPP&ACE” strategy, the estimated signal-to-noise ratios (SNRs) are

used to compute a set of gain values from a Wiener gain function, which has

been found from a research study to be optimized for cochlear-implant (CI)

recipients (Mauger et al., 2012b):

G =

�

cξk (`)
cξk (`)+α

�β

(C.1)

Here, α and β denotes the gain threshold and gain slope, respectively. For the

“NR-SPP&ACE” strategy, a gain threshold of 3 dB and a gain slope of 0.8 dB were

used.

C.2 Strategy performance predictions using partial

errors

Prior to testing with CI recipients, an error analysis was conducted with partial

error rates (Hersbach, 2014). An ideal electrodogram was constructed by

processing speech in quiet with “ACE” at 65dB sound pressure level (SPL).

Partial error components were computed by taking into account the stimulus

intensity level in the electrodogram. Specifically, the difference in intensity

level between the estimated and the ideal electrodogram was computed. A

positive difference in intensity was considered a partial type I error component

and a negative difference in intensity a partial type II error component. If

the difference exceeded 40dB in dynamic range, the error component was

aThis appendix contains supplementary material for Chapter 4. The chapter is based on

research in collaboration with Cochlear Limited (Dr Stefan Mauger) during an external research

stay at Cochlear Melbourne, Australia.
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a) Session 1 (speech-weighted noise) b) Session 2 (20-talker)

Figure C.1: Partial type I versus type II error rates. In Fig. C.1a, error rates were shown for strategies
in session 1 using speech-weighted noise at 0 dB SNR. The “CS-IBM” strategy was simulated for
an LC between −4dB and 6dB. In Fig. C.1b, error rates were shown for strategies in session 2
using 20-talker noise in 5 and 0 dB SNR, respectively. Partial error components were computed
as the difference in intensity level between the estimated and the ideal electrodogram (Hersbach,
2014) over electrodograms from 9 concatenated sentences. A positive difference in intensity was
considered a partial type I error component and a negative difference in intensity a partial type
II error component for a given CI channel and stimulation cycle. If the difference exceeded 40 dB
in dynamic range, the error component was considered a full type I or type II error component.

considered a full type I or type II error component. A full type I error component

(a false alarm) was defined as stimulation in a specific CI channel in the

estimated electrodogram and no stimulation in the ideal electrodogram. A

full type II error component (a miss) was defined as stimulation in a specific

CI channel in the ideal electrodogram and no stimulation in the estimated

electrodogram. All the type I and type II error components were then added

across the electrodogram and converted into partial error rates (Hersbach,

2014).

Figure C.1 shows the partial type I versus partial type II error rates with the

strategies in session 1 (Fig. C.1a) and session 2 (Fig. C.1b). In Fig C.1a, the local

criterion (LC) was changed between −4 dB and 6 dB in the “CS-IBM” strategy to
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selecting an appropriate LC for the listener study. A higher LC decreased the

partial type I error rate; however, at the expense of an increased partial type II

error rate because fewer channels were stimulated per cycle. An LC of 0 dB was

selected. This LC was a trade-off between the two error rates and has previously

been used (Hu and Loizou, 2008). The “CS-IBM” strategy with an LC of 0dB

had a much lower partial type I error rate and approximately the same partial

type II error rate than with the “NR-MS&ACE” strategy. This indicated that the

“CS-IBM” strategy missed the same amount of speech per stimulation cycle as

the “NR-MS&ACE” strategy; however, with fewer false alarms. Furthermore,

lower partial type I and II error rates were found with the “CS-SNR” strategy

than with the “ACE” strategy (Fig. C.1a).

In Fig. C.1b, the partial error rates were shown for both 0 dB and for 5 dB SNR

in 20-talker noise. It was observed that the “CS-IBM” increased the number of

misses over both the “ACE” and the “NR-MS&ACE” strategies; however, with less

false alarms. In addition, the “NR-SPP&ACE” and the “NR-MS&ACE” strategies

led to approximately the same partial error rates. Therefore, the partial error

analysis suggested no differences in performance between these two strategies.

C.3 An evaluation of the speech coding strategies in

quiet

Session 2 also tested monosyllabic word recognition in quiet using conso-

nant–vowel nucleus–consonant (CNC) words, to compare with advanced com-

bination encoder (ACE). The purpose was to evaluate any potential degradation

in word perception in quiet with the speech coding strategies. One list of

50 words was presented at 65dB SPL. Results did not show any significant

degradation in speech in quiet when comparing each of the strategies with

“ACE”. Furthermore, the “NR-SPP&ACE” strategy actually led to statistically

higher CNC scores than the “NR-MS&ACE” by 5.20% (p < 0.05), which implied

that this strategy performed better in speech in quiet.





The end.



To be continued. . .



Understanding speech in noise can be challenging for many people, in particular

hearing-aid users and cochlear-implant recipients. To improve the speech un-

derstanding, better noise-reduction strategies are needed in such devices. The

performance of the strategies depends on how well the characteristics of the

speech and the noise are known. Therefore, it is necessary to have automatic

approaches that can separate the speech from the noise as accurate as possible,

which is the overall goal of computational speech segregation. Often, an ideal time-

frequency mask is estimated by auditory-inspired feature extraction combined with

machine-learning techniques. In the mask, the level of speech activity is indicated

in each unit. This thesis investigated three approaches within computational speech

segregation, based on ideal time-frequency mask estimation, and evaluated the

approaches in the framework of noise reduction to improve speech understanding

of normal-hearing listeners and cochlear-implant recipients in noisy environments.

Specifically, the following components were investigated: the spectro-temporal

contextual information in speech, the machine-learning system architecture and

the ideal time-frequency mask as a learning objective in computational speech

segregation. In addition, a practical application of the estimated time-frequency

mask was considered in real-time cochlear-implant processing. Overall, the results

of this thesis have implications for the design of computational speech segregation

approaches with noise-reduction applications. Furthermore, the results may guide

the development of a single cost function, which correlates with speech intelligibility,

to assess and optimize the system performance.
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