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Abstract

Quantitatively assessing the speech intelligibility deficits observed in hearing-
impaired (HI) listeners is a basic component for a better understanding of
these deficits and a crucial component for the development of successful com-
pensation strategies. This dissertation describes two main streams of work
aiming at a better quantitative understanding: (i) Chapter 2 focused on de-
scribing a new analysis framework based on a confusion entropy and a distance
metric to analyze consonant-vowel (CV) perception in HI listeners across dif-
ferent listening conditions; (ii) Chapters 3, 4, and 5 focused on developing a
speech intelligibility (SI) model to account for observed deficits in HI listen-
ers. In Chapter 2, HI listeners were provided with two different amplification
schemes to help them recognize CVs. In the first experiment, a frequency- in-
dependent amplification (flat-gain) was provided. In the second experiment,
a frequency-dependent prescriptive gain was provided. An entropy measure
and an angular distance measure were proposed to assess the highly individual
effects of the frequency-dependent gain on the consonant confusions in the
HI listeners. These measures along with a standard analysis of the recognition
scores suggested that, while the average recognition error score obtained with
the frequency-dependent amplification was lower than that obtained with the
flat-gain, the main confusions made by the listeners on a token basis remained
the same in a majority of the cases. Chapter 3 describes the introduction of
the HI deficits of reduced audibility and decreased frequency selectivity into a
speech-intelligibility model for normal-hearing (NH) listeners. The NH model
is based on a signal-to-noise ratio measure in the envelope domain (SNRe n v ),
as presented in the framework of the speech-based envelope power spectrum
model (sEPSM, Jørgensen and Dau, 2011; Jørgensen et al., 2013). The predic-
tions of the model were compared to data in three different noise maskers.
While the model was able to account for the relative difference of the HI listen-
ers performance in these different noise interferers; it faild to account for the
absolute performance in the noise interferers. Chapter 4 replaced the linear
peripheral model, i.e. the gammatone filterbank, by a nonlinear auditory nerve
model. The SI predictions showed good agreement with human data when the
model operated at an overall presentation level (OAL) of 50 dB sound pressure
level (SPL) and with only medium-spontaneous-rate fibers. However, when
all fiber types and a realistic OAL of 65 dB SPL were considered, the model
overestimated SI in conditions with modulated noise interferers. In Chapter 5,
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the front-end processing of an auditory-nerve (AN) model was combined with
a correlation-based back end inspired by the vowel-coding hypothesis of stable
rate patterns in the inferior colliculus. The proposed model assesses the cor-
relation between the noisy speech and the noise alone, as represented by the
AN model’s bandpass-filtered instantaneous firing rates, assuming an inverse
relationship with SI. The NH listeners’ SI data were accurately predicted for all
noise types, additionally demonstrating reasonable changes across presenta-
tion levels. Furthermore, the SI for 13 HI subjects was predicted by adjusting
the front end parameters specifying the inner and outer hair-cell loss based
on the audiogram of the listeners. The predictions showed good agreement
with the measured data for four out of the thirteen subjects and reasonable
agreement for a total of eight subjects. The work provides a foundation for
quantitatively modeling individual effects of inner and outer hair-cell loss on
speech intelligibility.



Resumé

Kvantitativ evaluering af problemer med taleforståelighed observeret i høre-
hæmmede personer er vigtig for at kunne opnå en bedre forståelse af de under-
liggende mekanismer og en væsentlig komponent for udviklingen af succesfulde
kompenseringsstrategier. Arbejdet der beskrives i denne afhandling kan opdeles
i to overordnede retninger, der har til formål at skabe en øget kvantitativ for-
ståelse: (i) Kapitel 2 fokuserer på beskrivelsen af en ny analysestruktur baseret
på et mål for “forvekslings entropi” og et distancemål, der bruges til analyse af
resultater fra lytteforsøg med konsonant-vokal kombinationer under forskellige
forsøgsbetingelser; (ii) Kapitel 3, 4, og 5 fokuserer på udviklingen af en taleforstå-
elsesmodel, der kan forudsige taleforståelse i hørehæmmede lyttere. I kapitel 2
bliver hørehæmmede lyttere testet med to typer forstærkning, der har til formål
at hjælpe dem med at genkende konsonant-vokal kombinationer. I det første
eksperiment testes en frekvensuafhængig forstærkning. I det andet eksperiment
bruges frekvensafhængig forstærkning (NAL-R). Et entropimål og et vinkelaf-
standsmål til at bedømme den meget individuelle påvirkning af forstærkning på
konsonant-vokal forvekslinger i disse lyttere bliver foreslået. Disse mål antyder,
at de vigtigste forvekslinger mellem konsonant-vokal kombinationer forbliver
de samme, selvom der i gennemsnit forekommer færre fejl ved brug af NAL-R
end ved frekvensuafhængig forstærkning. Kapitel 3 inkorporerer høretab, dvs.
reduceret hørbarhed og en formindsket frekvensselektivitet, i en eksisterende
taleforståelsesmodel for normalt-hørende. Denne model er baseret på signal-
til-støj forhold i “envelope”-domænet (SNRenv ), som blev præsenteret i den
tale-baserede ”envelope power spectrum” model (sEPSM, Jørgensen and Dau,
2011; Jørgensen et al., 2013). Modellens prædiktioner bliver sammelignet med
data fra forsøgsbetingelser med tre forskellige former for støjbaggrund. Selvom
modellen er i stand til at redegøre for forskellene i de hørehæmmedes lytte-
res data mellem de forskellige forsøgsbetingelser kan den ikke forudsige de
korrekte værdier for taleforståelighed. Kapitel 4 omhandler en mere realistisk
model af cochlear processering, der erstatter sEPSM’s lineære processering
med en ikke-lineær model af hørenerven. Taleforståeligheds-forudsigelser er
i overensstemmelse med data ved lavt til medium lydtryksniveau og når kun
medium-spontane- hørenerve fibre tages i betragtning. Dog overvurderes tale-
forståelighed for medium til høje lydtryksniveauer. I kapitel 5, bliver den perifere
processering af den ikke-lineære hørenerve model kombineret med en korrela-
tionsbaseret ”back end”. Den foreslåede model, evaluerer korrelationen mellem
den støjfulde tale og talen alene ved output af hørenerve-processeseringen
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og et efterfølgende modulationsfilter (ved 125 Hz). Der kan redegøres for de
hørehæmmede lytteres taleforståeligheds data for alle støjtyper der er taget i
betragtning og for alle de forskellige lydtryksniveauer. For de hørehæmmede
lyttere, kan taleforståelighedsdata blive redegjort for ved at justere de parametre
i hørenervemodellen, der specificere tabet af indre og ydre hårceller, estimeret i
henhold til de enkelte lytteres hørekurve. Prediktionerne for de hørehæmmede
lyttere er i god overensstemmelse med de målte data for fire ud af 13 lyttere og
er i rimelig overensstemmelse for otte af disse lyttere. Generelt set giver dette
arbejde et grundlag for en bedre kvantitativ forståelse af konsekvenserne af
tab af indre og ydre hårceller hos individuelle lyttere og især de perceptuelle
konsekvenser af sådanne tab i forbindelse med taleforståelighed.
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1
General introduction

Speech communication allows humans to transmit complex information through

acoustic waves. The complexity and effectiveness of this acoustic communica-

tion is one of the main distinguishing factors that sets humans apart from other

species. Impaired hearing negatively affects speech communication and can

thus have a severe impact on a person’s quality of life and the chances of success

in life. Understanding how hearing impairment affects our speech understand-

ing is closely tied to our understanding of the physiology of the hearing system.

A better understanding of the impaired system through effective hearing tests

and models of the auditory system may help develop effective compensation

strategies in hearing devices.

In general terms, the human auditory system is composed of three stages; (i)

the auditory periphery, (ii) the auditory midbrain, and (iii) the auditory cortex.

The auditory periphery can be further subdivided into the outer, middle, and

inner ear. The outer ear captures and filters the acoustic stimuli which makes

the tympanic membrane vibrate. In the middle ear, a chain of small bones

transmits these vibrations to the inner ear. In the inner ear, the vibrations travel

as a wave through a fluid filled duct called cochlea. Its mechanical properties

allow the cochlea to function as a frequency analyzer, as changes in the stiffness

along the basilar membrane in the cochlea cause the resonance frequency of the

basilar membrane to change, making each location along the basilar membrane

most sensitive to a certain frequency. Hair cells along the cochlea pick up these
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2 1. Introduction

membrane resonances and transform them into tonotopically organized neural

discharge patterns. These patterns encode sound information via the timing of

spikes (Pickles, 2008). This elicited encoding is robust against background noise

and highly redundant. Through the auditory nerve, a neural message is con-

veyed to the cochlear nucleus located in the brainstem (Young and Oertel, 2003).

The diversity of cell types and neural circuitry located in the cochlear nucleus

in the auditory brainstem produces different spectro-temporal representations

and enhances different aspects of sound information. The tonotopically orga-

nized auditory cortex assembles the information from all the auditory features

of the sound into auditory objects that have perceptual relevance to the lis-

tener (Pickles, 2008). Acute or chronic degeneration of the auditory system,

particularly in the cochlea, results in degraded representations along the audi-

tory pathway and in measurable performance gaps of hearing-impaired (HI)

listeners compared to normal-hearing (NH) listeners on behavioral tests.

The auditory system and its functionality can be probed with objective and

behavioral tests. Objective tests measure the internal representation of acoustic

stimuli at different stages of the system. This can either be done intrusively

in animals or non-intrusively in humans. For example, single unit recordings

of the auditory nerve in animals allow to observe how firing patterns of one

auditory nerve fiber change in response to different stimuli (e.g., Young and

Sachs, 1979). Such measures build a valuable basis for understanding how

information is coded at different stages of the system. Comparing the firing

patterns of a healthy system to the patterns of an impaired system further allow

to quantify the loss of information due to the impairment.

While understanding the neural coding of information along the pathway is

crucial for an understanding of the system, the ultimate goal is to understand

how the perceived sounds depend on this code. To measure perceptual con-
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sequences of the elicited representations, behavioral tests are essential. These

tests can either use simplified artificial stimuli or natural complex stimuli. Much

progress has been made with respect to measuring and understanding the per-

ception of simplified artificial stimuli, such as pure tones, modulated tones,

and modulated noises in NH listeners (e.g. Dau et al., 1999). Computational

models based on physiological recordings and psychoacoustic data have been

developed to study such data (e.g., Carney, 1993; Dau et al., 1996).

Speech is a complex and natural stimulus and has been investigated in

much detail. Speech intelligibility is usually measured as the proportion of

correctly identified speech units in controlled listening conditions. Recognition

performance depends on the listener, the speech presented and the listening

condition. In most studies, interfering background noise is used to test listeners

at their recognition limits. The recognition rate decreases as the background

noise level increases. The background noise level at which a listener recognizes

50% of the presented speech units can serve as a single number to quantify a

listener’s performance and is usually referred to as speech-reception threshold

(SRT). The slope at which the performance decreases with increasing noise level

indicates the robustness of the listener to the background noise.

Different noise types have been used as background noises. They can be

categorized in stationary and fluctuating noises according to their temporal

properties. White noise and white noise spectrally shaped to have a long-term

average speech spectrum, also referred to as speech-shaped noise (SSN), rep-

resent examples of stationary noises. Fluctuating noises describe background

noises for which the level exhibits significant temporal fluctuations. Most real-

world background noises are fluctuating. For example, the "noise" caused

by other talkers in the background will fluctuate with the speech rhythm of

those talkers. Recognition performance in NH listeners in fluctuating noise
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exceeds the performance in stationary noise, as listeners are capable of extract-

ing speech information in the dips of the background noise fluctuations (e.g.,

Festen and Plomp, 1990). The performance benefit a listener obtains from

fluctuating noises as compared to stationary noises is typically referred to as

masking release (MR). HI listeners typically show worse performance on SI tests

than NH listeners. Their SRTs are higher in both stationary and fluctuating

background noises. Furthermore, they typically exhibit lower amounts of MR

than NH listeners.

Depending on the speech stimuli used in a study, studies can be divided into

“macroscopic” and “microscopic” speech intelligibility (SI) studies. Microscopic

intelligibility focuses on the perception of short speech units without a meaning

or context, i.e., phonemes (e.g., Allen, 1996a). In contrast, macroscopic SI tests

utilize whole words or sentences to probe speech intelligibility in listeners.

Measuring and understanding the consequences of hearing impairment on

behavioral measures, especially measures of natural stimuli like speech, has

posed a challenge due to the heterogeneity observed in such data (Trevino and

Allen, 2013). In order to simplify the problem, recent studies have focused on

understanding the implications of hearing impairment on the perception of

small meaningless speech units, such as monosyllabic consonant-vowels (CVs).

This microscopic approach allows to exclude factors like context processing and

between-subject differences in cognitive abilities from the behavioral results.

Microscopic speech studies have been able to quantify the impact of stimulus

variations on perception (Singh and Allen, 2012; Toscano and Allen, 2014; Zaar

and Dau, 2015). For example, Trevino and Allen (2013) demonstrated that

the heterogeneity of the HI listeners decreases when the stimuli variations are

reduced.

Testing human listeners can be costly or ineffective for certain scientific
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questions or technical problems. Models of speech intelligibility aim at predict-

ing a listener’s performance based on signal properties of the target stimuli and

the background noise or interferers. Such models typically use a linear model

of the auditory periphery and a signal-to-noise ratio (SNR) or correlation-based

decision metric in their backends (e.g., Fletcher and Steinberg, 1929; Fletcher

and Galt, 1950; Kryter, 1962; Houtgast and Steeneken, 1971; Payton and Braida,

1999; Jørgensen and Dau, 2011; Taal et al., 2011). SNR decision metrics assume

that if the speech energy exceeds the noise energy in a certain band, then this

band positively contributes to SI. In contrast, if the noise energy exceeds the

speech energy, the band adversily affects overall SI. Correlation-based models

assume that the more correlated a noisy speech signal is to the clean speech

signal (i.e., the template), the easier it should be to understand the noisy signal.

Modeling the consequences of individual impairment on speech under-

standing has been a focus of several recent modeling studies (Bruce et al., 2013;

Hossain et al., 2016; Wirtzfeld, 2016; Moncada-Torres et al., 2017). However,

predicting individual results based on audiometric data of a listener’s hearing

loss remains a challenge.

This project focused on advancing SI tests and models to better characterize

SI deficits observed in HI listeners. In a first part, new methods to analyze and

interpret microscopic SI data are presented. Specifically, Chapter 2 describes a

method to asses and compare the results of microscopic speech perception on

an individual level across different conditions. The measures described allow

to isolate the individual problems of listeners out of a large data set. The results

in this chapter show the potential benefits of using natural meaningless stimuli

for hearing aid testing. In a second part, a model to predict SI in HI listeners is

proposed. Such a model that can predict the speech intelligibility scores for an

individual listener with hearing loss could be an important tool for hearing-aid
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fitting or the development of hearing-aid algorithms and could provide insights

into the auditory processing of speech in NH and HI listeners.

In Chapter 3, consequences of hearing impairment are introduced into an

existing model of macroscopic speech intelligibility (Jørgensen and Dau, 2011;

Jørgensen et al., 2013). The newly introduced model modifications are verified

with data from past studies. The scope and limitations of such models are

discussed.

Chapter 4 describes a new modeling approach where a detailed peripheral

model (e.g., Carney, 1993; Bruce et al., 2003; Zilany et al., 2009; Zilany et al.,

2014) is combined with the framework of predicting speech intelligibility based

on the signal-to-noise ratio in the envelope domain.

Chapter 5 presents a promising model, which again uses the auditory-nerve

model as a front end, but combines it with a correlation metric in the back end

instead of a SNRe n v decision metric. Inspired by a recent study on vowel coding

in the midbrain Carney et al. (2015), the model uses a single modulation filter

centered at a frequency close to the fundamental frequency of the male target

speaker.

Finally, Chapter 6 summarizes the main findings and discusses the limita-

tions and perspectives of the proposed models.



2
Assessing the efficacy of hearing-aid

amplification using a phoneme testa

Abstract

Consonant-vowel (CV) perception experiments provide valuable in-

sights into how humans process speech. Here, two CV identification

experiments were conducted in a group of hearing-impaired (HI) lis-

teners, using 14 consonants followed by the vowel /a/. The CVs were

presented in quiet and with added speech-shaped noise at signal-

to-noise ratios of 0, 6, and 12 dB. The HI listeners were provided

with two different amplification schemes for the CVs. In the first

experiment, a frequency- independent amplification (flat-gain) was

provided and the CVs were presented at the most- comfortable loud-

ness level. In the second experiment, a frequency-dependent pre-

scriptive gain was provided. The CV identification results showed

that, while the average recognition error score obtained with the

frequency-dependent amplification was lower than that obtained

with the flat-gain, the main confusions made by the listeners on

a token basis remained the same in a majority of the cases. An

entropy measure and an angular distance measure were proposed

to assess the highly individual effects of the frequency-dependent

a This chapter is based on Scheidiger et al. (2017) JASA

7
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gain on the consonant confusions in the HI listeners. The results

suggest that the proposed measures, in combination with a well-

controlled phoneme speech test, may be used to assess the impact

of hearing-aid signal processing on speech intelligibility.

2.1 Introduction

Most day-to-day communication between humans is based on speech. Deficits

in speech communication, e.g., as a result of a hearing impairment, can have

strong effects on a person’s quality of life and personal success. Hearing aids can

help to regain the ability to hear speech, e.g., by compensating for the audibility

loss. However, aided hearing- impaired (HI) listeners typically perform worse in

speech understanding tasks than normal-hearing (NH) listeners. In particular,

hearing-aid users commonly experience difficulties in challenging acoustical

environments, such as noisy and/or reverberant spaces. In contrast, speech

communication over a noisy transmission channel in NH listeners is typically

robust.

Speech recognition can be limited by internal noise and external noise. Ex-

ternal noise describes interfering acoustical signals that may mask or distract

from the target signal. Internal noise characterizes the limitation and proba-

bilistic nature of a listener’s auditory system. A hearing loss may be viewed as an

increase of internal noise. According to Plomp (1986), the internal noise can be

further divided into an audibility component and a distortion component. The

typical measure of the audibility component is an audiogram or a speech recep-

tion threshold in quiet (SRTq). The SRTq is defined as the speech level at which

the recognition score equals the error score (pc = pe ). While the SRTq is linked

to the speech reception threshold in noise in Plomp’s model, the audiogram and
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speech intelligibility in noise are not directly linked. Several studies have tried

to link pure-tone thresholds to speech intelligibility of both NH and HI listeners

(Humes et al., 1986; Zurek and Delhorne, 1987; Pavlovic, 1986; Mueller, 1990).

Mueller (1990) proposed the “Count-the-dots” method to calculate the articu-

lation index, which can be transformed to a speech intelligibility score. Their

method assesses how much of the long-term average speech spectrum (LTASS)

is audible, i.e., above the pure-tone thresholds. This has become a widely used

method to numerically quantify the benefit of a hearing instrument.

Speech intelligibility in noise may be measured with different speech ma-

terials. Phonemes (e.g., consonant-vowels, CVs) represent one class of speech

materials. Phoneme identification experiments record which phoneme out of

the phoneme set used in the experiment was chosen by a listener in response

to a presented stimulus. The recorded responses are often presented in the

form of a confusion matrix (CM), wherein each cell corresponds to one of the

stimulus- response pairs. The stimuli are usually denoted as rows and the re-

sponses as columns. The diagonal of the matrix represents the counts of the

correct responses and the row sum equals the total number of presentations for

a given stimulus.

Phoneme perception research has a long history and started with the clas-

sical studies by French and Steinberg (1947) and Miller (1955). French and

Steinberg (1947) based their analysis on recognition scores only, i.e., the CM

diagonal, and proposed a model to predict the percent correct value of phoneme

pairs or triplets based on the individual phone scores. Later, Miller (1955) ap-

plied an information theoretical analysis to their recorded CMs. Their entropy

measure, which quantifies the random- ness of responses, represents an ap-

proach to describe the communication process beyond pure recognition scores.

In the case of a phoneme which is always misclassified (i.e., 100% error), this
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phoneme could be always confused with one specific other phoneme, which

would correspond to an entropy of 0 bits. Alternatively, the phoneme could be

con- fused with many other phonemes (instead of only one specific phoneme),

in which case the entropy would be close to its maximum l o g2(J ) bits with J

representing the number of possible response choices.

Entropy is powerful in quantifying the randomness of responses but is in-

sensitive to the kind of confusions. Two different phonemes might produce the

same randomness in terms of observed responses but the individual confusions

can be very different. Allen (2005) used confusion patterns (CPs) to visualize the

individual confusions along with the recognition score. CPs show the response

probabilities for all response alternatives as a function of the signal-to-noise

ratio (SNR) for a given stimulus, i.e., they depict normalized CM rows as a func-

tion of SNR and thereby illustrate at which SNRs the recognition score drops

and which confusion(s) was/were chosen instead of the correct response. If the

response probabilities are shown on a logarithmic scale, confusions with low

probabilities are clearly represented.

However, in order to use CV experiments to assess a HI listener, the percep-

tually relevant factors that underlie consonant perception need to be known

and the CV experiments need to be designed accordingly. Despite the extensive

research and elaborate analysis methods, only a few studies have revealed the

effect of acoustic stimulus variability on consonant perception in individual

listeners (Li and Allen, 2011; Phatak and Allen, 2007; Kapoor and Allen, 2012;

Singh and Allen, 2012; Toscano and Allen, 2014; Zaar and Dau, 2015). This vari-

ability may be particularly relevant in studies with HI listeners Trevino and Allen

(2013). Consonant perception has been demonstrated to be strongly affected

by a high-frequency sensorineural hearing loss (e.g. Owens, 1978), reflecting

the importance of high-frequency information contained in consonants (Li
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et al., 2010; Li and Allen, 2011). Several studies thus proposed to control for the

variance in the stimuli (e.g. Bilger and Wang, 1976; Boothroyd, 1984) as well as

the variability across the HI listeners to reduce the variability in the CM data

(e.g. Owens, 1978; Dubno et al., 1984; Zurek and Delhorne, 1987; Trevino and

Allen, 2013).

Miller (1955) found that only a few of the possible response alternatives

were chosen for a specific consonant, i.e., CM rows were sparse and the entropy

thus small. Owens (1978) discussed a dependency of consonant perception on

the specific selection of a consonant-vowel-consonant token, whereby a token

represented a single phoneme recording. It was argued that the robustness and

confusions obtained for individual tokens were specific to these tokens. The

token dependency was later confirmed by Trevino and Allen (2013) who showed

that the confusions in CV experiments became more consistent when the token

variability was controlled for. Trevino and Allen (2013) analyzed confusions in

HI listeners on a token basis and found that listeners with different audiograms

showed similar confusions at the token level. This suggested that responses

for a given CV token obtained across listeners can be more homogeneous than

previously assumed. Furthermore, the authors found that different tokens of

the same CV can result in different confusions in the same listener group. For

example, the main confusion for a specific /bA/ token was /vA/, whereas it

was /da/ for another /bA/ token (Table II in Trevino and Allen, 2013). These

results demonstrated the importance of considering consonant perception at

the token level.

Dubno et al. (1984) reported a degraded CV recognition performance in

HI listeners in the presence of noise, even in conditions when the speech was

presented at high sound pressure levels, indicating that audibility alone was

not sufficient to restore correct recognition. Furthermore, it was found that age
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had a detrimental effect on CV recognition in listeners with the same average

hearing loss in terms of the audiogram. Zurek and Delhorne (1987) tested

average consonant recognition scores both in HI and NH listeners. For the

NH listeners, the phonemes were presented together with spectrally-shaped

masking noise to simulate the sensitivity- related hearing loss of a matched HI

listener. In contrast to the results from Dubno et al. (1984), Zurek and Delhorne

(1987) found that matching NH ears to HI audiometric measures can result in

a similar performance in terms of their average recognition errors. However,

Zurek and Delhorne’s conclusions were based on average recognition scores

of their listeners and did not compare the confusions between the two listener

groups, i.e., the off-diagonal elements of the CM, nor did they take the strong

token dependence effect into account.

Trevino and Allen (2013) presented their stimuli to 16 HI ears at a comfort-

able overall loudness without a frequency- dependent gain to compensate for

the audibility loss. They presented the CVs in quiet and at SNRs of 0, 6, and

12 dB in speech-shaped noise (SSN). It remained open if their observed con-

sistency of the main confusions across listeners would also be observed if an

individual frequency-dependent amplification was provided. For example, it is

possible that the main confusion of /vA/ observed in one token of /bA/ and the

main confusion of /dA/ observed in the other token of /bA/would change if a

frequency-dependent gain were provided.

The present study investigated phoneme perception on a token level in the

same HI listeners as the Trevino and Allen (2013) study. In contrast to Trevino

and Allen (2013), the listeners were provided with an individual frequency-

dependent amplification to compensate for their audibility loss. It was tested

how much the listeners improved in CV recognition as a result of the high-

frequency amplification as compared to the earlier results obtained with flat
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(i.e., frequency-independent) amplification. The results were analyzed on a

token basis using a response entropy measure to quantify the distribution of

confusions as well as a vector space angular distance to evaluate how the specific

nature of confusions changed between the two amplification conditions. It is

argued that the two metrics together reveal a detailed picture of the relative

efficacy of different amplification schemes and could be used to assess strategies

to improve speech intelligibility in general.

2.2 Method

2.2.1 Listeners

Eight HI listeners (16 HI ears) with a mean age of 74 years participated in the

two experiments. All listeners reported American English as their first language

and were regular users of hearing aids. They were paid to participate in the IRB-

approved experiments. Tympanometric measures obtained before the start of

the experiments showed no middle-ear pathologies (type A tympanogram). All

16 ears had a mild-to-moderate sensorineural hearing loss. Figure 2.1. shows the

fitted pure tone threshold (PTT) functions of the individual listeners (Trevino

and Allen, 2013). The audio- grams were modeled as two piece-wise linear

functions. These fittings were characterized by three parameters: the breakpoint

f0 , the low-frequency loss h0 , and the slope of the high-frequency loss s0 .

The break-point f0 between the two linear functions indicates the frequency

at which the sloping loss begins. At frequencies below f0 , the hearing loss

was assumed to be constant over frequency (h0). At frequencies above f0 ,

the audiogram was modeled by a linear function with a negative slope (s0).

The average root-mean-square error of the fitted curves over all audiogram

frequencies ( f = [125, 250, 500, 1000, 1500, 2000, 3000, 4000, 6000, 8000]Hz) was
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5 dB (see the Appendix).

Figure 2.1: Fitted pure-tone thresholds for all the listeners that participated in the study. All
listeners had a steeply sloping hearing loss at high frequencies. The average root-mean-square
error of the fitting was 5 dB (see the Appendix).

2.2.2 Stimuli

The CV syllables consisted of 14 consonants (six stops /p, t, k, b, d, g/, six

fricatives /f, s, S, v, z, Z/, and two nasals /m, n/) followed by /A/. Two tokens

(one recording of a male talker and one of a female talker) were selected per con-

sonant from the Linguistic Data Consortium Database (LDC-2005S22; Fousek

et al., 2000). The tokens were chosen from those for which the recognition

error was below 3% at a SNR of >2 dB in earlier experiments with NH listeners

(Singh and Allen, 2012; Toscano and Allen, 2014). They were presented at 12,

6, and 0 dB SNR in SSN; a range in which NH listeners would not make any

recognition errors. The CV tokens had previously been investigated using the

three-dimensional-deep-search method (Li et al., 2012) to identify perceptu-

ally relevant spectro-temporal cues in the stimuli. Furthermore, NH reference

data with the same CV tokens had been collected in white noise as well as SSN
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(Phatak and Allen, 2007). Four of the male tokens (/f, n, s, Z/ + /a/) had to be

excluded from the analysis, as they were found to have been adversely affected

by a stimulus pre-processing algorithm. The algorithm was intended to trun-

cate all stimuli to the same duration by removing silent periods before and after

the target token. Unfortunately, it truncated the weak bursts of these CV male

tokens. The remaining 24 CV tokens were presented in two amplification condi-

tions which were analyzed in the present study. The stimuli were presented to

the listeners over an Etymotic Research (Elk Grove Village, IL) in-ear speaker

(ER-2) in a single-walled sound booth in a room with the outer door closed.

2.2.3 Amplification schemes

The stimuli were presented in two different amplification conditions. These

conditions were tested on separate days after verifying that the audiometric

thresholds of the listeners had not changed since the last session. The listeners

completed a 20-min long training session per amplification condition with

separate tokens before starting the testing. In the first amplification condition

(FG), a frequency-independent gain was provided. The gain was chosen by the

listeners in a calibration run before the training session. The levels chosen by

the listeners are indicated in the Appendix. The listeners were able to adjust the

gain during the experiment. However, only listener 40L made use of this option

(2 dB change). For the second amplification condition (NAL-R), the CV stimuli

were amplified with an NAL-R gain adjusted for each listener according to

their audiogram (Byrne and Dillon, 1986). The goal of the NAL-R amplification

scheme is to provide equal loudness in all frequency bands. The insertion gain

prescription is based on the PTTs at the frequencies f =0.25, 0.5, 1, 2, 3, 4, and 6

kHz. Also in this condition, the listeners were allowed to adjust the overall gain

of the amplification. The corresponding chosen levels are represented in Table



16 2. Assessing the efficacy of hearing-aid amplification

I.

2.2.4 Experimental procedure

A token could be repeated as many times as required to select one of the 14

response alternatives displayed on a computer screen. The display presented

symbols from the International Phonetic Alphabet (as well as a common English

word that started with the respective consonant. For each condition, SNR, and

listener, a token was presented between 5 and 10 times. The data collection for

each amplification condition was split into two sessions in which the stimuli

were presented in a fully randomized order. The number of stimulus presenta-

tions per SNR, ear, and token was four in the first session. In the second session,

the number of presentations per SNR, ear, and token depended on the number

of confusions in the first session. Zero or one confusion in the first session led

to two more presentations in the second session. Two confusions led to five

more presentations and more than two confusions led to six additional presen-

tations. This resulted in 800–1000 trials per listener, with more presentations

allocated to the CVs that were confused by the individual listeners. This helped

in identifying specific problems of individual listeners at realistic SNRs with CV

tokens that were known to be robustly recognized by NH listeners at the given

SNRs.

2.2.5 Analysis

In the experiments, one CM per ear (16 ears), amplification condition (2 condi-

tions), SNR (4 SNRs), and token (2 tokens) was obtained, resulting in a total of

256 CMs. In addition to the recognition scores (i.e., diagonal CM values), two

measures were considered to analyze the data.
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Entropy

In information theory, entropy describes the randomness of a communication

process. In phoneme experiments, it can be used to quantify the randomness of

responses. The CM cell C M (i , j ) contains the counts of the listeners’ responses

with the response alternative j = 1, ..., J when the stimulus i = 1, ..., I was pre-

sented. The value C M (i , j ) of the CM, normalized by the respective row sum

RS (i ) =
∑

j C M (i , j ), represents the response probability pi j =C M (i , j )/RS (i ),

whereby the P overall sum of response probabilities for a row is one (
∑

j pi j = 1).

In terms of information theory, the observation of a listener responding with j

when presented with stimulus i contains the information l o g2(1/pi j ), implying

that a more likely response (e.g., the correct response j = i ) carries less infor-

mation than a rarely observed response. The response entropyH (i ) is defined

as the expected information from observing all responses to a stimulus

H =
∑

j

pi j l o g2(1/pi j ) (2.1)

Entropy as defined with the log base 2 is measured in bits. If a listener

were to only use one of the response alternatives, the entropy would be 0 bit,

irrespective of whether or not the response used by the listener is correct. In

contrast, if all 14 possible response alternatives were to occur equally likely

(pi j = 1/14 for all j ), the response entropy would reach its maximum value,

Hma x = l o g2(J = 14) = 3.81 bits. The higher the entropy, the more uncertain is

the listener regarding his/her responses.

The entropy, as defined above, strongly depends on the recognition score

(pi i ) as well as the distribution of the confusions. To use the entropy as a com-

plementary measure to the recognition score, a measure independent of the
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recognition score is needed. The confusion entropyHC o n f used in this study

is obtained by replacing the normalized response vector pi j by the normal-

ized confusion vector pC o n f in Eq. 2.1. To obtain pc o n f the count of correct

responses is excluded from a CM row before normalizing it by the row sum, i.e.,

the vector only consists of counts representing confusions. The values in pc o n f

therefore express the probability of a confusion occurring given an error occurs.

Hellinger Distance

A metric that is sensitive to changes in confusion probabilities was considered.

Each CM defines a vector space, with each row CM(i) representing a vector in

that space. The vector space is defined by the basis vectors (e j ), where each basis

vector represents a possible confusion. In order to find the distance between

two rows (e.g., two CVs or two tokens), a norm must be defined. Here, the

Hellinger Distance was used (Scheidiger and Allen, 2013), which utilizes the

square roots of the probability vectors pi = [pi 1, ..., pi J ]. All vectors defined by

the square roots of the probabilities yield the same norm and there- fore have

the same length. Thus, the distance between two vectors can be expressed by

the angle between the vectors. Via the Schwartz inequality, it is possible to

calculate an angle θk l between any two response vectors pk and pl in the vector

space

c o s (θ ) =
∑

j

p

pk j
p

pl j (2.2)

The angle is a measure of how different the two vectors are. In addition to

ensuring unit length of all vectors, the square- root transformation emphasizes

less likely confusions and makes the metric more sensitive to small changes
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in the response vectors than correlation-based metrics. This angular distance

measure was used in the present study to represent the difference between

two confusion vectors obtained in the condition with frequency-dependent

gain (NAL-R) and the flat-gain (reference) condition. A Hellinger distance of

0◦ between the normalized confusion vector (pc o n f ) of the flat-gain and the

NAL-R condition implies that the same confusions were equally likely in the two

conditions. In contrast, a Hellinger distance of 90◦ represents cases in which

the confusions in one condition (e.g., flat-gain) were not present in the other

condition (e.g., NAL-R). The Hellinger distance between confusion vectors is

not defined and thus yields NaN (not a number), if one of the conditions does

not exhibit any errors.

2.3 Results

Figure 2 shows the CPs of four listeners (30R, 32L, 36L, 40L) for the /bA/ token #1.

The flat-gain condition is shown in the left panels, whereas the results obtained

with NAL-R are shown on the right. The recognition score for /bA/ (black solid

line), in general, dropped as the SNR decreased from the quiet condition (Q)

to lower SNRs, i.e., at 12, 6, and 0 dB. For example, in the flat-gain condition,

listener 30R (upper left panel) showed a recognition score for /bA/ of 63% in

the quiet condition. At 12 dB SNR, the recognition score was 13% while the

response probabilities for the /vA/ and /fA/ confusions increased from 0% in

the quiet condition to 73% and 13%, respectively. At 6 dB SNR, listener 30R

always indicated to have perceived /vA/. At 0 dB SNR, the confusion /vA/ still

represented the dominating response, showing a probability of 60%, whereas

the remaining responses were equally distributed over the correct response

/bA/ and the two confusions /fA/ and /dA/.
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Figure 2.2: Confusion patterns for four of the subjects showing the response probabilities as a
function of SNR for the token #1 of the CV /bA/. The left column shows the data with the flat-gain
as also presented in Trevino and Allen (2013). The right column presents the data for the same
listeners but with NAL-R gain. The main confusion with both gains is /vA/. A slight horizontal
jitter was introduced to the data for better readability.

When a frequency-dependent gain was provided using the NAL-R scheme

(right column of Fig. 2.2), the obtained CPs differed. For example, in the case of

listener 30 R, the recognition score became more robust to noise; the recogni-

tion score for /bA/was at 100% in quiet, decreased to 85% at an SNR of 12 dB,

and dropped to 30% at 0 dB SNR. However, despite the more robust recognition

score than in the flat-gain condition, the /vA/ confusion was still also dominant
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in the NAL-R condition. With decreasing SNR, the response probability for /vA/

increased to 15%, 50%, and 50% at SNRs of 12, 6, and 0 dB SNR, respectively.

For all four listeners shown in Fig. 2.2, the main confusion /vA/ observed

in the flat-gain condition also represented the main confusion in the NAL-R

condition. Less likely responses, such as /pA/ and /dA/, disappeared in the NAL-

R condition. Despite the different audiograms and, therefore, different gains

applied to the individual listeners in the NAL-R condition, the main confusions

among the listeners remained the same. This finding is consistent with the

observations reported in Trevino and Allen (2013), regarding their token- specific

confusions.

Figure 2.3 shows the CPs obtained with the same listeners but for the other

/bA/ token. As in Fig. 2.2, the recognition scores dropped as the SNR decreased.

For listeners 30R, 36L, and 40L, the recognition scores with NAL-R gain were

found to be more robust to noise than those obtained with flat-gain. The main

confusions in the flat-gain condition for the second token were /gA/ and /dA/,

in contrast to /vA/ in the case of the first token (Fig. 2.1). With the NAL-R

gain (right panel), the /gA/ and /dA/ error patterns for /bA/ token #2 remained

dominating. For example, for listener 30R (top panel), the recognition score of

/bA/ became more robust to noise in the NAL-R condition and never dropped

below 60%, but the main confusion, /gA/, also became more robust. For listener

32L, the NAL-R gain produced more prominent /gA/ confusions even at high

SNRs, i.e., the presence of noise morphed the /bA/ into a /gA/.

When considering all results across all listeners, averaged across SNRs and

the 24 tokens, the error rate (i.e., 1- recognition score) decreased from 20.1% in

the flat-gain condition to 16.3% in the NAL-R condition. There was a significant

relationship between the type of amplification and the correct recognition of

the 14 phonemes [χ2(1)=56.1, p<0.00001]. The odds of a correct response
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Figure 2.3: Confusion patterns for four of the subjects showing the response probabilities as a
function of SNR for token #2 of the CV /bA/. The left column shows the data with flat-gain as also
presented in Trevino and Allen (2013). The right column presents the data for the same listeners
but with NAL-R gain. The main confusion with both gains is /dA/. A slight horizontal jitter was
introduced to the data for better readability.

with the NAL-R amplification were 1.25 (1.18 1.33) times higher than with the

flat-gain amplification. The average normalized confusion entropy (HC o n f )

decreased from 0.5 (s = 0.1) in the flat-gain condition to 0.3 (s = 0.1) in the

NAL-R condition.

Figure 2.4 shows a more granular analysis of how error rates and normal-

ized confusion entropies were affected by the two amplification conditions
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Figure 2.4: Categorization of the CV perception data for the 24 tokens, 16 listeners, and 4 SNRs.
The category “No errors*,” contains cases with just one or zero errors out of all trials. The response
patterns with at least two errors in one of the conditions were divided into three categories
according to how the error rate changed from the flat-gain condition to the NAL-R condition.
Twenty-one percent of the erroneous response patterns had an increased error, 15% showed
the same error (±10%), and the remaining 64% showed at least 10% fewer errors. These three
categories were each further divided into two sub-categories depending on howHC o n f changed
in the NAL-R condition as compared to the flat-gain condition. For each subcategory, a count
histogram of the Hellinger angles θ∆ is shown on the bottom, the bins are 10◦ wide, and labeled
by their center.

in an individual HI listener responding to a given token at a given SNR. For

each listener-token pair, the error rate and confusion entropy (HC o n f ) at each

SNR were calculated in the flat-gain condition and in the NAL-R condition. To

compare the results obtained in the two different amplification conditions, the

values in the flat-gain condition were considered as refer- ence. The responses

of the 16 HI ears to the 24 tokens at 4 SNRs resulted in 1536 response patterns

for each condition.
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The response patterns were divided into two categories: (i) Pe = 0, contain-

ing all 1044 (68%) patterns that showed maximally one erroneous response in

either condition and (ii) P e > 0, comprising the remaining 492 (32%) patterns

which had more than one error in at least one condition. As consonant recog-

nition was at ceiling for the Pe = 0 category, these response patterns were not

considered in the subsequent analysis. In contrast, the Pe > 0 response patterns,

which represent the critical/interesting cases, were further divided into three

subcategories according to their error rates.

For 103 (21%) of the 492 considered token-listener pairs, P e in the NAL-R

condition increased by more than 10% as compared to the flat-gain condition

(left branch in Fig. 2.4). In 74 response patterns (15%) the error rate did not

change by more than 10% in either the positive or negative direction in the NAL-

R amplification condition (middle branch). For the remaining 315 response

patterns (64%), the error in the NAL-R condition decreased by at least 10% as

compared to the flat-gain condition (right branch). Each of the three categories

was in a last step subdivided into two subcategories according to how HC o n f

changed in the NAL-R condition with respect to the flat-gain condition. The sub-

categories “more random” and “less random” contain the response patterns

in which HC o n f in the NAL-R condition increased or decreased, respectively,

compared to the flat-gain condition.

This categorization provides a detailed picture of how the NAL-R amplifica-

tion scheme affected the responses to the considered CVs on a token basis. If

NAL-R had improved all listeners’ performance, this would have resulted in a

decrease in P e along with a decrease or no change inHC o n f . However, only 36%

of the considered response patterns fell into this category, while 28% showed

a decrease in P e along with more random response behavior (right branch in

Fig. 2.4). Furthermore, 21% of the considered response patterns showed an
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increase in the error rate with the NAL-R amplification (left branch). Rather few

response patterns were unaffected by NAL-R (15%; middle branch).

The error rate and normalized confusion entropy do not characterize the

nature of confusions. Two response vectors obtained with two different tokens

of the same CV might result in the same error rate and normalized confusion

entropy; however, one token may show a different main confusion than the

other (Trevino and Allen, 2013; cf. Figs. 2.2 and 2.3). To quantify specific confu-

sions, the Hellinger distance was used to measure the angular distance between

different response vectors. The two bottom rows of Fig. 2.4 show θ∆ count

histograms for eachHC o n f -Pe subcategory. The bins of the histogram are 10◦

wide and are labeled by their center angle. Each response pattern is color-coded

according to the SNR at which it was obtained (blue for 0 dB, turquoise for 6

dB, green for 12 dB, yellow for Quiet). It can be seen that response patterns at

lower SNRs (blue, turquoise) mostly fall into the decreased error rate category

(right branch in Fig. 2.4) and also that the cases in which NAL-R increased both

the error and the randomness of the error are dominated by quiet conditions

(yellow).

The angular distance is undefined and thus yields NaN if no errors were

recorded in one of the conditions. In the upper-left category (↑ Pe , more ran-

dom), the 30 response patterns with θ∆ =NaN did not show any error in the flat-

gain condition but showed errors in the NAL-R condition. These error rates

were by no means small. The average error rate in the NAL-R condition for these

cases was 45%, one- fifth of these cases showed error rates of >90%, indicating

significant changes in the percept. Those cases can be referred to as “morphs,”

as NAL-R morphed them from a perceptually robust correct response into a

robust confusion. For the 140 response patterns for which θ∆ =NaN in the ↓ Pe

-categories (right panel of Fig. 2.4), NAL-R reduced the error rate to zero. These



26 2. Assessing the efficacy of hearing-aid amplification

can be referred to as “optimal” cases.

The two extreme bins of the θ∆ histograms (centered at 5◦ and 85◦) indicate

listener-token pairs with the same or entirely different confusions in the two

conditions, respectively. The 5◦ bin contains the cases for which the confusions

and their proportions remain virtually unchanged irrespective of the amplifica-

tion. In the case of the ↑ Pe -categories (left panel in Fig. 2.4) they represent cases

in which the flat-gain main confusions were chosen even more frequently in the

NAL-R condition. In the ↓ Pe category (right panel in Fig. 2.4), they represent

cases for which the error rate decreased but the main confusion remained the

most likely confusion. A low θ∆ indicates that the confusions in the flat-gain

condition also dominated the response pattern in the NAL-R condition. The

5◦ -bin reflects the most prominent examples for this behavior but the same

trend can also be observed for bins where θ∆ = 45◦. Considering a threshold

of θ∆ = 45◦ to indicate whether the main confusion remained the same (<45◦),

the analysis reveals that in 63% of the cases the main confusions remained

unchanged.

θ∆ = 90◦ —contained in the bin centered at 85◦ —indicates that the confu-

sions were different and that the response vector for the NAL-R condition did

not contain the confusions in the flat-gain condition and vice versa. Thus, in

these cases, NAL-R introduced new confusions that were not present in the flat-

gain responses (morphs). In all but two θ∆-histograms, the 5◦-bins exhibited

larger counts than the 85◦-bins, indicating that the main confusions in these

patterns were unchanged.
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2.4 Discussion

The results from the present study support the findings of Trevino and Allen

(2013) that the confusions in CV experiments are token specific, even if a frequency-

dependent gain (NAL-R) is provided. While NAL-R, on average, decreased the

error rate in the listeners’ responses, the occurrence of the main confusions

often remained the same (Figs. 2.2 and 2.3 and <45 ◦ in Fig. 2.4), indicating

that NAL-R alone does not effectively compensate for the deficits that cause the

main confusion. The observation of small values for the normalized confusion

entropy in both amplification conditions (0.5 bit in the flat-gain condition as

com- pared to 0.3 bit in the NAL-R condition) suggests that the main confusion

is a robust and consistent phenomenon caused by token-specific cues and

deficits in the individual auditory system. The different main confusions for

the two /bA/ tokens that are robust across the two amplification conditions,

suggest that they are caused by the acoustic properties of the stimulus, i.e., by

conflicting consonant cues (Kapoor and Allen, 2012). A stimulus that evokes

responses with low entropy but a high error rate must have been chosen based

on a robust auditory percept. This percept must therefore result from some

distorted internal auditory representation of the stimulus which could be con-

sidered as reflecting a “supra-threshold” distortion (such as, e.g., a temporal

and/or spectral auditory processing deficit). Such a distortion could affect the

primary consonant cue and increase the perceptual salience of a secondary cue

that then causes the main confusion. In the case of the 30 morphs observed in

the results, the robust confusions resulted from supra-threshold deficits in the

HI listeners’ auditory processing in combination with the high-frequency ampli-

fication. An understanding of which specific cues were used by the HI listeners

would require a closer analysis of the individual audiometric configuration, the

applied amplification, and the specific cues of the confused tokens (Li et al.,
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2010, 2012) which were not undertaken in the present study. In contrast to the

conditions with low-entropy response patterns, conditions where the confusion

entropy was large are not based on a robust percept and should be assessed

differently. The high entropy in these responses indicates that the listener did

not respond based on a robust cue, but instead selected the response randomly.

Such randomness may be caused by the effect of “internal” noise or attention

deficits of the listener.

To define the entropy threshold for a robust percept, the average size of the

Miller and Nicely (1955) confusion groups (/p, t, k, b, d, g/; /f, t, s, S/; /v, D,

z, Z/; /m, n/) may be used. A listener is most likely guessing and therefore not

responding based on a robust percept when confusions outside of the known

confusion groups appear. The average size of confusion groups is three; thus,

if more than three confusions occur, a decision-threshold for a robust percept

could be defined in terms of the normalized confusion entropy which would be

HC o n f = 0.43 bit (3 equally likely confusions out of the 13 possible confusions).

When assessing the flat-gain response vectors with this definition, only 268 out

of the 1536 token-listener pairs (17%) would not qualify as robust percepts.

A robust auditory percept might also be more appropriate than the tradi-

tional PTT and LTASS (i.e., count-the-dots method) to assess the audibility of

CV signals. In experiments such as the ones from the present study, the dif-

ferentiating perceptual cues of CVs may be manifested as local energy bursts

or spectral edges in the signal (Li et al., 2010; Li et al., 2012). These cues can

be more intense than the LTASS in a critical band over several 10 ms (Wright,

2004), but have a negligible contribution to the LTASS which is dominated by

the vowel energy. It has been shown that CV recognition on a token level in NH

listeners can drop from 100% correct to chance level if the energy of the noise

masker is increased by less than 6 dB (Singh and Allen, 2012; Toscano and Allen,
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2014). This “binary”-like recognition supports the importance of specific acous-

tic speech cues. These cues are either detectable, in which case the CV can be

recognized despite the presence of noise, or are masked by the noise, in which

case the listener might use a secondary cue or might start guessing. PTTs do not

characterize a listeners’ sensitivity to recognize these spectro-temporal conso-

nant cues. Furthermore, if a different amplification scheme were chosen instead

of NAL-R that aims at restoring audibility, e.g., a scheme as proposed in Reed

et al. (2016), the specific confusions that exist after compensating for audibility

can be used as an indicator of a supra-threshold distortion loss. To quantify the

distortion loss based on CMs, the angular Hellinger distance measure could be

used.

The response-patterns where both the error rate and the confusion entropy

increased with NAL-R indicate the listener-specific phonemes for which the

improvement strategy failed. These specific confusions could not be elimi-

nated by NAL-R alone and should be addressed by alternative compensation

strategies. Such strategies should take the token-specific consonant cues into

account; the primary consonant cue should be amplified and conflicting sec-

ondary cues attenuated (Kapoor and Allen, 2012). For example, individually

tuned frequency transposition algorithms may be able to transpose the spectro-

temporal cues of the affected CVs to bands that are less affected by the distortion

loss. Phoneme tests can help determine sensible limits for such frequency trans-

position algorithms to avoid further distortions (Schmitt et al., 2016). Such

phoneme tests should consist of several well-characterized tokens for each

consonant. These tokens should be correctly perceived by NH listeners at the

SNRs tested. The recognition results should be analyzed on a token-specific

level taking confusions and not only recognition scores into account. Zaar and

Dau (2015) emphasized that the additive noise should be frozen noise, i.e., one
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noise realization per token, to further decrease the within-listener variance in

the responses.

2.5 Summary and Conclusion

CV perception in the same HI listeners as in Trevino and Allen (2013) was

analyzed on a token level in two amplification conditions: a condition with

frequency-independent amplification (flat-gain) and a condition with frequency-

dependent amplification (NAL-R). The response patterns were analyzed in

terms of their recognition scores, their confusion entropy, and an angular dis-

tance between the confusions in the two amplification conditions. The recogni-

tion score in the NAL-R condition was shown to be significantly higher than in

the flat- gain condition. In a granular analysis (Fig. 2.4), the response pat- terns

showed mixed results for the NAL-R condition, despite the overall increased

recognition score.

Two measures were proposed to analyze the efficacy of speech intelligibility

improvement strategies using a phoneme test, namely, the confusion entropy

and an angular distance. The effect of a frequency-dependent gain was exem-

plarily investigated. The confusion entropy measure showed robust perception

in all but 17% of the token-listener pairs in the flat- gain condition and thus

demonstrated the validity of the results obtained at the most comfortable lis-

tening level. The proposed angular distance measure revealed that in 63% of

the token- listeners pairs, the main confusions remained unchanged despite

NAL-R, suggesting these are caused by acoustic properties of the chosen tokens

rather than the amplification condition. The results suggest that a compen-

sation strategy different than NAL-R would be needed to eradicate the main

confusion. It was also observed that NAL-R in combination with the individ-
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ual loss introduced new robust confusions in 30 cases. Phoneme recognition

tests and methods that analyze confusions on a token-level, as the ones used

in the experiments presented here, may be useful in the evaluation process of

hearing-instrument algorithms. The tests could be conducted with selected

robust tokens that have been shown to be correctly identified by NH listeners at

the SNRs used in the test. Knowing the token-specific consonant cues and using

a test that is focused on natural speech without context, a detailed diagnosis of

an individual listener’s speech loss seems possible and appropriate. A carefully

constructed speech test could be used as a diagnostic tool where individual CPs

of well characterized tokens may provide detailed information about a listener’s

hearing loss beyond what PTTs reveal.

2.6 Appendix

Additional information about the listeners who participated in the study can be

found in Table 2.1.
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Table 2.1: Information about all the listeners participating in the experiments. The columns
contain the following information: (i) label for each listener and the identifier for the left or
right ear, (ii) age of the listener, (iii) the pure-tone average of the audiogram of the ear, (iv) the
root means square error of the fitted audiogram, (v) the overall presentation level chosen by the
listener in the FG experiment, and (vi) the overall presentation level chosen by the listener in the
NAL-R experiment.

HI ear Age PTA RSME FG NALR

44L 65 10 11 82 77
44R 65 15 7 78 77
46L 67 8.3 9 82 85
46R 67 16.6 7 82 86
40L 79 21.6 5 79,81 80
40R 79 23.3 5 80 80
36L 72 26.6 8 68 75
36R 72 28.3 4 70 75
30L 66 30 3 80 79
30R 66 26.6 5 80 79
32L 74 35 3 79 81
32R 74 26.6 3 77 78
34L 84 31.6 6 84 85
34R 84 28.3 4 82 85
02L 82 45 2 83 88
02R 82 46.6 4 82 89

(m , s )e (74,4) (29,15) (5,2) (79,4) 81,5



3
Modeling Hearing Impairment within

the ESPM Frameworka

Abstract

Models of speech intelligibility (SI) have a long history, starting with

the articulation index (AI, ANSI S3.5, 1969), followed by the speech

intelligibility index (SII, ANSI S3.5, 1997) and the speech transmis-

sion index (STI, IEC 60268-16, 2003), to only name a few. However,

these models fail to accurately predict SI obtained with nonlinearly

processed noisy speech, e.g., phase jitter or spectral subtraction. Re-

cent studies predict SI for normal-hearing (NH) listeners based on

a signal-to-noise ratio measure in the envelope domain (SNRe n v ),

in the framework of the speech-based envelope power spectrum

model (sEPSM, Jørgensen and Dau, 2011; Jørgensen et al., 2013).

These models have shown good agreement with measured data in

various conditions, including stationary and fluctuating interferers,

reverberation, and spectral subtraction. Despite the advances in

modeling intelligibility in NH listeners, a broadly applicable model

that can predict SI in hearing-impaired (HI) listeners is not yet avail-

able. As a first step towards such a model, this study investigates to

what extent effects of hearing impairment on SI can be predicted

a This chapter is based on Scheidiger, C., Jørgensen, S., Dau, T. (2014).

33
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using the sEPSM framework. Our results indicate that, by only

modeling the loss of audibility, the model cannot account for the

increased speech reception thresholds (SRT) of HI listeners in sta-

tionary noise compared to NH listeners. However, this approach

can, to some extent, account for the reduced ability of HI listeners

“to listen in the dips” of fluctuating noise as compared to stationary

noise. The results further indicate that effects of an outer hair-cell

(OHC) loss (e.g., broader filters) on SI cannot easily be accounted

for by this model. These limitations are discussed and alternative

solutions are sketched out.

3.1 Introduction

Most communication between humans is based on speech. A loss of one’s

ability to communicate using speech can have a detrimental effect on one’s

social life. Hearing aids can help regain the ability to hear speech; however,

compared to the normal-hearing (NH) system, their performance is suboptimal,

especially in challenging acoustical environments, such as noisy rooms. In

order to resolve this problem, a better understanding of how humans perceive

speech is necessary. Modeling speech perception in HI listeners may represent

one way to achieve a more detailed understanding as well as a powerful tool for

the development and evaluation of hearing aids.

3.1.1 Speech-based envelope power spectrum model (sEPSM)

SI depends on the acoustic properties of the sound entering the ears and the

auditory system’s processing of the acoustic waveform. Macroscopic models

of speech recognition predict average intelligibility scores obtained for a large
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amount of speech material. They differ from microscopic models which con-

sider details of the speech signal (e.g., onsets and transitions) and predict the

intelligibility of small units of speech, such as phonemes. Macroscopic attempts

to model SI have a long history. A first such model, called the Articulation In-

dex (AI, ANSI S3.5, 1969), was developed in the early 1920s by researchers

at the Bell Labs who tried to improve SI in the American telephone network

(French and Steinberg, 1947; Allen, 1996b). The AI only considers effects of

energetic masking in crude auditory bands and its internal representation relies

on signal-to-noise ratios (SNRs) in 1/3 octave bands. It has been shown that the

predicitive power of the AI is limited in conditions with temporal distortions

(e.g., reverberation). Subsequent models, such as the SI index (SII, ANSI S3.5,

1997) and the speech transmission index (STI, IEC 60268-16, 2003), accounted

for a larger range of conditions as compared to the AI. Whereas the AI and SII

are based on the long-term spectrum of the stimulus and the noise, an extended

version of the SII (ESII, Rhebergen et al., 2006) reflects short-term effects and

can thus account for SI in fluctuating noise. In contrast to the AI, SII, and ESII

models, the STI utilizes a modulation-frequency selective analysis to consider

the change in the amplitude modulation of a processed (e.g., noisy) speech sig-

nal with respect to the clean speech signal. The STI is therefore able to account

for reverberant conditions. However, all these models fail in conditions with

non-linear stimulus processing (e.g., spectral subtraction).

Recent studies have predicted SI for NH listeners in a broader range of

conditions by using an SNR measure in the envelope domain of the acoustical

signal (SNRe n v , Jørgensen and Dau, 2011; Jørgensen et al., 2013). Instead of

measuring the reduction of the envelope modulations with respect to the clean

speech (as used in the STI), Jørgensen and Dau (2011) estimated the power ratio

of the envelope modulations in the noisy speech and the envelope modulations
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of the corrupting noise. The model obtains the envelope modulation power

by filtering the Hilbert envelopes of the time domain output of the peripheral

filters with a set of modulation filters ranging from 1-64 Hz (Jørgensen and Dau,

2011). A high ratio indicates a high potential of a particular speech segment to

contribute to intelligibility. This potential of providing intelligibility is averaged

over a whole speech signal and integrated over all modulation channels as

well as peripheral channels in order to predict the average recognition score.

Jørgensen and Dau (2011) showed that their results were consistent with the

STI predictions in “STI-friendly” conditions (e.g., reverberation and additive

noise). Furthermore, the SNRe n v metric correctly predicted SI in the condition

of spectral subtraction (noise reduction). In this condition, the AI and STI

predict improvements from the noise reduction algorithm, whereas listeners

do not experience any benefit.

The sEPSM is based on a long-term integration of the envelope power

and therefore fails to predict increased intelligibility in the case of fluctuat-

ing maskers. In order to compensate for this limitation, Jørgensen et al. (2013)

extended the model to a multi-resolution version, which analyses the stimuli

in short time frames, the duration of which is inversely related to the cut-off

frequency of the corresponding filter. Furthermore, the modulation filterbank

was extended by two filters centered at 128 and 256 Hz, respectively. The ex-

tended model has been shown to accurately predict SRTs in various types of

background noise, in particular stationary speech-shaped noise (SSN) as well

as various fluctuating interferers, including the fluctuating background noises

used in the present study (see Sec. 3.2). Despite the advances in modeling

intelligibility in NH listeners, a broadly-applicable model of SI in HI listeners

has not yet been presented. The present study presents a framework to model

SI in HI listeners based on the above described SNRe n v measure.
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3.1.2 Hearing impairment

An individual hearing loss is often described by an attenuation component as

well as a supra-threshold distortion component (Plomp, 1978). The attenuation,

represented by increased pure-tone detection thresholds, is able to account for

much of the between-listener variance of SI in quiet. For speech perception in

noise, the distortion component is thought to be responsible for the difficulties

experienced by HI listeners. The distortion component has usually been at-

tributed to reduced temporal and spectral resolution or to a deficit in temporal

fine structure (TFS) processing. The impact of these components on SI has

been highly debated.

A reduced spectral resolution in HI listeners compared to NH listeners is

strongly supported by psychoacoustic data (e.g., Glasberg and Moore, 1986). It

may be thought of as a broadening of the auditory filters, which could smear the

spectral details of the internal representation of speech in the auditory system.

In addition, broader auditory filters may increase the noise power falling into an

auditory filter, resulting in more masking of salient speech cues. Even though

NH studies have shown a decreased SI for spectrally smeared speech (Baer and

Moore, 1993), data to support a similar relationship between SI and spectral

resolution in HI listeners have been ambiguous (Buss et al., 2004; Summers

et al., 2013; Strelcyk and Dau, 2009).

The above described research has established a wealth of knowledge about

how a hearing loss affects psychoacoustic measures. However, the mechanisms

underlying the individual listener’s deficit to perceive speech in a given situation

are still not clear.
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3.1.3 Release from masking in speech percpetion

Various studies demonstrated a reduced MR for HI listeners (Festen and Plomp,

1990; George et al., 2006; Lorenzi et al., 2006; Bernstein and Grant, 2009; Strelcyk

and Dau, 2009). It has been argued that the reduced frequency selectivity may

partly be responsible for the reduced, or absent, MR in HI listeners. However,

a correlation between MR and frequency selectivity could not be established

(George et al., 2006; Strelcyk and Dau, 2009).

Reduced MR has also been linked to a decreased temporal resolution. A

correlation between temporal resolution and SI in fluctuating background has

been established in several studies (Hou and Pavlovic, 1994; Dubno et al., 2003;

George et al., 2006). The degree to which reduced temporal resolution is respon-

sible for the reduced MR remains unclear.

Christiansen and Dau (2012) compared HI listeners’ MR with NH listeners’

MR measured with vocoded stimuli (i.e., stimuli with degraded TFS) and found

a good correspondence between the two. This finding supports the salient

role of TFS for MR. However, it is questionable if TFS processing also affects

speech reception in other (non-speech) fluctuating backgrounds. Strelcyk and

Dau (2009) argued that TFS provides MR in condition where streaming (i.e.,

separating multiple talkers) is important but does not help in separating the

speech from random noise.

Oxenham and Simonson (2009) reported a decreasing MR as a function of

the stationary SRT of NH listeners, in an experiment where SRTs were decreased

by high- and low-pass filtering the speech. Inspired by Oxenham and Simonson

(2009), Bernstein and Grant (2009) argued that the decreased MR in HI listeners

might only be due to the increased stationary SRTs (see Fig. 3.1), i.e., that MR

in HI listeners was equivalent to MR in high- or low-passed conditions in NH

listeners. They supported their argument by calculating MR for NH and HI
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Figure 3.1: Masking relaease of HI listeners as function of their speech reception thresholds in
stationary noise as measured by Christiansen and Dau (2012).

listeners at the same SNR (i.e., at different points on the psychometric function:

high percentage correct for NH listeners and low percentage correct for HI

listeners) and found that the HI listeners exhibited only slightly decreased MRs

compared to NH listeners. Christiansen and Dau (2012) found the MR of NH

listeners for differently processed stimuli (i.e., vocoding, high and low-pass

filtering) to strongly depend on the type of processing, which contradicts the

view that MR is only depended on the stationary SRT.

Thus, there still exist different hypotheses as to why HI listeners have a

decreased MR. In conclusion, the findings suggest that both impaired TFS pro-

cessing and the loss of audibility may be important to account for the reduced

MR in HI listeners (Christiansen and Dau, 2012). A modeling approach to test

the different hypotheses may shed light on which deficits of the impaired system

are responsible for the reduced MR and to what degree.
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3.2 Methods

The MR data from Christiansen and Dau (2012) were simulated with different

versions of a modified sEPSM model. The simulations were run for three dif-

ferent noise types. One of them was a stationary speech-shaped noise (SSN),

the other two were fluctuating interferers: An 8-Hz sinusoidally amplitude-

modulated speech-shaped noise (SAM) and the international speech test signal

(ISTS; Holube et al., 2010b). The ISTS consists of recordings of female talkers

speaking six different languages that are segmented into short segments and

recombined in random order.

3.2.1 Model A: Audibility Loss

The models used in the present study represent extensions of the sEPSM model

as proposed by Jørgensen et al. (2013). The original model only processes

auditory bands whose root mean square (RMS) power exceeds the diffuse-

field hearing threshold in quiet (ISO 389-7, 2005). In the current study, an

audibility loss of the model was incorporated by adding the hearing thresholds

of individual HI listeners to the internal threshold of the model, such that the

number of bands processed by the model decreased.

3.2.2 Model F: Reduced frequency selectivity

Model F incorporates broader auditory filters, simulating the decreased spectral-

resolution typically observed in HI listeners. Auditory filter bandwidths can,

for example, be estimated by time-consuming psychoacoustic tests or through

otoacoustic measurements (Glasberg and Moore, 1990; Shera et al., 2002). For

the current study, no such data were available. Filter bandwidths were instead

estimated from a fitted function obtained from Fig. 3.23 in Moore (2007), which
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depicts filter-bandwidths as a function of hearing loss in dB. This fit served as a

starting point for the simulation and is not meant to accurately represent filter

bandwidths in individual listeners. The broadening factor b was obtained by:

b ( f ) =H L ( f ) ∗ (3.5−1)/60+1. (3.1)

It represents the ratio between the filter bandwidth of a NH listener and

the bandwidth of a listener with a hearing loss of H L at frequency f . With this

formula, a HL of 70 dB leads to four times broader filters as compared to NH

filters.

3.2.3 Model AF: Audibility loss & reduced frequency selectivity

Model AF combines the models A and F and simulates increased audibility

thresholds in combination with broader filters.

3.3 Results

In the simulations, the masking release obtained with the two fluctuating in-

terferers (i.e., SAM and ISTS) was calculated by taking the difference between

SRTSSN and SRTSAM or SRTISTS, respectively. A positive value indicates that the

listener was able to take advantage of the dips in the background. Three psy-

chometric functions, as seen in Fig. 3.2 (example for Model A), were simulated

for all 26 ears (i.e., 13 HI listeners). The two ears of a listener were combined by

selecting the better ear (i.e., the ear with the lower SRT). It can be seen that the

predictions for ear HI01L show a small benefit from “listening in the dips” in the

case of the SAM interferer and a larger benefit in the case of the ISTS interferer.
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Figure 3.2: Word recognition score predictions as function of SNR for the left ear of HI listener 01
in SSN, SAM and ISTS noise obtained from Model A.

3.3.1 Model A: Audibility

In order to compare the model simulations to the measured data of Christiansen

and Dau (2012), the model predictions are shown as a function of the measured

data. Figure 3.3 depicts four scatter plots: Three of them show SRTs in SSN

(upper left panel), SAM (upper right panel), and ISTS noise (lower left panel),

respectively. The lower right panel shows the MR, i.e., the difference between

the SAM/ISTS SRTs and the SSN SRT. The scatter plot for the SRTs in SSN noise

(upper left panel) shows that this audibility-loss based model fails to account

for the difficulties that HI listeners experience in the stationary masker: All but

one predicted SRTs were too low (i.e., the predicted SI was too good). The SRTs

for SAM noise (upper right panel) exhibited a similar trend, as all predictions

were lower than the measured SRTs. However, despite the model’s global un-

derestimation of the SRTs, the trends across listeners for SSN and SAM noise

were quite well predicted (Pearson’s correlation of 0.27 and 0.74, respectively).
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Figure 3.3: Measured versus predicted SRTs for individual HI listeners in SSN (top left), SAM
noise (top right), and ISTS noise (bottom left), along with measured versus predicted MR for
SAM and ISTS noise (bottom right). Predictions obtained using the mr-sEPSM with audibility
loss, Model A. If the model were to predict the data correctly, all points would lay on the diagonal
dashed line.

In the case of the ISTS SRTs (lower left panel), it can be seen that the model

failed completely, as it predicted NH performance for all (but one) HI listeners.

Interestingly, the model is able to account for the MR measured in the SAM

noise (diamonds in lower right panel). This is surprising, since MR data are by

definition, based on the SSN SRTs. However, the model overestimates the MR of

the HI listeners in the case of the ISTS noise (squares in the lower right panel).

Figure 3.4 shows the predicted MRs as a function of the SSN SRTs for SAM and
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ISTS noise. The simulations (Fig. 3.4) show a decrease of MR with increasing

SSN SRT similar to the data in Fig. 3.1. However, the predicted SSN SRTs are

higher than the coresponding data.
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Figure 3.4: Masking release of HI listeners as function of their stationary speech reception
threshold as predicted by the mr-sEPSM with audibility loss, Model A (cf. Fig. 3.1).

3.3.2 Model F: Reduced frequency selectivity

Figure 3.5 depicts the simulation results for Model F. The four panels show the

predictions as a function of the measured data for the 13 HI listeners. The upper

left panel shows the scatter plot for the SRTs in stationary noise. In the upper

right panel, the SRTs for SAM noise are shown. The SRTs for the ISTS noise

interferer are depicted in the lower left panel. Lastly, the differences between

SRTs in stationary noise and fluctuating noise, i.e., the MRs, are shown in the

lower right panel. The measured SRTs for SSN, SAM, ISTS show a large across-

subject variance. The predicted SRTs do not cover this range; in fact, they do not

change as a function of the bandwidths factors b ( f ) applied for the individual
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listeners, implying that the SRTs for the HI listeners remain unchanged when

compared to the NH predictions. This also explains the simulated MRs observed

for this model, which amount to about 4 dB, irrespective of the noise type, and

thus show no correlation with the measured values.
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Figure 3.5: Measured versus predicted SRTs for individual HI listeners in SSN (top left), SAM
noise (top right), and ISTS noise (bottom left), along with measured versus predicted MR for
SAM and ISTS noise (bottom right). Predictions were obtained using the mr-sEPSM with broader
filters, Model F.
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3.3.3 Model AF: Audibility & frequency selectivity

Figure 3.6 depicts the simulation results for Model AF. The measured data are

identical to those shown in Fig. 3.5. Compared to Fig. 3.5 it can be seen that

the spread of the predictions is greater. The audibility component clearly domi-

nates the predictions (cf. Fig. 3.3). Even though broader filters, considered in

isolation, did not have a noticable effect on the MR predictions (cf Fig. 3.5), they

decreased the accuracy of the MR predictions when applied in combination

with an audibility threshold (lower right panel Fig. 3.6).

3.4 Discussion

3.4.1 Predictive power of different model versions

Increasing the filter bandwidths in Model F did not account for any performance

deficits observed in the HI listeners; instead, Model F predicted SRTs in the

range of the NH SRTs, irrespective of the filter bandwidths (cf third row in

Table 3.1). Model AF, which incorporated broader filters as well as a loss of

audibility, predicted the SRTs less accurately than Model A, i.e., the broader

filters decreased the predictive power of the model. Overall, the influence of the

broader filters seems to be small, despite the assumption of up to four times

broader filters. Other modeling studies have also argued that broader auditory

filters do not represent a strong factor affecting SI in HI listeners (Kollmeier

et al., 2016).

The predictions of the ISTS SRTs are generally insensitve to the hearing-

loss simulations incorporated into the models, i.e., the predicted SRTs for HI

listeners were similar to the SRTs for NH listeners, except for one outlier in the

models A and AF (cf fourth column in Table 3.1). The predicted SRT values

are also generally too high. The ISTS signal consists of different female talkers
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Figure 3.6: Measured versus predicted SRTs for individual HI listeners in SSN (top left), SAM
noise (top right), and ISTS noise (bottom left), along with measured versus predicted MR for SAM
and ISTS noise (bottom right). Predictions were obtained using the mr-sEPSM with audibility
loss and broader filters, Model AF.

speaking six different languages. The average fundamental frequency (F0) of the

six talkers is 214 Hz (Holube et al., 2010b), whereas the F0 of the target speech

is 119 Hz (Christiansen and Dau, 2012). These differences represent important

cues to separate the different sources into streams. However, a simple HI model

solely based on envelope cues, as the one presented in this study, is blind to

streaming effects caused by F0 differences between talkers. Such streaming

effects may rely on TFS information which is not represented in the model.
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The models used in this study are therefore likely to predict higher SRTs than

measured in listeners.

Table 3.1: The summary of Pearson correlation coefficents shows that correlations are low in
general. Model A predicts the SRTs in SAM noise the best. Model AF exhibits a higher correlation
for the SSN noise than Model A does.

r, RMSE SSN SAM ISTS MR SAM MR ISTS
Model A 0.27, 3.68 0.74, 4.97 0.33, 6.59 0.48, 2.75 -0.07, 4.54
Model F 0.15, 5.45 0.08, 8.39 nan, 7.18 0.24, 3.34 0.05, 4.03
Model AF 0.46, 3.48 0.59, 6.52 0.33, 6.65 0.01, 4.01 0.03, 4.96

3.4.2 Prediction of masking release in HI listeners

As seen in Fig. 3.3 (lower right panel), the MRs in SAM could be accounted for by

the audibility-loss based model (A), except for one outlier, despite the inaccurate

predictions of SSN SRTs on which the SAM MR values are based. This suggests

that both the SSN SRTs and SAM SRTs predictions show an offset of about the

same value. It also suggests that audibility alone might be able to account for

the reduced MR in SAM noise. This is consistent with results from other studies

that observed a restored masking release in HI subjects when audibility was

restored in short time windows rather than on a long-term basis (Desloge et al.,

2010; Reed et al., 2016).

However, a clear limitation of the presented modeling results is that they do

not correctly describe the measured SRTs in HI listeners (cf columns two to four

in Table 3.1). The MR predictions are by definition a function of the SRTs in SSN;

the inaccurate SRT predictions in SSN therefore also question the validity of

the MR estimates. Better estimates might be obtained by using more complex

hearing loss simulations (i.e., adding temporal smearing, decreased temporal

resolution) or by changing the back-end processing, e.g., the integration of

peripheral and modulation channels.
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3.4.3 Model limitations

Modeling a hearing loss based on the linear gammatone model represents a

crude approximation. The human auditory system is highly nonlinear and

a hearing loss affects these non-linearities. Modeling a hearing loss without

considering non-linearities omits an important functional aspect of the system.

Given the physiological impairment, i.e., outer and inner hair-cell loss, it may

make sense to use a physiologically realistic model of the periphery instead

of incorporating psychoacoustic deficits (i.e., audibility loss or broader filters)

seperately. Other studies have shown that the non-linearities are crucial in

predicting a change in SI for HI listeners (Hossain et al., 2016). Furthermore,

to account for the lower SI of listeners at higher sound pressure levels, known

as roll-over effect, the non-linearities also play a crucial role (Studebaker et al.,

1999).

Outer hair cells (OHC) are the active parts in the cochlea responsible for

level compression. Studies indicate that outer hair-cell loss is associated with

broader auditory filters and a loss of compression (e.g., Ruggero and Rich, 1991;

Strelcyk and Dau, 2009). Modeling these two aspects separately may thus not

be reasonable; using a front end that links these two factors might yield more

realistic SI predictions.

3.5 Summary and conclusion

The effects of a sensorineural hearing loss on speech intelligibility are still being

investigated. Different hypotheses about how psychoacoustic measures, such as

temporal and spectral resolution as well as a deficit in TFS processing, are related

to SI have been presented in the literature. The modeling results described in

the present study suggest that the reduced MR in HI listeners in SSN noise might
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be accounted for by loss of audibility alone, whereas the MR obtained in the

presence of a competing talker cannot be described by reduced audibility alone,

but is mainly a consequence of a distortion loss.
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4
Estimating SNRenv based on Auditory

Nerve Firing Ratesa

Abstract

Speech intelligibility (SI) models aim to predict the human ability

to understand speech in adverse listening conditions. However,

most current speech intelligibility models are based on a strongly

simplified simulation of the auditory periphery, which limits their

ability to predict effects of hearing impairment on SI. The goal of the

present study was to combine an established speech intelligibility

model with the auditory signal processing of an auditory-nerve (AN)

model. Specifically, the back-end processing of the multi-resolution

speech-based envelope power spectrum model (mr-sEPSM; Jør-

gensen et al., 2013) was combined with the AN model by Zilany et

al. (2014). Signal-to-noise-ratios in the envelope domain (SNRe n v )

were calculated for normal-hearing listeners based on envelope

representations derived from the AN model’s instantaneous firing

rates. The SI predictions showed good agreement with human data

when the model was operated at a sound pressure level of 50 dB

assuming only medium-spontaneous-rate fibers. However, when

all fiber types and presentation level of 65 dB SPL were considered,

a This chapter is based on Scheidiger et al., (in preparation).

51
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the model overestimated SI in conditions with modulated noise in-

terferers. A modulation-frequency range analysis showed that these

prediction errors mostly resulted from high-frequency modulation

channels, indicating that a reduction of the modulation-frequency

range considered in the model may be advantageous.

4.1 Introduction

Speech intelligibility (SI) is the measure of how well speech is understood as a

function of adversity of a given listening situation. It is quantified as a percentage

of correctly identified speech units, e.g., number of correctly identified words in

a sentence. SI can be measured by listening tests with human listeners. Models

of SI aim to predict the results of listening tests by means of a computer model,

typically using the speech stimulus (e.g., speech in noise) as well as an additional

reference signal (e.g., the clean speech or the noise alone).

SI models based on the signal-to-noise ratio in the envelope domain (SNRe n v )

have been shown to yield accurate predictions in a wide range of listening con-

ditions, e.g., stationary and fluctuating background noises (Jørgensen and Dau,

2011; Jørgensen et al., 2013). The SNRe n v framework utilizes Hilbert envelopes

derived from the output of a bank of gammatone filters, analyzing the temporal

fluctuations of these envelopes using a modulation filterbank. In each modu-

lation filter, the envelope power of the noisy speech, i.e., the mixture of target

speech signal and interfering noise signal, is compared to the power of the noise

signal by the means of a signal-to-noise ratio (i.e., SNRe n v ). The higher the

SNRe n v , the greater the potential contribution of the corresponding channel

to SI. While this approach yields a powerful decision metric for predicting SI

measured at medium levels in normal-hearing (NH) listeners, it is limited in
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accounting for effects of presentation level and hearing impairment (HI). Conse-

quently, attempts to incorporate a hearing impairment have led to mixed results

(see Chapter 3). These limitations are, at least partially, related to simulating

the cochlear processing by means of a linear gammatone filterbank, which rep-

resents a simplification of the highly complex and non-linear functionality of

the cochlea. To overcome this functional limitation, the present study explores

the SNRe n v concept in combination with a non-linear, physiologically inspired

model of the auditory periphery using envelopes derived from firing rates of an

auditory nerve (AN) model.

Other studies have used AN models to predict speech intelligibility. Zilany

and Bruce (2007) assessed the spectrogram-like firing patterns, i.e., neurograms,

from multiple AN fibers along the basilar membrane with the spectro-temporal

modulation index (STMI), a model that assesses SI based on how the audi-

tory cortex processes spectro-temporal ripples (Elhilali et al., 2003). The clean

speech signal at a level of 65 dB serves as a reference template. The deviation, i.e.,

the distance as assessed by a L2-norm, of a noisy signal from this reference is in-

versely correlated to SI. Zilany and Bruce (2007) predicted SI for both NH and HI

listeners by adjusting the inner and outer hair-cell loss factors of the AN model

for individual subjects. This AN-model based STMI qualitatively matched the

word recognition scores of NH and HI subjects for low- and high-pass filtered

speech, as well as presentation-level effects at three different signal-to-noise

ratios (SNRs) in stationary noise. However, the study did not address the in-

fluence of fluctuating maskers on SI and only tested a limited range of SNRs.

Furthermore, all predictions were averaged over a group of listeners with similar

audiograms while the accuracy of individual predictions was not assessed.

Bruce et al. (2013) extended the AN-based SI model approach to also ac-

count for fluctuating noise maskers. Instead of using the STMI model to process
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the neurograms, they used the Neurogram Similarity (NSIM) metric (Hines and

Harte, 2010; Hines and Harte, 2012). The NSIM metric compares a neurogram

for a given condition to a template neurogram obtained for the NH configura-

tion of the AN model at 65 dB presentation level in quiet. It compares the two

neurograms, which it treats as images, based on the mean (luminance), the vari-

ance (contrast) and the correlation (structure) of pixel values in time-frequency

segments. The model predictions were compared to perceptual data from Léger

et al. (2012), where NH and HI listeners were presented with low-pass and band-

pass filtered VCV stimuli in noise. The NSIM model yielded better predictions

than the extended speech intelligibility index (ESII, Rhebergen and Versfeld,

2005; Rhebergen et al., 2006).

Both the STMI and NSIM models use reference signals to asses the degrada-

tion of a speech signal. In contrast to these approaches, Hossain et al. (2016)

proposed a reference-free model based on neurograms derived from an AN

model. Third-order statistics obtained from neurograms were used to predict

SI. These statistics, also referred to as bispectrum, capture the extent of phase

coupling between frequency components. Compared to second-order statistics

of the signal (e.g., the power spectrum or the autocorrelation), bispectra take

phase information into account. This allows to account for any changes to

the nonlinearities in the periphery due to a hearing loss. Phoneme and word

recognition test data from Studebaker et al. (1999) were used for verification.

The model successfully accounted for effects of presentation level, hearing loss,

audibility, and additive stationary noise. The proposed metric could account

for SI of phonemes and words, but failed to predict sentence recognition. The

reference-free approach is also bound to fail in conditions with speech-like

maskers, as the model has no means to distinguish between masker and target.

Furthermore, while the bispectrum is a powerful signal processing approach,
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there is no physiological or behavioral evidence that the brain uses bispectra-

like features.

The AN based SI models described above are all limited to predicting speech

intelligibility of phonemes or words as opposed to whole sentences. Further-

more, the mentioned studies considered only stationary masking noise, except

for Bruce et al. (2013), where SI was predicted in both stationary and fluctuating

noise. However, Bruce et al. (2013) compared only two noise types and neither

of them was speech-like. In the present study, the same AN model as in Hossain

et al. (2016) was used to predict SI of sentences mixed with stationary noise,

sinusoidally amplitude-modulated noise, and a speech-like interferer in NH lis-

teners. The proposed metric in this study extends the SNRe n v framework used

in the speech-based envelope power spectrum models (sEPSM, Jørgensen and

Dau, 2011; Jørgensen et al., 2013) towards accounting for effects of presentation

level and hearing impairment.

4.2 Model description

The model proposed in the present study consists of two main stages, each sub-

divided into further stages. These two main stages are a peripheral front-end

stage, represented by the AN model, and a decision stage, which converts the

firing patterns at the output of the AN model to an SNRe n v value and subse-

quently to a SI score (see Fig. 5.1). The noisy speech signal (SN) and the noise

alone (N) serve as inputs to the model.

4.2.1 Front end: AN Model

The front end of the model consists of an auditory nerve model (Zilany et al.,

2014). The responses of the model have been validated against a large dataset



56 4. Estimating SNRenv based on Auditory Nerve Firing Rates

of AN recordings from the literature (e.g., Carney, 1993; Bruce et al., 2003; Zi-

lany et al., 2009; Zilany et al., 2014). The AN model consists of several stages,

each providing a phenomenological description of a major part of the auditory

periphery, starting at the middle ear and ending at a specific AN synapse. The

input to the model is an acoustic waveform (in pascals) which is first processed

by the middle-ear (ME) filter. After the ME filter, the signal is further passed

through a basilar membrane (BM) filter. A feed-forward control path of the BM

filter controls the gain and bandwidth to account for level-dependent proper-

ties in the cochlea, e.g., less amplification and broader filters at higher levels.

The inner-hair-cell (IHC) stage converts the mechanical BM response to an

electrical potential, which is further low-pass filtered before it is applied to the

IHC-AN synapse model. The synapse model determines the spontaneous rate,

adaptation properties, and rate-level behavior of the AN model. In a last stage,

the spike times are generated by a non-homogeneous Poisson process that

includes refractory effects. The working of the IHCs and the outer hair cells

(OHCs) in the model may be adjusted by specifying the amount of IHC and

OHC damage.

4.2.2 Back end: sEPSM

The back-end is inspired by the multi-resolution speech-based envelope power

spectrum model (mr-sEPSM; Jørgensen et al., 2013), which predicts SI based

on the SNRe n v metric. The model is not meant to be an accurate functional

representation of the physiological stages of the auditory pathway. It rather

models the behavioral modulation sensitivity of the human auditory system

with a modulation filterbank (Dau et al., 1997; Dau et al., 1999). The average

firing rate of each simulated characteristic frequency (C F ) is filtered by this

modulation filterbank. In each modulation band, specified by the center fre-
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quency of the filter fm , the envelope power
�

P (C F, fm )
�

of the input signals, i.e.,

the noisy speech mixture (SN ) and the noise signal (N ), is estimated in time

windows. The duration of these time windows is defined as the inverse of the

respective modulation filter’s center frequency ( fm ). Thus, short time windows

are applied for high-frequency and long time windows for low-frequency modu-

lation bands. The envelope powers PSN (C F, fm ) and PN (C F, fm ) are compared

to each other by calculating the SNRe n v (C F, fm ):

SN Re n v (C F, fm ) =
PSN −PN

PN
. (4.1)

The greater the ratio, the higher the contribution of the considered time

window to SI. In a further step, the SNRe n v values are averaged across time

windows and integrated across all C F s and modulation bands using the root of

a sum of squares. The resulting integrated SNRe n v To t is lastly converted to a

percentage correct using a fitting condition.
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Figure 4.1: Structure of the proposed model: The auditory-nerve model estimates average firing
rates for 21 C F s along the basilar membrane for both the noisy speech signal (SN ) and the noise
signal (N ). The firing rates are further processed by a modulation filterbank. At the output of
each filter the envelope powers PSN and PN are estimated in time windows and compared by
means of a signal-to-noise ratio (SNRe n v ). The ratio is averaged across time and integrated across
both C F and modulation filters. In a last stage, the integrated SNRe n v To t is transformed to a
percentage correct.
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4.3 Methods

4.3.1 Speech and noise material

The stimuli used for the modeling work were similar to the speech stimuli used

in Christiansen and Dau (2012). The stimuli consisted of natural meaningful

Danish five-word sentences from the CLUE corpus (Nielsen and Dau, 2009).

Ten sentences of the speech corpus were chosen for the simulations. All simu-

lation results were averaged over these ten sentences in order to obtain stable

predictions. The sentences were recorded from a male talker with an average

fundamental frequency (F0) of 119 Hz. Behavioral data were available for three

different interferers: (i) speech-shaped noise (SSN), a stationary masker with a

long-term spectrum identical to the average of all sentences in the study, (ii) an

8-Hz sinusoidally amplitude-modulated (SAM) speech-shaped noise, and (iii)

the international speech test signal (ISTS; Holube et al., 2010a) which consists

of natural speech from six female talkers speaking different languages. The

ISTS signal was created by truncating recorded sentences into segments and

randomly remixing the segments, yielding a largely unintelligible signal with

natural speech properties in terms of periodicity and modulation (average F0:

207 Hz). The measured speech reception thresholds (SRTs) in NH listeners,

which were obtained directly using an adaptive procedure, were made available

by Christiansen and Dau (2012). For the model simulations, the simulated input

SNRs ranged from -21 dB in 3-dB steps up to 12 dB. This range covers the SRTs

for all three noise types, which are at -18.3 dB, -9 dB, and -3.1 dB for the ISTS,

SAM, and SSN interferers, respectively.
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4.3.2 Model configurations

Different configurations of the front end and the back end of the model were

tested in this study. The model front end always consisted of 21 C F s (125, 160,

200, 250, 315, 400, 500, 630, 800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000,

6300, 8000 Hz). If not mentioned otherwise, the back end’s modulation filter-

bank consisted of the nine modulation filters used in the mr-sEPSM (Jørgensen

et al., 2013), namely a third-order butterworth low-pass filter with cut-off fre-

quency of 1 Hz, and band-pass filters with center-frequencies of 2, 4, 8, 16,

32, 64, 128, and 256 Hz. For all configurations, the SNRe n v To t values obtained

in the SSN condition were used for fitting. A non-linear fitting algorithm was

applied to iteratively estimate the two parameters a1 and a2 of the following

logistic function in order to convert SNRe n v To t to S I :

S I (SN R ) =
100

1+ e a1SN Re n v To t (SN R )+a2
, (4.2)

where S I is the SI expressed as percentage correct and SNRe n v To t is the

total SNRe n v integrated across all modulation channels and all C F s. In order to

quantify the accuracy of the model predictions, the predicted SRT was obtained

as the 50% point on the predicted psychometric function and the prediction

error E was calculated as E = SRTp r e d i c t e d −SRTme a s u r e d .

“Linear” operation mode

As a first step, the front end of the model was configured such that it behaves

as similarly as possible to the linear gammatone filterbank used in the original

mr-sEPSM model. This configuration was used to verify the successful coupling

of the front end and the back end. In order to obtain a linear behavior in the AN

model, only medium spontaneous-rate fibers were selected. Out of the three
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available fiber types (LSR: low spontaneous rate; MSR: medium spontaneous

rate, and HSR: high spontaneous rate), the MSR fibers show the shallowest rate-

level curves, i.e., their average firing rate does not change as much as a function

of level as for the other two types. Furthermore, the model was operated at an

overall presentation level (OAL) of 50 dB sound pressure level (SPL), at which the

BM filter does not exhibit any broadening due to the forward-feeding feedback

loop described above. The SNRe n v To t values obtained in the SSN condition

were used for fitting according to Eq. 4.2.

“Realistic” operation mode

The human auditory system consists of HSR, MSR, and LSR fibers. For the

realistic model configuration it was assumed that 60% of all fibers are HSR, 20%

MSR, and 20% LSR (Zilany and Bruce, 2007). The OAL was set to 65 dB SPL,

the same level at which the NH SI data were collected (Christiansen and Dau,

2012). To further evaluate the model behavior for lower presentation levels, an

OAL of 50 dB SPL was additionally considered in the model simulations. The

SNRe n v To t values obtained in the SSN condition at an OAL of 65 dB SPL were

used for fitting according to Eq. 4.2.

4.4 Results

“Linear” operation mode

Figure 4.2 shows the SI predictions (dots) as a function of the input SNR. The SI

predictions decrease with decreasing SNRs. A psychometric function as defined

by Eq. 4.2 was fitted to the predictions (dashed lines). From this function, the

SRT (SI= 50%) was estimated. Note that the SSN condition (red) was used

for fitting, such that the model predictions fit the data by definition for this
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condition. However, it can also be observed for the other conditions (SAM,

green; ISTS, blue) that the predicted SRTs line up with the SRTs measured in

human listeners (squares). The SRT error E did not exceed 0.8 dB for any of the

three interferers.
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Figure 4.2: Simulated SI depicted as a function of the input SNR for the SSN (red), SAM (green),
and ISTS (blue) interferers obtained with the model’s “linear” operation mode (only MSR, 50 dB
SPL). The round dots represent the simulated SI predictions for each input SNR. The dashed
lines depict psychometric functions (Eq. 4.2) fitted to the predictions. The squares indicate the
SRTs measured in NH listeners (at 65 dB SPL), as provided by Christiansen and Dau, 2012.

“Realistic” operation mode

Figure 4.3 shows the SI predictions as a function of the input SNR for the model’s

“realistic” operation mode (60% HSR, 20% MSR, 20% LSR, 65 dB). The measured

SRT lines up with the predictions for the SSN interferer (red), which was to be

expected as this is the fitting condition. However, the model strongly overes-

timated SI for the SAM (green) and ISTS (blue) interferers, leading to very low

predicted SRTs. Compared to the measured SRTs, there was an offset of the

predicted SRTs for SAM and ISTS of -8.7 dB and -5.4 dB, respectively.



62 4. Estimating SNRenv based on Auditory Nerve Firing Rates

­21 ­18 ­15 ­12 ­9 ­6 ­3 0 3 6 9 12
SNR [dB]

0

20

40

60

80

100

S
I [

%
]

OAL = 65dB SPL, SR: ALL

SI Model Predictions

ISTS (E=­5.4dB)
SRT
SAM (E=­8.7dB)
SRT
SSN (E=0.1dB)
SRT

Figure 4.3: Simulated SI is depicted as a function of the input SNR for SSN (red), SAM (blue),
and ISTS (green) obtained with the model’s “realistic” operation mode (ALL SR, 65 dB SPL).
The round dots represent the simulated SI predictions for each input SNR. The dashed lines
depict psychometric functions (Eq. 4.2) fitted to the predictions. The squares indicate the SRTs
measured in NH listeners, as provided by Christiansen and Dau, 2012.

Analysis of modulation-frequency range

Figure 4.4 shows the SRT error (E ) as function of the number of modulation

channels included in the analysis of the back end. For example, for the data point

reflecting 8 Hz as the highest modulation channel, all modulation channels up

to and including 8 Hz (i.e., 1, 2, 4, and 8 Hz) were used in the analysis. Panel A

shows the performance of the different model configurations at an OAL of 50 dB

SPL, while panel B depicts the same at an OAL of 65 dB SPL. It should be noted

that the E for SSN at OAL = 65 dB SPL (red dots in panel B) stays quasi-constant

at a value close to zero since this was the fitting condition. In contrast, the E

for SSN at OAL = 50 dB SPL (red dots in panel A) shows deviations from 0 as

the fitting was not adapted to the OAL, i.e., it was also based on the SSN results

obtained at an OAL of 65 dB SPL. An E < 0, as depicted for SSN in panel A

(red dots), indicates that the predicted SRTs were lower (i.e., SI better) than the

measured SRTs, which is in contrast to what one might expect for a lower levels,

such as 50 dB SPL.
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Figure 4.4: SRT error for the three noise interferers as a function of the highest modulation
channel that was used in the analysis. Panel A) shows the error for an OAL of 50 dB, Panel B) for
an OAL of 65 dB. The SSN interferer in Panel B) was the fitting condition.

For an OAL of 50 dB SPL, the errors for the SAM and ISTS interferers de-

creases with increasing number of included modulation channels. The error

curves converge to E ≈−3 dB, the minimum, when all channels are included.

Note that if SSN at an OAL of 50 dB would have been used as a fitting condition,

instead of SSN at an OAL of 65 dB, all the errors in panel A would be shifted

up by about 3 dB and the predictions would thus almost be perfect (E ≈ 0 dB)

when using all modulation channels. This is consistent with the excellent fit

between the model predictions and the data observed in Fig. 4.2 for the “linear”

operation mode, where an OAL of 50 dB SPL was used (in combination with only

MSR fibers). However, for an OAL of 65 dB SPL, there is no clear convergence,

implying that there is no model configuration that works for all three interferers.

The smallest mean average SRT error (MAE) (i.e., the best model configuration)

was obtained for a model with modulation channels ranging from 1 Hz to 8 Hz

(MAE= 1.6 dB). The configuration with modulation channels ranging form 1 Hz

to 64 Hz showed the second smallest error (MAE= 2.5 dB). In this configura-

tion, the SRT in SSN and SAM is well accounted for, whereas the SRT for the

ISTS interferer is predicted as too low (i.e., too good). Model configurations
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with modulation channels of 128 and 256 Hz substantially over-predicted SRT

differences between the different interferers, as also seen in Fig. 4.3.
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Figure 4.5: Simulated SI is depicted as a function of the input SNR for SSN (red), SAM (blue),
and ISTS (green) obtained with the model’s “realistic” operation mode (ALL SR, 65 dB SPL) for
back ends with modulation channels ranging from 1-8 Hz (panel A) and 1-64 Hz (panel B). The
round dots represent the simulated SI predictions for each input SNR. The dashed lines depict
psychometric functions (Eq. 4.2) fitted to the predictions. The squares indicate the SRTs measured
in NH listeners, as provided by Christiansen and Dau, 2012.

Figure 4.5 illustrates the simulated psychometric functions for the two model

configurations that showed the smallest MAE in the “realistic” operation mode

(ALL SR, 65 dB SPL). Panel A shows the simulations (dots) and the fitted psycho-

metric function (dashed lines) for the model configurations that only considered

the four lowest modulation channels, i.e., 1, 2, 4 and 8 Hz. The SSN condition

(red; fitting condition) and the ISTS condition (blue) are well accounted for. The

SRT for the SAM interferer (green) is predicted as too high (i.e., too bad). It can

also be seen that the slopes of the pyschometric function are shallower than in

Fig. 4.2 and 4.3. Panel B shows the predictions for the model with modulation
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channels ranging from 1 to 64 Hz. In this configuration, the SSN and SAM con-

dition are well accounted for, whereas the SRT in the ISTS condition is predicted

as too low (i.e., too good).

4.5 Discussion

The model presented in this study represents an extension of the SNRe n v frame-

work. Instead of predicting SI based on the envelope power derived from outputs

of a linear gammatone filterbank, the model derives the envelope power from

instantaneous firing rates from an AN model. The model worked well for the

“linear” operation mode, in which the AN model operates in its most linear way,

by only considering the MSR fibers and by scaling down the OAL to 50 dB. This

is in agreement with the results obtained with the original mr-sEPSM using

the same stimuli. For the “realistic” operation mode in which all fiber types

(LSR, MSR, and HSR) were considered at a realistic level of 65 dB, the model

underestimated the SRTs for the modulated interferers, thus showing poorer

performance.

An analysis of the modulation-frequency range revealed that mostly the two

highest modulation channels (128 and 256 Hz) contributed to the deviation of

the predicted SRTs from the measured SRTs in the “realistic” operation mode.

Reducing the modulation-frequency range to 64 Hz (Fig 4.5, Panel B) yielded a

model that was able to account well for the SSN and SAM interferer, however,

the model underestimated the ISTS SRT by more than 5 dB. This deviation may

partly be accounted for by the perfect streaming assumed in the model, which

is represented by the fact that the model has a perfect internal representation of

the noise signal. Even though the difference in F0 between the interferer and the

target may help a human listener to segregate the two streams, the segregation
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will likely not be perfect. This less-than-perfect segregation could lead to higher

SRTs in human listeners as compared to the model.

In the “realistic” operation mode, the model configuration with modulation

filters up to 64 Hz must be considered the most promising model configura-

tion. This might seem counter-intuitive as it is only the second best model

in terms of MAE, second to the model with modulation filters ranging from

1-8 Hz. However, the latter model configuration (1-8 Hz) exhibited unrealis-

tically shallow slopes of the psychometric functions. Further evidence that

the modulation-frequency range from 1-64 Hz might be the most appropri-

ate was provided by the original sEPSM ( fm : 1− 64 Hz; Jørgensen and Dau,

2011) and the STMI models ( fm : 2− 32 Hz; Zilany and Bruce, 2007) that use

the same or similar modulation frequency ranges. A possible explanation as

to why the modulation-frequency range needed to be reduced as compared to

the mr-sEPSM ( fm : 1−256 Hz; Jørgensen et al., 2013) is the adaptation in the

front end considered in the present study (i.e., the AN model), which was not

represented in the front end of the original model. The adaptation enhances

transients/onsets and thereby acts as a modulation enhancer. This modula-

tion enhancement leads to high SNRe n v , especially in the higher modulation

channels where fast-acting transients are represented. Whereas the mr-sEPSM

benefitted from these higher modulation channels to account for the difference

between steady and fluctuating interferers, these channels respond too strongly

to the adaptaion in the front end of the proposed model.

In a further analysis using an OAL of 80 dB (not shown) and modulation

filters from 1-64 Hz, the differences between the different SRTs increased even

more, i.e., the predictions for the SAM and ISTS SRTs were much lower than

their measured counterparts. While one might expect intelligibility to improve

slightly with increasing levels, the effects should be within a few dB. Even though
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it was originally intended to extend this model approach to HI listeners, the

level-limitation effects prevented the authors from pursuing these plans. One

major limitation of the model, which might contribute to the difficulties of

integrating the AN model into the SNRe n v -based framework, is the assumption

of linearity that is intrinsically embedded in the SNRe n v decision metric, i.e., it

is assumed that the difference between the power of the noisy speech and the

power of the noise alone estimates the power of the clean signal (see Eq. 4.1).

While the AN model might be quasi-linear when only considering MSR fibers

and an OAL of 50 dB, it is highly non-linear if all fibers are considered at realistic

presentation levels. Other back-end decision metrics, such as correlation or

distance-based metrics, may therefore be more appropriate in combination

with the AN model. This is in agreement with Bruce et al. (2013), who used

correlation metrics, and with Zilany and Bruce (2007), who used a distance

metric.

Despite the difficulties discussed above, the use of an AN model to suc-

cessfully predict SI is highly desirable as it may bridge the gap between psy-

chophysics and physiology. In other words, model predictions may be compared

to predictions that are derived from actual auditory nerve recordings in animals.

In addition to the results shown in the present study, different methods of cou-

pling the AN-model front end and the mr-sEPSM back end were investigated.

A method that gave favorable results was the use of neural metrics (i.e., SUM-

CORs, e.g., Louage et al., 2004) to extract envelope information from actual spike

trains. The Fourier transform of a SUMCOR represents the power spectrum of

the envelope of the time signal, in the same way that a Fourier transform of an

autocorrelation function of a time signal is equivalent to the power spectrum

of that time signal. By applying the modulation filterbank to the magnitude

spectrum of the SUMCOR in the frequency domain, the envelope power in each
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modulation band can be estimated. It should be noted that this was not done in

multiple time windows, but instead over the whole signal duration. The SNRe n v

can be derived by estimating the envelope power for both the noisy speech and

the noise signal and comparing them according to Eq. 4.1. Predictions obtained

in this way (not shown) showed promising results for the SSN and SAM interfer-

ers. However, the SUMCOR calculations are computationally heavy, as they are

based on actual spike times and not instantaneous rates. Furthermore, these

spike trians are shuffeled to increase the statistical power. While this bridge is

certainly interesting, it may not preferable as a speech intelligibility model.

4.6 Summary and conclusion

Previous studies have demonstrated the predictive power of SI models based

on the SNRe n v framework. The present study investigated the extension of

this framework to include the non-linear processing of the auditory periphery

up to the auditory-nerve synapse. The rationale behind that was that these

non-linearities are important for explaining level effects and especially effects

of hearing loss. Instead of predicting SI based on the envelope power derived

from outputs of a linear gammatone filterbank, the proposed model derives

the envelope power from the instantaneous firing rates of an AN model. The

proposed model framework was shown to work well in restricted conditions

where only MSR fibers and an OAL of 50 dB were considered. For realistic

conditions (OAL = 65 dB, LSR, MSR, and HSR fibers), the model predicted

the SRTs of the modulated interferers (SAM and ISTS) as too low (i.e., SI as

too good). It was shown that a modulation filter bank with fewer modulation

channels (1-64 Hz) resulted in reasonable predictions. It is argued that higher

modulation channels are too sensitive to the onsets of the adapted stimuli.
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Furthermore, the incompatibility of the non-linear front end with the SNRe n v

decision metric, which implicitly assumes linearity, was discussed. Alternatively,

back ends based on a cross-correlation or distance metric may be considered

in combination with the AN-model.
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5
Modeling Speech Intelligibility in

Hearing-Impaired Listenersa

Abstract

Speech intelligibility (SI) models aim to predict the human ability

to understand speech in adverse listening conditions, typically us-

ing strongly simplified representations of the auditory periphery.

The present study focuses on predicting SI in hearing-impaired

listeners by taking the highly non-linear peripheral processing of

the auditory system into account. The front-end processing of an

auditory-nerve (AN) model was combined with a correlation-based

back end inspired by the vowel-coding hypothesis of stable rate

patterns in the inferior colliculus (Carney et al., 2015). The pro-

posed model assesses the correlation between the noisy speech and

the noise alone, as represented by the AN model’s instantaneous

firing rates, assuming an inverse relationship with SI. The use of the

noise alone as a reference signal is inspired by the speech-based

envelope power spectrum model (sEPSM Jørgensen and Dau, 2011;

Jørgensen et al., 2013). SI data obtained by Christiansen and Dau

(2012) in normal-hearing (NH) and hearing-impaired (HI) listeners

in conditions of stationary speech-shaped noise (SSN), sinusoidally

a This chapter is based on Scheidiger et al., (in preparation).
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amplitude-modulated noise (SAM), and speech-like noise (ISTS)

were considered for the simulations. The NH listeners’ SI data could

be accounted for accurately for all noise types, and across presenta-

tion levels. The HI listeners’ data were predicted by adjusting the

front end parameters estimating the inner and outer hair-cell loss

based on the audiogram of the listeners. The predictions showed a

good agreement with the measured data for four out the thirteen

listeners and a reasonable agreement for eight listeners. The work

may provide a valuavle basis for quantitatively modeling individual

consequences of inner and outer hair-cell loss on speech intelligi-

bility.

5.1 Introduction

Hearing-impaired (HI) listeners exhibit more difficulties in understanding speech

in adverse listening conditions as compared to normal-hearing (NH) listeners.

These difficulties can be quantified using speech intelligibility (SI) tests. A better

understanding of SI in HI listeners could help improve hearing-aid algorithms

and fitting procedures (Kates and Arehart, 2005; Hossain et al., 2016). However,

performing listening tests with real subjects is a complex and time-consuming

process. In order to better understand the impact of hearing deficits on SI in

various conditions and to additionally avoid time-consuming listening tests, SI

prediction models may serve as valuable tools.

Various NH SI models have been adapted to account for SI in HI listeners.

The speech intelligibility index (SII) for NH listeners uses signal-to-noise ratios

(SNRs) in critical bands to asses SI (French and Steinberg, 1947; Kryter, 1962;

ANSI, 1997). It further includes a spread of masking function, which adds
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fractions of the SNR in one band to neighboring channels. In order to adapt

the NH model to HI listeners, an empirically determined desensitization factor

based on the pure-tone sensitivity (i.e., audiogram) was introduced (Pavlovic,

1986; Magnusson et al., 2001). This desensitization reduces the estimated SII

in each band by multiplying it with a factor decreasing from one to zero for

hearing losses ranging from 15 to 94 dB.

Kates and Arehart (2005) proposed a SI model extending the SII framework

by replacing the standard SNR calculation of the SII by a signal-to-distortion

ratio (SDR) derived from the magnitude squared coherence. The coherence

SII (CSII) calculates the SDR between the clean signal and the signal distorted

by the speech transmission channel. The model was used to predict HI and

NH listeners’ SI in conditions in which the transmission channel introduced

non-linear distortions, such as peak clipping. For the HI listeners, the transmis-

sion channel also consisted of a hearing aid that amplified the distorted signal

according to the HI listener’s specific NAL-R prescription. The SDR derived

from the magnitude squared coherence was able to account for the difference

in SI between NH and HI listeners in these distorted conditions.

The critical-band filtering in the CSII and SII models is a crude approxima-

tion of the human auditory signal processing since a linear model is employed

to simulate a highly non-linear system. Thus, these models do not fully repre-

sent the physiology of the system but merely its healthy functioning at average

conversation levels, i.e., at about 65 dB sound pressure level (SPL). Detailed

physiological impairments of the system or non-linear level effects cannot

be simulated using such linear models. Other approaches have used more

elaborate models of the auditory periphery to model level effects and the con-

sequences of outer hair-cell loss versus inner hair-cell loss on SI. One such

elaborate model is an auditory-nerve (AN) model that has been developed to
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describe the temporal properties of auditory nerve spike trains from different

studies in cats and other species (e.g., Carney, 1993; Bruce et al., 2003; Zilany

et al., 2009; Zilany et al., 2014). The model has also been adapted to the sharper

human cochlear tunning (Shera et al., 2002).

Zilany, Bruce, and other colleagues have used this AN model as front-end

processing for SI models (Zilany and Bruce, 2007; Bruce et al., 2013; Hossain

et al., 2016). The internal representations of these SI models are spectrogram-

like neurograms. Two of these models use a clean reference signal (at 65 dB

SPL) to assess SI. The assessment was either performed through a correlation-

based metric (NSIM Bruce et al., 2013) or a distance metric (STMI Zilany and

Bruce, 2007). Hossain et al. (2016) proposed a reference-free model based on

bi-spectra of the target signal. These SI models based on the AN model have

shown promising results for CV and word recognition test, but do not account

for sentences intelligibility.

SI models based on the signal-to-noise ratio in the envelope domain (SNRe n v )

have been shown to yield accurate predictions in a wide range of listening con-

ditions for NH listeners, e.g., stationary and fluctuating background noises

(sEPSM Jørgensen and Dau, 2011; Jørgensen et al., 2013). These models use the

noise signal as reference, instead of the clean signal. The more the noise masks

the speech energy and the speech modulations, the more SI is degraded. This

has been shown to be a powerful metric that also accounts for effects of noise

reduction despite an increase of the SNR (in the energy domain). However, the

SNRe n v decision metric assumes linearity in the peripheral processing and is

therefore limited in its use to predict SI based on a non-linear peripheral model.

The aim of the present study was to adapt the decision metric of the sEPSM

model to work with a AN model front end. Inspiration for such a metric comes

from a model of vowel coding in the midbrain proposed by Carney et al. (2015).



5.2 Model description 75

Their proposed neural code for vowel sounds was shown to be robust over a

wide range of sound levels and in background noise. It is derived from the AN

model responses (Zilany et al., 2014). The code is based on the phenomenon

that speech, especially vowels, induce systematic amplitude fluctuations in AN

responses close to the fundamental frequency (F0). These F0-related neural

fluctuations create patterns of amplitude contrasts across neurons tuned to

different C F s. These patterns are robust across presentation level and at mod-

erate levels of background noise. This study proposes to assess these patterns

by using a correlation-based metric comparing the noisy speech signal (SN)

to the interfering noise (N), thereby applying the sEPSM idea to quantify the

degrading influence of the masking noise on the target speech.

5.2 Model description

The proposed model consists of two main stages, each subdivided into further

stages. The first main stage is a peripheral front-end stage, represented by the

AN model, the second main stage is a decision stage, which converts the firing

patterns at the output of the AN model to a correlation-based decision metric

and subsequently to a SI score (see Fig. 5.1). The noisy speech signal (SN) and

the noise alone (N) serve as inputs to the model.

5.2.1 Front end: AN Model

The front end of the model consists of an auditory nerve model (Zilany et al.,

2014). The responses of the model have been validated against a large dataset

of AN recordings from the literature (e.g., Carney, 1993; Bruce et al., 2003; Zi-

lany et al., 2009; Zilany et al., 2014). The AN model consists of several stages,

each providing a phenomenological description of a major part of the auditory
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periphery, starting at the middle ear and ending at a specific AN synapse. The

input to the model is an acoustic waveform (in pascals) which is first processed

by the middle-ear (ME) filter. After the ME filtering, the signal is further passed

through a basilar membrane (BM) filter. A feed-forward control path of the BM

filter controls the gain and bandwidth to account for level-dependent proper-

ties in the cochlea, e.g., less amplification and broader filters at higher levels.

The inner-hair-cell (IHC) stage converts the mechanical BM response to an

electrical potential, which is further low-pass filtered before it is applied to the

IHC-AN synapse model. The synapse model determines the spontaneous rate,

adaptation properties, and rate-level behavior of the AN model. In a last stage,

the spike times are generated by a non-homogeneous Poisson process that

includes refractory effects. The working of the IHC and OHC in the model may

be adjusted by specifying the amount of IHC and OHC damage. The human

auditory system contains nerve fibers with different spontaneous rates fiber

types (LSR: low spontaneous rate; MSR: medium spontaneous rate, and HSR:

high spontaneous rate). For the simulations in this study it was assumed that

60% of all fibers are HSR, 20% MSR, and 20% LSR (Zilany and Bruce, 2007).

Each C F was modeled as 50 fibers. The firing rate of all fibers (all types) were

averaged to obtain the firing rate for a specific C F .

5.2.2 Back end: Midbrain Model and cross-correlation

The nonlinearities of the auditory periphery have strong effects on the rate

fluctuations of AN fibers in response to speech. The contrast in the amplitude

of low-frequency rate fluctuations across the AN population is enhanced in the

midbrain by the rate tuning of inferior colliculus (IC) neurons to amplitude

modulations, which is described by modulation transfer functions (MTFs). The

majority of MTFs in the IC have bandpass (BP) tuning to amplitude modulations
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(Carney et al., 2015).

In the back end of the model, the MTFs of the IC neurons were modeled as a

BP filter with Q = 1 centered at fc = 125, i.e., close to the F0 of the target speaker

(see below). The instantaneous firing rate of each C F was filtered by this BP,

which represents an IC model. The output of this BP filter was segmented into

time frames with a duration of 20 ms and a 50% overlap. For each C F , the

instantaneous firing rate was squared and averaged within each time frame.

The noisy speech and the noise alone were thus represented as functions of time

segment k and C F , s n (k , C F ) and n (k , C F ), respectively. For each segment, a

correlation coefficient r (k ) between the noisy speech and the noise alone was

obtained by:

r (k ) =

∑

C F (s n (k , C F )− s n (k )) · (n (k , C F )−n (k ))
2
Æ
∑

C F (s n (k , C F )− s n (k ))2 · 2
Æ
∑

C F (n (k , C F )−n (k ))2
, (5.1)

where s n (k ) and n (k ) represent the across-C F mean of s n (k , C F ) and

n (k , C F ). The smaller the correlation coefficient r (k ), the higher the contri-

bution of the considered segment to SI. In a further step, the r (k ) values were

averaged across time windows by means of an unweighted average to obtain

rTo t . Lastly, 1− rTo t was converted to a percentage correct using a fitting condi-

tion.

5.3 Methods

5.3.1 Speech and noise material

The stimuli used for the modeling work were similar to the speech stimuli used

in Christiansen and Dau (2012). The stimuli consisted of natural meaningful
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Figure 5.1: Structure of the proposed model: The auditory-nerve model estimates average firing
rates for 13 C F s along the basilar membrane for both the noisy speech signal (SN ) and the
noise signal (N ). The firing rates are further processed by a IC filter. At the output of this IC
filter, across-CF correlation coefficients r (k ) between the noisy mixture s n (k , C F ) and the noise
alone n (k , C F ) are estimated in fixed time windows. The coefficients are averaged across time
segments. In a last stage, the integrated rTo t is transformed to a percentage correct.

Danish five-word sentences from the CLUE corpus (Nielsen and Dau, 2009).

Ten sentences of the speech corpus were chosen for the simulations. All simu-

lation results were averaged over these ten sentences in order to obtain stable

predictions. The sentences were recorded from a male talker with an average

fundamental frequency (F0) of 119 Hz. The data from human listeners were

available for three different interferers: (i) Speech-shaped noise (SSN), a station-

ary masker with a long-term spectrum identical to the average of all sentences in

the study, (ii) an 8-Hz sinusoidally amplitude-modulated (SAM) speech-shaped

noise, and (iii) the international speech test signal (ISTS, Holube et al., 2010a)

which consists of natural speech from six female talkers speaking different lan-

guages. The ISTS signal was created by truncating recorded sentences into

segments and randomly remixing the segments, yielding a largely unintelligible

signal with natural speech properties in terms of periodicity and modulation

(average F0: 207 Hz). The measured speech reception thresholds (SRTs) in NH

listeners, which were obtained directly using an adaptive procedure, were made

available by Christiansen and Dau, 2012. For the model simulations, the range
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of simulated input SNRs ranged from -21 dB in 3-dB steps up to 12 dB. This

range covers the SRTs for all three noise types, which are at -18.3 dB, -9 dB,

and -3.1 dB for the ISTS, SAM, and SSN interferers, respectively. The SRTs were

measured at overall presentation levels (OALs) of 65 and 80 dB SPL for NH and

HI listeners, respectively. The model predictions were obtained at OALs of 50,

65, and 80 dB SPL.

5.3.2 Model configurations

Different configurations of the front end and the back end of the model were

tested in this study. The model front end always consisted of 13 C F s (500, 630,

800, 1000, 1250, 1600, 2000, 2500, 3150, 4000, 5000, 6300, 8000 Hz). For all

model configurations, the rTo t values obtained in the SSN condition in NH

operation mode (see below) were used for fitting. A non-linear fitting algorithm

was applied to iteratively estimate the two parameters a1 and a2 of the following

logistic function in order to convert rTo t to S I :

S I (SN R ) =
100

1+ e a1rTo t (SN R )+a2
, (5.2)

where S I is the SI expressed as a percentage correct and rTo t is the total cor-

relation coefficient integrated across all C F s. In order to quantify the accuracy

of the model predictions, the predicted SRT was obtained as the 50% point on

the predicted psychometric function and the prediction error E was calculated

as E = SRTp r e d i c t e d −SRTme a s u r e d .

NH operation mode

For the normal-hearing operation mode, the OHC and IHC loss factors in the AN

model were set to one, i.e., no loss was assumed. Only one ear was simulated for
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the NH listeners, assuming that both ears would result in the same predictions.

The model was run for three different OALs (50, 65, 80 dB SPL) to investigate the

level dependency of the predictions. The preidictions in SSN noise at an OAL of

65 dB SPL served as the fitting condition.

HI operation mode

For the hearing-impaired operation mode, the audiograms of the two ears of

the 13 HI listeners were used to determine the OHC and IHC loss factors in the

AN model (Table 1, p. 1657; Christiansen and Dau, 2012). It was assumed that

one third of the total hearing loss was caused by an IHC loss and two thirds were

due to an OHC loss (Zilany and Bruce, 2007; Bruce et al., 2013). For each listener,

the two ears were simulated with the model. To obtain one SI score per listener

out of the two individual ear scores, the better ear in terms of the predicted SI

was chosen for each SNR. The model predictions were obtained for an OAL of

80 dB SPL, the level at which the SRT data were measured (Christiansen and

Dau, 2012). The same fitting parameters as in the NH operation mode were

used for the HI operation mode.

5.4 Results

5.4.1 NH operation mode

Figure 5.2 shows the SI predictions (dots) as a function of the input SNR. The

SI predictions (in terms of percent correct) decrease with decreasing SNRs. A

logistic function was fitted to the predictions (dashed line). From this function,

the SRT (SI= 50%) was estimated. Note that the SSN condition (red) was used

for fitting. It can be seen that the predicted SRTs also in the other two conditions

(SAM, green; ISTS, blue) are very close to the measured SRTs of the human
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listeners (squares). The SRT error E did not exceed 0.1 dB for any of the three

interferers.
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Figure 5.2: Simulated SI depicted as a function of the input SNR for the SSN (red), SAM (green),
and ISTS (blue) interferers obtained with the model at an OAL of 65 dB SPL. The round dots
represent the simulated SI predictions for each input SNR. The dashed lines depict psychometric
functions fitted to the predictions. The squares indicate the SRTs measured in NH listeners at
the same OAL, as provided by Christiansen and Dau, 2012.

Figure 5.3 illustrates how the NH predictions change with OAL. Panel A

depicts the SI predictions obtained at 50 dB SPL. The SRT errors (E ) are positive

for all three noise types, implying that these predicted SRTs are higher (i.e., SI

worse) than the reference SRTs measured at an OAL of 65 dB SPL. The average

overestimation of the SRTs is 2.8 dB. The results for the SAM interferer showed

the largest deviation, with E = 3.8 dB. Panel B shows the SI predictions obtained

at 80 dB SPL. The SRT error (E ) was negative for all three noise interferers,

implying that the predicted SRTs were lower (i.e., better) than the measured

ones at an OAL of 65 dB SPL. The average underestimation of the SRTs was

2.6 dB. The prediction for the ISTS interferer showed the largest deviation, with

E = 5.3 dB.
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Figure 5.3: Simulated SI depicted as a function of the input SNR for the SSN (red), SAM (green),
and ISTS (blue) interferers. The results in panel A were obtained for an OAL of 50 dB SPL, whereas
panel B depicts the results for an OAL of 80 dB SPL. The round dots represent the simulated SI
predictions for each input SNR. The dashed lines depict psychometric functions fitted to the
predictions. The squares indicate the SRTs measured in NH listeners at an OAL of 65 dB SPL, as
provided by Christiansen and Dau, 2012.

5.4.2 HI operation mode

Figure 5.4 depicts the SI predictions for two hearing-impaired listeners at an

OAL of 80 dB SPL. The predictions are based on the same fitting as described

above, i.e., using the SSN condition at an OAL = 65 dB SPL in the NH operation

mode. The fitting remained the same for all configurations and the differences

between the NH and HI predictions are solely based on changes in the AN-

model front end. Panel A shows the predictions for listener HI2, for whom the

prediction error E was small for all but the SAM interferer, for which the SRT

was predicted as being 2.5 dB too low (i.e., too good). Panel B represents the

predictions for listener HI10 and represents a quasi-perfect prediction. Here,
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all predictions matched the measured SRTS very well, with an average absolute

error of < 0.4 dB. The model can account for the SRT shift to higher signal to

noise ratios as compared to the NH SRTs (see Fig. 5.2). Also the decreased

difference between the SRTs for the different interferers is well accounted for by

the model.
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Figure 5.4: Simulated SI depicted as a function of the input SNR for the SSN (red), SAM (green),
and ISTS (blue) interferers. All results were obtained at an OAL of 80 dB. Panel A illustrates the
results for listener HI2 whereas panel B depicts the results for listener HI10. The round dots
represent the simulated SI predictions for each input SNR. The dashed lines depict psychometric
functions fitted to the predictions. The squares indicate the SRTs measured in HI listeners at an
OAL of 80 dB, as provided by Christiansen and Dau, 2012.

Figure 5.5 shows that not all HI predictions are as good as the ones depicted

in Fig. 5.4. The figure illustrates the SRT prediction errors (E ) for all listeners.

The listeners on the abscissa are sorted in descending order according to their

mean absolute error (MAE). Four out of the 13 listeners exhibit small errors

(Ē=2.6 dB) for all three noise types. For the other remaining listeners the SRTS

are generally predicted as too low (i.e., too good). In general, the results for the
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the three noise types follow the same trend, indicating that the predictions for

some of the HI listeners fail to account for the full deficits experienced by these

listeners.
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Figure 5.5: The SRT prediction error (E ) for all listeners for the SSN (red), SAM (green), and
ISTS (blue) interferers. All results were obtained at an OAL of 80 dB. The listeners are sorted in
descending order of their mean absolute error.

5.5 Discussion

The SI model presented in this study consists of an AN model as front end

and a simplified midbrain model followed by an cross-correlation metric in

the back end. The model uses the idea of the vowel-coding patterns across

frequency in the IC as discussed in Carney et al. (2015). Inspired by the sEPSM

approach (Jørgensen and Dau, 2011; Jørgensen et al., 2013), the decision metric

assesses the similarity of the pattern evoked by the noise interferers to the

pattern evoked by the noisy-speech signal in short time frames of 20 ms. The

lower the correlation coefficient between these two patterns is, the higher the

contribution of a particular segment to SI is assumed to be.

The study also investigated the use of the clean speech signal as a reference

signal, as used in the STMI and NSIM approaches (not shown here). A correla-

tion to a NH clean speech template proved difficult as the fitting of the back end
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was not able to accounht for both NH and HI listeners. A individual fitting to an

average HI listener condition could solve this issue, however, such an additional

fitting was not congruent with the goal of this study to predict SI solely based on

peripheral defficits in HI listeners. A correlation to a HI clean speech template

proved difficult as the correlations for the HI listeners increased compared to the

NH listeners since the HI representations encoded less information especially

at high frequencies. The fact that the decision metric based on the correlation

to the noise signal delivered the best results proves the power of the sEPSM

concept.

Compared to the model presented in Chapters 3 and 4, the model in this

study only considers CF above 500 Hz. This change was motivated by the use of

the modulation filter centered at 125 Hz, congruent with the sEPSM assumption

that only peripheral channels with a frequency of >4 fm should be considered

for a given modulation filter. If filters below 500 Hz were included into the

model, the model predictions were dominated by the strong F0 fluctuations in

these filters and were insensitive to loss of information at higher C F s, i.e. the

C F s affected by a high-frequency hearing loss. Other center frequencies for the

IC modulation filter were tested as well. While a 100-Hz filter or other center

frequencies close to the F0 of the traget speaker worked well, lower frequencies

(8 and 64 Hz were tested) did poorly compared to the 125 Hz filter.

In the NH operation mode, the model yielded very accurate predictions for

both modulated (SAM and ISTS) and steady interferers (SSN) at an OAL of 65 dB

SPL, which was also used in the NH experiment. In addition, the model also

showed plausible trends as a function of OAL: For a lower OAL of 50 dB SPL,

the SI predictions of the model were slightly worse than the predictions at an

OAL of 65 dB; although there is no measured reference data available for an

OAL of 50 dB SPL, this effect is expected since lower-level parts of the sentences
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(e.g., consonants) may become inaudible at this lower OAL. In contrast, the

predictions became slightly better for a higher OAL of 80 dB SPL, with more

pronounced improvements for the fluctuating noises (SAM, ISTS) than for the

steady-state noise (SSN); this could be due to an increased contribution of dip

listening, as the speech cues in the masker gaps might become more audible at

higher levels.

In the HI operation mode, the model also showed some very promising

results. It is important to highlight that the model performed all HI predictions

at an OAL of 80 dB SPL (the OAL used in the HI experiment) based on the NH

fitting for the SSN interferer at an OAL of 65 dB SPL (the OAL used in the NH

experiment). To achieve accurate individual HI predictions at different levels in

the presence of different noise types and based on a NH fitting procedure is a

challenging test for a SI model. The only difference that the model was “allowed”

to take into account were the OHC and IHC loss parameters in the front end,

which are based on the audiogram and the assumption that one third of the

total loss at a specific C F is due to IHC loss and two thirds are due to OHC loss.

The model performed very well for four of the thirteen listeners, and reasonably

well for eight listeners.

However, the model shows considerable deviations for five listeners. These

listeners are those with SRTs deviating most from the NH SRTs (on average

+11 dB). This large deviation might result from deficits not considered in the

model (e.g., cognitive deficits). This is further supported by the fact that the

audiograms are similar to other listeners audiograms but their SRTs were not.

The model in its presented form does not account for any cognitive limitations

in the processing.

The assumption of one third IHC and two thirds OHC loss is based on histol-

ogy results in animals (e.g. Liberman and Dodds, 1984). For individual listeners,



5.5 Discussion 87

this assumption may not be accurate. Further investigations are required to

determine the influence of different IHC versus OHC loss ratios and their influ-

ence on SI. The proposed model could be used to systematically test different

ratios for each subject. If some of the listeners’ predicted SI values improve as

a result of different ratios, this might be an indicator that the histology of that

subject deviates from the 1/3 versus 2/3 assumption. Furthermore, the knowl-

edge of how different histologies affect speech intelligibility could help tailor

compensation strategies to be more effective for a given loss configuration.

The correlation-based metric chosen for the back end could potentially be

altered. 1− rTo t is strictly speaking not a correlation but a “similarity distance”.

Other distance measures were also tested (not shown), including a simple eu-

clidean distance and the absolute difference of the envelopes. They delivered

reasonable results but were inferior to the correlation-based metric presented

here. A combination of distance metrics, such as used in the NSIM study, could

potentially outperform the metric proposed in the present study.
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6
Overall discussion

6.1 Summary of main results

This thesis described two main streams of work: (i) Chapter 2 focused on describ-

ing a new analysis framework based on entropy and a distance metric to analyze

consonant-vowel (CV) perception in hearing-impaired (HI) listeners across

different listening conditions; (ii) Chapters 3, 4, and 5 focused on developing a

speech intelligibility (SI) model to account for observed deficits in HI listeners,

which could help accelerate the development of hearing-aid algorithms. In

particular, the work presented in these three chapters represents an attempt

to develop a model that accounts for sentence intelligibility in fluctuating and

steady background noises.

6.1.1 Analysis framework for CV experiments

Previous work on CV recognition experiments mostly focused on analyzing

recognition scores, thereby missing much of the information that is encoded in

the consonant confusions. The study presented in Chapter 2 proposed to utilize

the measure of confusion entropy (as used in information theory) to analyze the

randomness of confusions as opposed to just the number of confusions. The

confusion entropy allows to differentiate between cases where listeners have

a low recognition rate because they are guessing, as compared to cases where

they have a low recognition rate because the consonant for them has “morphed”

89
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(i.e., changed) into a completely different consonant. If a listener were to always

give the same response, the confusion entropy would be 0 bit, irrespective of

whether or not the response is correct. In contrast, if a listener were to select

all response alternatives the same number of times, which indicates that the

listener is randomly guessing, the confusion entropy would reach its maximum

value. Thus, the higher the confusion entropy, the more uncertain is the listener

regarding his/her responses.

While this response randomness allows to distinguish between cases where

the listener is guessing or making a systematic error, it does not take the ac-

tual confusions into account. Whether a consonant is confused with one or

another response alternative does not affect the confusion entropy measure as

long as the confusion probability is equal. However, when comparing results

from different recognition experiments, it can be helpful to know if the type of

confusions has changed from one condition to another. For example, if a new

hearing-aid compensation strategy is tested with CVs, a strong /ga/ confusion

for the stimulus /da/ in the unaided condition can turn into an equally strong

/ta/ confusion in the aided condition. Such a transformation is undesirable, as

it will likely increase the resistance of a listener to accept a new hearing device.

The proposed distance measure allows to detect such changes in the confusions.

These two newly proposed metrics were used to analyze CV recognition in

the same set of listeners across two experiments: (i) in one experiment, a simple

linear gain (flat gain) was provided to the listeners; (ii) in the other condition,

the listeners were provided with a frequency-dependent gain (NAL-R) that

aims at restoring loudness in all frequency channels. It was shown that NAL-R

generally increased the average recognition rate. In a more granular analysis,

it was shown that this improvement was multi-faceted when analyzed at a

token-level. The confusion entropy measure showed robust perception, i.e., no
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guessing, in all but 17% of the token-listener pairs in the flat-gain condition. The

proposed angular distance measure revealed that in 63% of the token-listeners

pairs, the main confusions remained unchanged despite NAL-R, suggesting

that these are caused by acoustic properties of the chosen tokens rather than by

the amplification condition. The results suggest that a compensation strategy

different than NAL-R would be needed to minimize the main confusions. It was

also observed that NAL-R in combination with the individual loss introduced

new robust confusions in 30 cases. The analysis framework thus revealed highly

relevant information in the data, which was not represented in the consonant

recognition scores.

6.1.2 A model accounting for SI in HI listeners

Chapters 3, 4, and 5 presented different stages of the work towards developing

a model of SI in HI listeners. The line of work took “baby steps” in altering an

existing normal-hearing (NH) SI model, namely the speech-based envelope

power spectrum model (sEPSM; Jørgensen and Dau, 2011; Jørgensen et al.,

2013), to also account for SI in HI listeners. In the sEPSM framework, SI is

predicted based on a signal-to-noise ratio in the envelope domain (SNRe n v ).

Chapter 3 describes the attempt to integrate a hearing loss into the linear front

end (gammatone filterbank) of the mr-sEPSM model. By simply integrating

the audibility thresholds of HI listeners in the model, the predictions agreed

reasonably well with the measured relative difference in SI between fluctuating

and steady background noises (i.e., masking release). However, the overall

decrease of SI measured in the HI listeners was not reflected in the model

predictions, which was assumed to be related to its simplistic linear front end.

Chapter 4 documents the work to replace the linear gammatone filterbank by

a non-linear auditory-nerve model, which allows for the adjustment of inner
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(IHC) and outer hair-cell (OHC) loss in the model. The model exhibits accurate

predictions of NH listener data when the front end operates at a low input level

and when assuming only medium spontaneous-rate fibers, i.e., when the model

operates essentially linear. However, when using realistic input levels and a

physiologically plausible mixture of low, medium, and high spontaneous-rate

fibers, the model overpredicts SI in fluctuating noise. Chapter 5 presents the

work conducted to adjust the back end of the sEPSM to work well with the

auditory-nerve model as front end. The results show accurate predictions for

the NH listeners and promising predictions results for the majority of the HI

listeners.

Chapter 3 simulates a hearing loss within the linear mr-sEPSM model whose

peripheral processing is represented by a gammatone filterbank. Three model

configurations were tested; (i) a gammatone model with an audibility threshold

in each filter band according to a listener’s audiogram, (ii) a gammatone model

with broader filters based on a frequency resolution estimate derived from a

listener’s audiogram, (iii) a combination of (i) + (ii). The model with configu-

ration (i) performed the best out of the three. It was capable of predicting the

difference between a listener’s speech reception thresholds (SRT; SNR at which

a listener perceives 50% of the presented speech units) in a steady noise and the

SRT in a fluctuating noise. However, it did not predict the upward shift of the

individual SRTs correctly but only the difference between them. The broader fil-

ters of model configuration (ii) showed virtually no effect on the SRT predictions.

Model (iii) showed some compounding effect of the two alterations of the front

end, but in general the effect of the audibility component was dominating. The

chapter concluded that much of the decreased masking release in HI listeners

could be accounted for by an audibility loss. Furthermore, it was concluded that

the linear front end is limited in its ability to model the important peripheral
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effects of a hearing loss.

Chapter 4 uses envelopes derived from the instantaneous firing rate of an

auditory-nerve model (Zilany et al., 2014) instead of envelopes derived from a

linear gammatone filterbank as in Chapter 3. The auditory-nerve model was

operated in two modes: (i) a quasi-linear mode in which medium spontaneous-

rate fibers at an overall level (OAL) of 50 dB SPL were considered and (ii) a

“realistic” operation mode in which the auditory-nerve model worked at an

OAL of 65 dB SPL and the envelopes were derived from all fiber types, i.e., low,

medium and high spontaneous-rate fibers. It was shown that the model predic-

tions obtained in the quasi-linear mode agreed well with the NH behavioral data

for both steady maskers and fluctuating maskers, whereas the SRT predictions

in the “realistic” mode were too low (i.e., too good). It was thus concluded that

the model is too sensitive to level variations and originally planned attempts to

also predict HI data were therefore not further pursued. A back end analysis

revealed that the modulation range of the original mr-sEPSM (1-256 Hz) does

not seem to be appropriate for the nonlinear front end. It was shown that the

prediction error reaches a minimum for a back end considering a modulation

range of 1-64 Hz.

Chapter 5 presents a model which again uses the auditory-nerve model as

a front end but combines it with a correlation metric in the back end instead

of a SNRe n v decision metric. Inspired by a recent study on vowel coding in

the midbrain (Carney et al., 2015), the model uses a single modulation filter

centered at a frequency close to the fundamental frequency of the male target

speaker. The output of this modulation filter is analyzed in 20-ms segments

by means of an across-CF correlation between the noise signal and the noisy

mixture. The model was shown to work well across three OALs (50, 65, and

80 dB SPL) for NH listeners. Consecutively, the model that was fitted to the NH
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condition was tested for 13 HI listeners. Only the IHC and OHC transduction

of the auditory-nerve model were adjusted according to the audiograms of the

HI listeners under the assumption that 1/3 of their loss at a specific frequency

was caused by a IHC loss and the remaining 2/3 by a OHC loss (Liberman and

Dodds, 1984). The model predictions showed good agreement for eight of the

thirteen subjects. It is encouraging that the model only uses one NH fitting

condition for its back-end, whereas all other conditions are predicted soley

based on changes in the periphery.

6.2 Perspectives

The work presented in this thesis could be extended in multiple ways.

6.2.1 Analysis framework for CV experiments

The distance metric that was used in Chapter 2 is a powerful metric to asses

how confusions change across different responses. The metric could be used in

combination with a clustering algorithm (e.g., k-means) to automatically estab-

lish confusion groups. These confusion groups found by an algorithm based

on the distance metric could provide a valuable perspective on the grouping of

consonant confusions. In the literature, confusion groups have been typically

formed a priori according to modes of articulation (e.g., voiced vs unvoiced)

instead of being based on perceptual attributes. A clustering-algorithm based

alternative could test if these groups really exist in the data.

Furthermore, it would be of interest to further investigate the cases in which

NAL-R introduced new stable confusions. An analysis that takes both (i) de-

tailed information about the acoustic properties of the specific token that was

confused as well as (ii) a detailed assessment of a listener’s hearing loss into
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account could help explain the cause of such confusions and help to develop

compensation strategies to minimize these confusions.

6.2.2 A model accounting for SI in HI listeners

While the modeling approaches presented in Chapters 3 and 4 exhibited dif-

ferent limitations and shortcomings, the model presented in Chapter 5 shows

a promising foundation for a model to predict SI in HI listeners. The correla-

tion metric used in the back end was intended as a first step towards a simpler

decision metric. Correlation is a powerful metric as it assesses the signals in

full detail. However, this may result in the drawback that the metric can react

overly sensitively to small changes in the signals. Another metric based on a

distance measure, similar to the neurogram similarity index measure (NSIM),

could potentially yield equally predictive but more stable (less extreme) pre-

dictions for listeners with a severe hearing loss. It could also be interesting

to evaluate the proposed back end with a different front end. The AN model

could, for example, be replaced with other models of the nonlinear auditory

periphery, e.g., the computational model of human auditory signal processing

and perception (CASP; Jepsen et al., 2008).

Chapter 4 showed that the high modulation channels (>64 Hz) were detri-

mental to the prediction accuracy. Interestingly, Chapter 5 showed that the best

results were obtained with a modulation filter at 125 Hz, while results with lower

modulation filters were not as accurate. These two findings appear to be contra-

dicting and it should be investigated why the “optimal” preprocessing depends

so much on the chosen back end, i.e., SNRe n v as compared to correlation.

So far the model has only been tested under the simplifying assumption

that any of the considered hearing losses consists of 1/3 IHC and 2/3 OHC loss.

To better capture the hearing deficits of the individual HI listeners, different
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IHC-OHC ratios could be systematically tested with respect to their influence

on the final SI predictions.

The front end represents a detailed and thus computationally costly model

of the auditory periphery. Once the model has been tested with more subjects

and different IHC-OHC ratios, it would be of interest to test/evaluate simplified

versions of the front-end model. A gradual simplification of the model could

reveal which details are actually necessary to model SI in HI listeners in different

noise types.
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Quantitatively assessing the speech intelligibility deficits observed in hearing-

impaired listeners is a basic component for a better understanding of these deficits

and a crucial component for the development of successful compensation strategies.

This dissertation describes two main streams of work aiming at a better quantitative

understanding: Part (i) focuses on describing a new analysis framework based on

a confusion entropy and a distance metric to analyze consonant-vowel perception

in hearing-impaired listeners. These metrics allow for a speech-token-based

comparison of a listener’s performance across different listening conditions. Part

(ii) focuses on developing a computational speech intelligibility model to account for

observed deficits in HI listeners. It presents a model that predicts normal-hearing

and hearing-impaired speech intelligibility in stationary and fluctuating back-ground

noises.
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