Scene-aware compensation strategies for hearing aids in adverse conditions

Niels Overby


Hearing aids aim to improve speech intelligibility and hearing comfort for hearing-impaired listeners. This can be achieved through a series of signal processing algorithms. Among these are beamforming and noise reduction, which improve the signal by attenuation of background noise but can produce unwanted artefacts and only provide limited improvements in noise filled environments.

Hearing aids also provide frequency- and level-dependent amplification, known as dynamic range compression. This processing step amplifies soft sounds while maintaining loud sounds at a comfortable level. In quiet conditions this works well as the softer speech sounds are amplified. However, in adverse conditions the background noise between the speech gaps and the artefacts from previous signal processing stages are amplified. As a result, speech intelligibility and hearing comfort are diminished, and spatial cues can be distorted.

This project investigates scene-aware compensation strategies in which fast-acting compression is applied to a target signal and slow-acting compression to the background signal. In this way the soft speech signal is amplified while background sounds are kept at a comfortable listening level.


Supervisors: Torsten Dau (DTU Health Tech), Tobias May (DTU Health Tech)

This project is supported by Sonova

To be completed in 2023

DTU Orbit


Niels Overby
PhD student
DTU Health Tech